Study on the Applicability of Saturated Hydrocarbon Parameters in the Evaluation of Lacustrine Source Rocks and Oils Based on Thermal Simulation Experiments
Abstract
:1. Introduction
2. Samples and Methods
2.1. Samples
2.2. Closed System Thermal Simulation Experiments
2.3. Soxhlet Extraction and Hydrocarbon Separation
2.4. Vitrinite Reflectance Measurement
2.5. Gas Chromatography-Mass Spectrometry (GC–MS) Analysis
3. Results
3.1. Maturity
3.2. Content of EOMs
3.3. Relative Abundance of Saturated Hydrocarbons
3.4. Bulk Composition of the Saturated Fraction
3.4.1. n-Alkanes
3.4.2. Terpenes
3.4.3. Steroids
4. Discussion
4.1. Effects of Maturation on Paleosedimentary Environmental Parameters
4.2. Effects of Maturity on Identification Methods of Organic Matter Source
4.2.1. n-Alkanes Distribution Pattern Method
4.2.2. Relative Abundances of C27–C29 Steranes Method
4.3. Validity of Maturity Parameters Related to Molecular Markers
5. Conclusions
- (1)
- The evolution characteristic of saturated hydrocarbons according to the thermal simulation experiments was as follows: Due to the thermal cracking, long-chain n-alkanes changed to medium-chain (or short-chain) n-alkanes with the breaking of the C-C bond, and it made the main peak of n-alkanes generally move forward in the thermal evolution stage of Ro < 1.80%. But at the stage of Ro > 1.80%, the loss of short-chain n-alkanes by thermal volatilization dominated the change of n-alkanes, making the relative abundance of long-chain n-alkanes continue to increase. Meanwhile, controlled by thermal degradation, the relative abundance of both the tricyclic terpenoids in terpenoids and the pregnane (including L pregnane) in steroids increased with the increase in maturity.
- (2)
- Maturity had little effect on the environmental parameters of lacustrine source rocks and oils, such as Pr/Ph and gammacerane index, these parameters were still applicable even at the high over-maturity stage. However, the maturity had a significant influence on the method using saturated hydrocarbons to identify the source of organic matter, which made it only effective at the thermal stage of Ro < 1.45% to identify the source of organic matter by using the dominant peak of n-alkanes method and the relative abundance of C27–C29 steranes method.
- (3)
- Most saturated hydrocarbon maturity parameters had their valid scope of application, such as C2920S/(20S + 20R) steranes, C29αββ/(ααα + αββ) steranes and C31αβ22S/(22S + 22R) homohopanes were only effective in the thermal stage of Ro < 2.06%, and the parameter values would be “inverted” in the stage of over-maturity (Ro > 2.06%). However, the parameter Ts/(Ts + Tm) was effective in the whole thermal evolution process, reflecting good applicability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.J.; Zhang, H.; Li, S.Y.; Wen, L. Maturity parameters selection and applicable range analysis of organic matter based on molecular markers. Geol. Sci. Techno. Inf. 2018, 37, 202–211. [Google Scholar] [CrossRef]
- Albrecht, P.; Ourisson, G. Biogenic substances in sediments and fossils. Angew. Chem. Int. Edit. 1971, 10, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall Englewood Cliffs: Hoboken, NJ, USA, 1993; pp. 607–640. [Google Scholar]
