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Abstract: The fault-karst carbonate reservoir is a new type of deep carbonate oil and gas resource
and a target for exploration and development. The distribution of remaining oil in this kind of
oilfield is very complicated because of its unique reservoir characteristics of vertical migration and
accumulation, segmented accumulation, and differential accumulation. Therefore, the S91 reservoir
block, a typical fracture-vuggy carbonate reservoir in the Tahe oilfield, was taken as the object of
this research. According to the development characteristics as well as the porosity and permeability
characteristics of the fracture-vuggy, the reservoirs were divided into three types: cave, pore, and
fracture. A numerical simulation model of the fracture-vuggy reservoir of the S91 unit was established,
and the historical fitting accuracy with dynamic production data was more than 90%. Then, the
distribution characteristics of the remaining oil in the depletion stage of the fault-karst carbonate
reservoir were further studied and based on the analysis of the reservoir water-flood flow line,
the remaining oil distribution characteristics in the depletion stage of the fault solution reservoir
were revealed. The results show that the remaining oil distribution patterns during the depletion
production stage can be divided into three types: attic type, bottom water coning type, bottom
water running type. Due to the serious problem of the bottom aquifer lifting caused by the reservoir
development, the residual oil between wells was relatively abundant during the depletion production
stage. According to the simulation results, the remaining oil distribution modes in the water drive
development stage were identified as three types: sweeping the middle between wells, bottom water
connection and circulation, and oil separation through high-permeability channels. In addition,
the reservoir connectivity was the main controlling factor for the remaining oil distribution in the
fault-karst carbonate reservoir.

Keywords: residual oil distribution; fault-karst carbonate reservoirs; depletion production;
water flooding

1. Introduction

In China, deep carbonate oil-gas resources are the hotspot of oil development, while
fault-karst reservoirs are the major components of deep carbonate oil-gas resources [1–4].
Mainly controlled by the strike-slip fault zone from corrosion of different degrees, they
have the characteristics of segmented accumulation, trans-layer migration, and interrupted
spatial distribution along the fault zone [1,5]. Fault-karst reservoirs are new reservoir
types in nature, having distinct characteristics for deep carbonate oil-gas exploration and
exploitation in China [6–10]. The sizes of fractured-vuggy reservoirs in the fault-karst
traps are mainly controlled by the transformation scale and corrosion strength of the
strike-slip fault zone [11–13]. Generally, fractured-vuggy reservoirs with high quality are
developed along the major fault zone, mostly presenting stripped distribution and local

Processes 2023, 11, 2147. https://doi.org/10.3390/pr11072147 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11072147
https://doi.org/10.3390/pr11072147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-5471-5691
https://orcid.org/0000-0003-3554-3286
https://doi.org/10.3390/pr11072147
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11072147?type=check_update&version=1


Processes 2023, 11, 2147 2 of 17

decentralization patterns [13,14]. Development has demonstrated strong local stratum
deformation at the tensile-separation and press-torsion sections of the strike-slip fault zone,
mainly developing flower structures [15,16]. The reservoir space is dominated by large
caves, which are the most developed parts of the fractured-vuggy reservoirs due to the wide
fracture zone and the strong corrosion action [17]. Vertical fractures with high angles are
mainly developed at the translation section, resulting in relatively narrowed development
scales in the reservoirs. The development degree of fractured-vuggy reservoirs along the
strike-slip fault zone presents obvious segmental features.

The accumulation characteristics of fault-karst reservoirs are not responsible for the
location and height of regional unconformities and structures [18–21]. Hydrocarbon is
accumulated vertically along the fault zone and migrates along the gap-net system in a
T-shape, with vertical migration, segmental accumulation, and differential aggregation
characteristics [22–24]. The hydrocarbon enrichment degree at the major fracture zone of
the fault-karst reservoirs is high, resulting in high production rates [25]. In addition, the
large and small fractures are characterized by the presence of large and small hydrocarbon
production capacities, respectively, while zones with a lack of fractures are characterized
by a lack of hydrocarbon reservoirs [26,27]. Different fault-karst reservoirs along the same
fracture zone are characterized by segmental accumulation, differential enrichment, and
different developmental features [28,29]. The size and connectivity of fault-karst segments
control the distribution and scale of the reservoirs. The carbonate matrix is characterized
by insignificant reservoir permeability. In addition, reservoir spaces have various shapes,
great size disparities, uneven distributions, and strong heterogeneity, resulting in complex
residual oil distributions in the developed oilfields [30]. Therefore, comprehensive studies
on the residual oil distribution patterns and improvement of overall reservoir management
are of practical significance for improving the development efficiency and ensuring effective
residual oil exploitation.

Through many experiments and numerical simulations, several researchers have stud-
ied the distribution patterns of residual oil in fractured-vuggy carbonate reservoirs [31,32].
Rong et al. [9,33,34] classified the residual oil reservoir into four categories and five sub-
categories based on the distribution features by analyzing the fine reservoir description
and dynamic production test data. Li et al. [35] proposed extraction of the residual oil
through circulating water, surfactant flooding, or gas from fractured buried hill reservoirs.
Zheng and Yang et al. [33,36] carried out a systematic study on the multi-scale features of
the reservoir space and types, as well as on the spatial patterns and distribution models of
the fractured-vuggy bodies and their relationships with production wells based on well
logging, core, earthquake, and production performance data. In addition, a model of effect
factors influencing residual oil distribution after water flooding was established. To directly
simulate and predict the development process of fractured porous reservoirs, Liu et al. [37]
proposed methods for establishing a macroscopic model for fractured porous reservoirs,
and provided some application examples. Because of the difference in the reservoir physical
properties, some issues may exist, including water invasion and uncertain residual oil dis-
tributions, thereby resulting in a great challenge to water-flooding in carbonate reservoirs.
Li et al. [35] carried out a 3D water-flooding experiment using inter-layer heterogeneous
physical models and quantitatively characterized the water-flooding status, mode, and
residual oil distribution in the porous carbonate reservoirs with bottom water. To sum
up, the existing studies on residual oil distribution have been mainly focused on fractured
reservoirs, while for fractured-vuggy reservoirs, the research has been focused on bottom
aquifer drive using numerical simulations and physical experiments. Thus, systematic
research on the residual oil distribution patterns in fault-karst carbonate reservoirs needs
to be studied.

The S91 unit is a typical fractured-vuggy fault-karst carbonate reservoir, as in our pre-
vious studies [38], which has experienced natural energy and water flooding development
stages since it was first exploited. Indeed, this unit is characterized by a recovery rate and
moisture content of about 11.5 and 83%, respectively, indicating a high moisture content



Processes 2023, 11, 2147 3 of 17

and low recovery rate. In this context, the present study aims to simulate the residual oil
distribution in the S91 unit of the fault-karst reservoirs during the depletion production
stage. In addition, the residual oil distribution characteristics of the fault-karst reservoir
during the water-flooding stage were investigated in this study by analyzing the flow
line of the injected water. Therefore, this study aims to provide technical support for the
efficient exploitation of fault-karst reservoirs.

2. Establishment of a Numerical Simulation Model for Fractured-Vuggy
Fault-Karst Reservoirs

Based on the geological data of the S91 unit, a numerical simulation model of fractured-
vuggy fault-karst reservoirs was built by dividing the reservoir types and assigning the
corresponding porosity and permeability parameters, the relative permeability curves.

2.1. Establishment of a Numerical Simulation Model

In this study, the geological model of the S91 unit was obtained using Petrel 2014
software to classify the reservoir types and to establish a numerical simulation model for
the S91 unit of the fractured-vuggy reservoir. According to the porosity and permeability
characteristics in different areas of the reservoir, three reservoir types, caves, vugs, and
fractures or faults, were determined. It should be noted that the porosity and permeability
of matrixes are obtained in the laboratory, and the parameters of these reservoir types were
adjusted by combing with well-logging data. The spatial distributions of the reservoir
types are shown in Figure 1.

The partial grid model was obtained by superposing multi-reservoirs. Therefore,
some of the porosity and permeability parameters of these grids were modified in this
study. The permeability data were merged to determine the preferential migration passage,
which is the maximum permeability value of the superimposed reservoir, while that of
the porosity was the sum of directions. The porosity and permeability models involved in
the numerical simulation were now established. The temperature, pressure, and physical
property parameter data, as well as the relative permeability curves of the fractured-vuggy
unit, were first determined (Table 1 and Figure 2), then a numerical simulation model of
the typical fractured-vuggy S91 unit was established.