- Hu, j.F.; Peng, P.A.; Chivas, A.R. Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea. Appl. Geochem. 2009, 24, 1666–1676. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Distribution; Springer: Berlin/Heidelberg, Germany, 1982; pp. 74–93. [Google Scholar]
- Mackenzie, A.S. Advances in Petroleum Geochemistry//Applications of biological markers in petroleum geochemistry. Adv. Pet. Geochem. 1984, 1, 115–214. [Google Scholar] [CrossRef]
- Lu, S.F.; Zhang, M. Oil and Gas Geochemical; Petroleum Industry Press: Beijing, China, 2018; pp. 174–199. [Google Scholar]
- Farrimond, P. Biomarkers for Geologists: A Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. Geol. Mag. 1992, 129, 793. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide, Volumes 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Si, W.; Hou, D.J.; Wu, P.; Zhao, Z.; Ma, X.X.; Zhou, H.F.; Cao, L.Z. Geochemical characteristics of lower cretaceous lacustrine organic matter in the southern sag of the Wuliyasitai depression, Erlian Basin, China. Mar. Pet. Geol. 2020, 118, 104404. [Google Scholar] [CrossRef]
- Yang, F.L.; Wang, T.G.; Li, M.J. Geochemical study of Cambrian source rocks in the cratonic area of Tarim Basin, NW China. Nat. Gas Geosci. 2016, 27, 861–872. [Google Scholar] [CrossRef]
- Alexander, R.; Larcher, A.V.; Kagi, R.I.; Price, P.L. The use of plant-derived biomarkers for correlation of oils with source rocks in the Cooper/Eromanga Basin system, Australia. APEA J. 1988, 28, 310–324. [Google Scholar] [CrossRef]
- Tong, X.N.; Hu, J.F.; Xi, D.P.; Zhu, M.B.; Song, J.Z.; Peng, P.A. Depositional environment of the Late Santonian lacustrine source rocks in the Songliao Basin (NE China): Implications from organic geochemical analyses. Org. Geochem. 2018, 124, 215–227. [Google Scholar] [CrossRef]
- Chen, X.Y.; Hao, F.; Guo, L.X.; Wang, D.J.; Yin, J.; Yang, F.; Zou, H.Y. Origin of petroleum accumulation in the Chaheji-gaojiapu structural belt of the Baxian Sag, Bohai Bay Basin, China: Insights from biomarker and geological analyses. Mar. Pet. Geol. 2018, 93, 1–13. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, X.W.; He, S. Analysis on validity of maturity parameters of biomarkers: A case study from source rocks in Yitong Basin. J. XSYU 2016, 31, 23–31. [Google Scholar] [CrossRef]
- Sun, L.N.; Zhang, Z.N.; Wu, Y.D.; Su, L.; Xia, Y.Q.; Wang, Z.X.; Zheng, Y.W. Evolution patterns and their significances of biomarker maturity parameters-a case study on liquid hydrocarbons from type II source rock under HTHP hydrous pyrolysis. Oil Gas Geol. 2015, 36, 573–580. [Google Scholar] [CrossRef]
- Fu, J.M.; Sheng, G.Y.; Xu, Y.Y.; Jia, R.F.; Fan, S.F.; Peng, P.A.; Eglinton, G.; Gowar, A.P. Application of biomarker compounds in assessment of paleoenvironments of chinese terrestrial sediments. Geochimca 1991, 1, 1–12. [Google Scholar] [CrossRef]
- Yang, R.F.; Wang, Y.C.; Cao, J. Cretaceous source rocks and associated oil and gas resources in the world and China: A review. Pet. Sci. 2014, 11, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chang, X.C.; Sun, Y.Z.; Shi, B.B.; Qin, S.J. Investigation of fluid inclusion and oil geochemistry to delineate the charging history of Upper Triassic Chang 6, Chang 8, and Chang 9 tight oil reservoirs, Southeastern Ordos Basin, China. Mar. Pet. Geol. 2020, 113, 104–115. [Google Scholar] [CrossRef]