Table 1. Physical parameters of the numerical mode of the S91 unit.

Model Parameter Value Model Parameter Value

Reservoir
temperature 127 ◦C Reservoir pressure 62 MPa

Rock compressibility 4.05 × 10−5 1/MPa Fluid compressibility 10.03 × 10−4 1/MPa
Porosity 0–0.54 Permeability 5–1200 mD

Initial oil saturation 0.77 Reservoir depths about 5000 m

2.2. History Matching and Model Validation

History matching involves adjusting the reservoir parameters to establish a model
representing the real behavior of the reservoir as far as possible based on the production
data. It is, therefore, a process of model validation. History matching plays an important
part in the numerical simulation of simulating past reservoir data and comparing the
data with the actual production data to establish a model representing the real behavior
of reservoirs, to a certain extent through continuous parameter adjustments. Therefore,
history matching can be considered a process of model validation, allowing predictions
of reservoir production. In mathematics, history matching is an equation solved with
multiple variables and multiple solutions. In other words, multiple parameters can be
used to obtain the same production behavior. From a reservoir exploitation perspective,
the history of reservoir exploitation is influenced by several geological, engineering, and
production measure factors, making history matching a difficult numerical simulation task.
The porosity and permeability of the S91 unit reservoir presented substantial differences.
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Porosity can be adjusted using inverse solutions and statistical laws and revised by the
inverse-fitting method. On the other hand, the theory for adjusting permeability has no
unification. The permeability data can be revised when fitting the dynamic production.
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Figure 2. Relative permeability curves of the S91 unit reservoir. (a) Caves; (b) vugs; (c) fractures or faults.

In this study, the geological reverse of the unit was calculated according to the es-
tablished numerical model. In addition, based on the reservoir types, as well as the
characteristics and statistical laws of seismic logging, the porosity, net to gross (NTG), and
oil-water saturation were first adjusted, then the geological reverse was fitted according to
the actual data. Some fluid production controls were considered to match the oil production
index when matching the production history data. First, the relative permeability was
modified to match the production history in the entire region. Second, based on seismic
data and production data, single-well production fitting was carried out. The numerical
simulation model was corrected by adjusting the permeability of adjacent wells and the
connectivity with the surrounding reservoirs and water. The best models for dynamic
production were established to comprehensively analyze the residual oil distribution with
countermeasures to improve exploitation.

(1) Reverse fitting

The first step of history matching is to fit the geological reverse. The geological
reverse of the unit was calculated using the established numerical simulation model. The
porosity and oil saturation data were first adjusted based on the reservoir types, then the
geological reverse was fitted according to the actual geological reverse. The geological
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reverse, calculated using the numerical simulation models, was 1010.5 × 104 rm3, with
a relative error of 0.04% compared to the actual geological reverse of 1010.9 × 104 rm3,
suggesting good reverse fitting.

(2) History matching production

The liquid and oil velocity data of the S91 unit are shown in Figure 3. The daily data
of the liquid and oil production of the simulation results were consistent with the actual
production data. Similarly, the responding accumulated production data of the produced
liquid and oil were also consistent with the actual well production. The highest well-
fitting rate was 90%. Based on the geological data and numerical simulation model results
following fitting adjustment, the characteristics and status of the S91 unit can be used to
analyze the connectivity relationships of the reservoirs and the adjustment solutions.
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2.3. Residual Oil Distributions between Wells during the Depletion Production Stage

(1) Residual oil distribution in the control area of a single well

The residual oil distribution types in the control area of a single well in the S91 unit
were determined in this study based on the distribution and transport mechanisms of the
residual oil, as shown in Figure 4).