- Xu, J.J.; Liu, Z.J.; Bechtel, A.; Sachsenhofer, R.F.; Jia, J.L.; Meng, Q.T.; Sun, P.C. Organic matter accumulation in the upper cretaceous qingshankou and nenjiang formations, Songliao basin (NE China): Implications from high-resolution geochemical analysis. Mar. Pet. Geol. 2018, 102, 187–201. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.L.; Liu, Y.; Shen, W.L.; Chang, X.C.; Sun, Z.Q.; Xu, G.C. Organic geochemistry, distribution and hydrocarbon potential of source rocks in the paleocene, lishui sag, east China sea shelf basin. Mar. Pet. Geol. 2019, 107, 382–396. [Google Scholar] [CrossRef]
- Qi, K.; Ren, Z.L.; Chen, Z.P.; Cui, J.P. Characteristics and controlling factors of lacustrine source rocks in the Lower Cretaceous, Suhongtu depression, Yin-E basin, Northern China. Mar. Pet. Geol. 2021, 127, 104943. [Google Scholar] [CrossRef]
- Harris, N.B.; Freeman, K.H.; Pancost, R.D.; White, T.S.; Mitchell, G.D. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo basin, west Africa. AAPG Bull. 2004, 88, 1163–1184. [Google Scholar] [CrossRef]
- Justwan, H.; Dahl, B.; Isaksen, G.H. Geochemical characterization and geneticorigin of oils and condensates in the South Viking Graben, Norway. Mar. Pet. Geol. 2006, 23, 213–239. [Google Scholar] [CrossRef]
- Keym, M.; Dieckmann, V.; Horsfield, B.; Erdmann, M.; Galimberti, R.; Kua, L.C.; Leith, L.; Podlaha, O. Source rock heterogeneity of the upper Jurassic Draupne formation, north Viking Graben, and its relevance to petroleum generation studies. Org. Geochem. 2006, 37, 220–243. [Google Scholar] [CrossRef]
- Shao, X.H.; Pang, X.Q.; Li, M.W.; Li, Z.M.; Zhao, Y. Hydrocarbon generation from lacustrine shales with retained oil during thermal maturation. Pet. Sci. 2020, 17, 1478–1490. [Google Scholar] [CrossRef]
- Xu, J.J.; Jin, Q. Hydrocarbon generation from Carboniferous-Permian coaly source rocks in the Huanghua depression under different geological processes. Pet. Sci. 2020, 17, 1540–1555. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, X.M.; Cheng, P.; Wang, M.L.; Tian, H. The relationship between oil generation, expulsion and retention of lacustrine shales: Based on pyrolysis simulation experiments. J. Petrol. Sci. Eng. 2021, 196, 107625. [Google Scholar] [CrossRef]
- He, M.; Wang, Z.Y.; Moldowan, M.J.; Peters, K. Insights into catalytic effects of clay minerals on hydrocarbon composition of generated liquid products during oil cracking from laboratory pyrolysis experiments. Org. Geochem. 2022, 163, 104331. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wang, Y.F.; Ma, W.; Lu, J.C.; Liao, Y.H.; Li, Z.S.; Shi, Q. Compositional Characterization of Expelled and Residual Oils in the Source Rocks from Oil Generation-Expulsion Thermal Simulation Experiments. ACS Omega 2019, 4, 8239–8248. [Google Scholar] [CrossRef]
- Li, Z.X.; Huang, H.P. Bulk and molecular composition variations of gold-tube pyrolysates from severely biodegraded Athabasca bitumen. Pet. Sci. 2020, 17, 1527–1539. [Google Scholar] [CrossRef]
- Liu, W.M.; Liao, Y.H.; Shi, Q.; Hsu, C.S.; Jiang, B.; Peng, P.A. Origin of polar organic sulfur compounds in immature crude oils revealed by ESI FT-ICR MS. Org. Geochem. 2018, 121, 36–47. [Google Scholar] [CrossRef]