The attic residual oil type was located in the fractured-vuggy bodies above the upper
oil production layers of the wells. Indeed, residual oil of this type could not be extracted
directly. In wells with production layers higher than the oil-water interfaces of the fractured-
vuggy bodies, the oil-water interface in the lower part of the fractured-vuggy bodies moved
up with oil production. Water flooding occurred in the range of oil production layers of
wells, forming the attic residual oil type in the upper part of the fractured-vuggy bodies.
For instance, the bottom water was confined slightly in the TK878 well, producing crude
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oil in the bottom layer and distributing the residual oil mainly in the upper layer of the
well, as shown in Figure 5.
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The bottom water coning residual oil type was distributed around the well bottom
and blocked by the bottom water coning and, consequently, could not be extracted from
wells in vugs and fracture reservoirs. For example, the obvious bottom aquifer coning
and flooding in the TK725 well contributed to the formation of dispersed residual oil. The
residual oil was mainly distributed at the top and sides of the well. In addition, the bottom
water contributed to the formation of a large residual oil zone, as shown in Figure 6.
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Regarding the bottom aquifer running residual oil type, some fractures connected
with the deep bottom water were observed near the well bottom. The deep water flowed
rapidly into the well bottom during the production process through the fractures under
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certain pressure differences. Because both the water in the fractures ran in with line type
and the water was mainly produced after oil water flooding, a high residual oil amount was
blocked by the bottom aquifer in the surrounding zones of the oil well and, consequently,
could not be extracted directly. For instance, fractures with high angles in the reservoirs
across the S91 resulted in high water flows, explaining the distribution of the residual oil
around and in the upper part of the well, as shown in Figure 7.
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(2) Residual oil distribution between oil wells

As shown in Figure 8, the crude oil in the connected reservoirs between S91 and
TK852X was produced effectively. In partial reservoirs between wells (as in the top ones),
crude oil was not produced effectively due to isolation or poor connectivity. Whereas in
the upper reservoirs between oil wells, a lumpy residual oil distribution was formed. The
reverse residual oil was abundant in the reservoirs between wells S91-TK832CH, as well
as in the lower and upper layers. In addition, there was a certain amount of residual oil
around S91, TK832CH, and TK852CX.
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As shown in Figure 9, the water saturation characteristic in the bottom reservoir is
a single peak, the same as the large-scale physical experiment [37], and the residual oil
between T817(K) and TK877(X) was distributed in the fault areas of the reservoirs, as well
as in the upper part around the TK877X well. The reverse residual oil in areas between
T817(K), TK878, and TK892X was abundant, of which TK878 and TK892X exhibited good
production capacity.
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Figure 9. Distribution of residual oil between T817(K), TK878, and TK892X.

As shown in Figure 10, residual oil between TK725 and TK870X was mainly distributed
in the middle and upper areas of the reservoirs. However, TK725 exhibited a poor residual
oil production capacity due to water flooding. Water flooding occurred mainly in the
TK725-0222X(K) section, explaining the high amounts of residual oil reverse in the areas
between wells.
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3. Distribution of Residual Oil during the Water Flooding Stage

The flow and migration patterns of the injected water in reservoirs were analyzed
in this study based on the simulation results obtained in the S91 unit during the water
flooding stage. In addition, the production and distribution status of residual oil was
obtained based on the connection relationships of the injected water, obtained using a
streamline analysis, a method that is different from other research works [33,36]. According
to the obtained results, three residual oil distribution modes during the water flooding stage
were identified, namely sweeping the middle between wells, bottom water connection and
circulation, and oil separation through high-permeability channels. It should be noted
that the analysis of the remaining oil distribution in this work is dynamic analysis on a
block-scale [9,34].

3.1. Sweeping the Middle between Wells

By simulating the streamline of the injected water, the flow direction of the injected
water in the TK832CH well can be shown as in Figure 11. The simulation results indicated
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an occurrence of bottom water coning in the TK832CH well. In addition, the injected water
in the TK832CH well was produced through the connection of the bottom water line from
three wells, namely S91, TK870X, and TK892X.
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Through the streamline analysis of the injected water, the injected water in the S91
well was shown to flow totally into the TK852CX well. According to the reservoir pressure
distribution, as shown in Figure 12, the pressure in the TK852CX well area was low, which
was beneficial to the injected water flow from S91 to TK852CX. In addition, the streamline
analysis demonstrated good connectivity between the S91-TK852CX wells. Therefore, the
injected water in the S91 well could effectively produce residual oil in the zones located
between the S91-TK852CX wells.
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According to the TK852CX well data, reservoirs surrounding TK852CX were obviously
developed, exhibiting certain connectivity with the external reservoirs. Therefore, the
injected water in the TK852CX well would also flow to the external area of the unit. In
addition, the TK852CX well was located in the low-lying area of the unit, explaining the
extension of the flow line of the injected water in TK852CX outside the unit, as shown
in Figure 13.
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According to the above analysis, the injected water in the TK832CH well flowed into
the S91 and TK852CX wells through the bottom reservoir, suggesting good connectivity of
TK832CH with S91 and TK852CX and consequently resulting in the effective production of
residual oil in the areas between wells.

The residual oil distribution between TK832CH, S91, and TK852CX is shown in
Figure 14. The synergistic effect of the injected and bottom water substantially enhanced
the crude oil production in the bottom layers. Because of the connections of the bottom
reservoirs, the injected water in the TK832CH well reached the bottom area of the S91
well through the connected channel of the bottom waterline, enhancing the residual oil
production in areas between TK832CH and S91. The injected water further effectively
displaced the residual oil to areas between S91 and TK852CX through the connected
channel reservoirs. Therefore, residual oil was mainly distributed in the middle reservoir
and upper areas between S91 and TK852CX. The production mode of the residual oil was
the sweeping of the middle between wells. According to this analysis, the connection
channels of the reservoir types is the key factor of this residual oil distribution model,
which is consistent with the 3D water flooding experimental results [35].
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3.2. Bottom Water Connection and Circulation

As shown in Figure 15, bottom water coning was serious in the TK877X well. In
addition, the injected water flowed into the T817(K) well due to the connection of the
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bottom reservoirs. According to the reservoir pressure distribution, the bottom pressure of
the TK877X well was higher, resulting in an effective driving pressure difference combined
with the low-pressure area of the T817(K) well. According to the reservoir development,
considerable vugs and fractures were observed in the TK877X-T817(K) areas, suggesting
certain connectivity between TK877X and T817(K). In addition, faults near the TK877X well
resulted in a vertical flow line across the TK877X well, as shown in Figure 15.
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Figure 15. Water distribution, pressure distribution, and flow line of the injected water around the
TK877X well. (a) Water distribution; (b) pressure distribution.

Figure 16 shows the water distribution and reservoir development around the TK817(K)
well. The obtained results revealed complex reservoir development around the TK817(K)
well, showing the presence of caves, vugs, and fractures and forming a water cone with the
effects of bottom water coning and serious water flooding. In addition, obvious bottom
water connections of the TH817(K) well with TK878, TK892X, TK877X, and TK725 were ob-
served due to the flow direction of the injected water. Therefore, the connectivity between
TK817(K) and surrounding wells was good.

Processes 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

3.2. Bottom Water Connection and Circulation 
As shown in Figure 15, bottom water coning was serious in the TK877X well. In ad-

dition, the injected water flowed into the T817(K) well due to the connection of the bottom 
reservoirs. According to the reservoir pressure distribution, the bottom pressure of the 
TK877X well was higher, resulting in an effective driving pressure difference combined 
with the low-pressure area of the T817(K) well. According to the reservoir development, 
considerable vugs and fractures were observed in the TK877X-T817(K) areas, suggesting 
certain connectivity between TK877X and T817(K). In addition, faults near the TK877X 
well resulted in a vertical flow line across the TK877X well, as shown in Figure 15. 

  
(a) (b) 

Figure 15. Water distribution, pressure distribution, and flow line of the injected water around the 
TK877X well. (a) Water distribution; (b) pressure distribution. 

Figure 16 shows the water distribution and reservoir development around the 
TK817(K) well. The obtained results revealed complex reservoir development around the 
TK817(K) well, showing the presence of caves, vugs, and fractures and forming a water 
cone with the effects of bottom water coning and serious water flooding. In addition, ob-
vious bottom water connections of the TH817(K) well with TK878, TK892X, TK877X, and 
TK725 were observed due to the flow direction of the injected water. Therefore, the con-
nectivity between TK817(K) and surrounding wells was good. 

  
(a) (b) 

Figure 16. Water distribution, pressure distribution, and flow line of the injected water around the 
TK817X well. (a) Water distribution; (b) pressure distribution. 

The analysis results revealed a bottom waterline connection in the T817(K), TK877X, 
TK878, and TK892XCH wells, as shown in Figure 17. In addition, due to the rising and 
coning of the bottom water, water flooding occurred in most wells, which deepened the 
bottom waterline connection between wells. 
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The analysis results revealed a bottom waterline connection in the T817(K), TK877X,
TK878, and TK892XCH wells, as shown in Figure 17. In addition, due to the rising and
coning of the bottom water, water flooding occurred in most wells, which deepened the
bottom waterline connection between wells.

The produced residual oil consisted mainly of crude oil in the surrounding areas of
the wells, as well as in the upper part of the TK877X well, due to serious water flooding
in the connection well system. As shown in Figure 18, the actual residual oil was mainly
distributed in reservoirs located between the T817(K) and TK877X wells. Due to the high-
permeability channels developed in the bottom reservoir, the injected water in the TK817(K)
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well reached the bottom water layer, then flowed into the TK877X well through bottom
water connections. In addition, high-permeability channels were developed in the bottom
reservoir of the TK877X well, distributing residual oil in the reservoirs between T817(K)
and TK877X, with low production capacity, associated with the bottom water connection.
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3.3. Oil Separation through High-Permeability Channels

Figure 19 shows the flowline of the injected water in the TK892X well and the residual
oil distribution in areas between the TK892CH and TK832CH wells. It can be seen that
the injected water in the TK892X well reached the bottom water layer through the bottom
high-permeability channels, then flowed into the S91 and TK832CH wells. Therefore,
bottom water connection relations existed between TK892X, S91, and TK832CH. Residual
oil production in areas between TK892CH and TK832CH was further analyzed in this study,
as shown in Figure 19. The results showed the presence of high-permeability channels in
the bottom of the TK892XCH and TK832CH wells. In these wells, the injected water flowed
into the bottom water layer through high-permeability channels, resulting in low residual
oil production capacities around the wells. Furthermore, the results revealed large residual
oil amounts between and around TK892XCH and TK832CH during the water flooding
stage. Therefore, the residual oil distribution mode between TK892XCH and TK832CH was
oil separation through high-permeability channels.

According to the water saturation distribution around the TK725 well (Figure 20),
bottom water coning occurred in the TK725 well, which is explained by the development
of vugs in the reservoir in the bottom layer. As shown in Figure 20, the flow direction of
the injected water in the TK725 well indicated connections between TK878, T817(K), TK870,
and TK832CH through bottom waterline channels.
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adjacent wells is shown in Figure 21. It can be seen that the bottom crude oil was effectively
produced due to the bottom water effect in the area. The residual oil was mainly distributed
around the TK725 well and in the upper parts of the reservoirs. Therefore, the residual oil
distribution around the TK725 well was oil separation through high-permeability channels.
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4. Conclusions

In this study, a reservoir numerical simulation of the S91 unit was performed based on
the typical fractured-vuggy fault-karst carbonate reservoir and its porosity and permeability
parameters. Derived from history matching, the residual oil distribution laws of the fault-
karst reservoirs during the depletion production stage were simulated. In addition, the
residual oil distribution laws of the fault-karst reservoirs during the water flooding stage
were revealed through the flow line of the injected water in the reservoirs.

(1) Based on the porosity and permeability parameter of the fault-karst body develop-
ment, the reservoirs were classified into three types: caves, vugs, and fractures or
faults. The numerical simulation models of the fractured-vuggy reservoir of the S91
and TP101 units were established in this study. The results demonstrated good history
matching of the dynamic residual oil production, with a fitting accuracy of over 90%.

(2) During the depletion production stage, the residual oil distribution modes in the
well-controlled area of the S91 unit included three residual oil types, namely attic,
bottom water coning, and bottom water running type. A substantial bottom water rise
was observed due to the development of the reservoir, while a relatively abundant
residual oil between wells was observed during the depletion production stage.

(3) The connection relations of the injected water between wells were investigated in
this study at the water flooding stage of the S91 unit using a streamline analysis. In
total, three types of residual oil distribution modes during the water flooding stage
were identified based on the flow and migration of the injected water in the reservoir,
namely sweeping the middle between wells, bottom water connection and circulation,
and oil separation through high-permeability channels.
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