- Peters, K.E.; Hackley, P.C.; Thomas, J.J.; Pomerantz, A.E. Suppression of vitrinite reflectance by bitumen generated from liptinite during hydrous pyrolysis of artificial source rock. Org. Geochem. 2018, 125, 220–228. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, Y.A.; Zhao, Y.; Cao, X.X.; Ma, L.H. Hydrogen isotopic characteristic of hydrocarbon gas pyrolyzed by herbaceous swamp peat in hydrous and anhydrous thermal simulation experiments. J. Nat. Gas Geosci. 2018, 3, 67–72. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Z.J.; Guo, W.; Chen, H.J. Characteristics and comprehensive utilization potential of oil shale of the Yin’e basin, Inner Mongolia, China. Oil Shale 2015, 32, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.C.; Liu, G.D.; Cao, Z.; Guo, D.B.; Wang, P.; Tang, G. Geochemical characteristics, depositional environment, and controlling factors of Lower Cretaceous shales in Chagan Sag, Yingen-Ejinaqi Basin. Geol. J. 2018, 53, 1308–1321. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R.; Liu, Z.J.; Li, L.; Wu, X.P.; Zhao, K.G. Influence of palaeoclimate and hydrothermal activity on organic matter accumulation in lacustrine black shales from the Lower Cretaceous Bayingebi Formation of the Yin’e Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 110007. [Google Scholar] [CrossRef]
- Hou, Y.C.; Wang, H.Y.; Fan, T.L.; Zhang, H.G.; Yang, R.Z.; Li, Y.F.; Long, S.F. Rift-related sedimentary evolution and its response to tectonics and climate changes: A case study of the Guaizihu sag, Yingen-Ejinaqi Basin, China. J. Asian Earth Sci. 2020, 195, 104370. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Dai, S.; Pan, B.T.; Wang, L.B.; Peng, D.X.; Wang, H.W.; Zhang, X. The palynoflora of the Lower Cretaceous strata of the Yingen-Ejinaqi Basin in North China and their implications for the evolution of early angiosperms. Cretaceous Res. 2014, 48, 23–38. [Google Scholar] [CrossRef]
- Yang, M.H.; Zuo, Y.H.; Zhang, J.Z.; Wang, C.C.; Zhou, Y.S.; Wang, X.J.; Zhang, C.F. Hydrocarbon Kitchen Evolution in the Early Cretaceous Bayingebi 2 Formation in the Chagan Depression, Yingen-Ejinaqi Basin, North Central China. ACS Omega 2021, 6, 12194–12204. [Google Scholar] [CrossRef]
- Yang, P.; Ren, Z.L.; Xia, B.; Zhao, X.Y.; Tian, T.; Huang, Q.T.; Yu, S.R. The Lower Cretaceous source rocks geochemical characteristics and thermal evolution history in the HaRi Sag, Yin-E Basin. Pet. Sci. Technol. 2017, 35, 1304–1313. [Google Scholar] [CrossRef]
- Ye, J.R.; Yang, X.H.; Wang, L.J. Petroleum Systems of Chagan Depression, Yingen-Ejinaqi Basin, Northwest China. J. China Univ. Geosci. 2005, 17, 55–64. [Google Scholar] [CrossRef]
- Li, T.J.; Huang, Z.L.; Yin, Y.; Gou, H.G.; Zhang, P. Sedimentology and geochemistry of Cretaceous source rocks from the Tiancao Sag, Yin’e Basin, North China: Implications for the enrichment mechanism of organic matters in small lacustrine rift basins. J. Asian Earth Sci. 2020, 204, 104575. [Google Scholar] [CrossRef]
- Chen, Z.J.; Gao, Y.W.; Liu, H.C.; He, Y.H.; Ma, F.X.; Meng, J.H.; Zhao, C.C.; Han, C.C. Geochemical characteristics of Lower Cretaceous source rocks and oilsource correlation in Hari sag, Yingen-Ejinaqi Basin. Acta Petrolei Sinica 2018, 39, 69–81. [Google Scholar] [CrossRef]
- Chen, Z.J.; Ma, F.X.; Xiao, G.; Zhang, Y.; Gao, Y.W.; Wang, X.D.; Han, C.C. Oil-sources rock correlation of Bayingebi Formation in Hari sag, Yingen-Ejinaqi Basin. Oil Gas Geol. 2019, 40, 900–916. [Google Scholar] [CrossRef]
- SY/T 5735-1995; Geochemical Evaluation Standard of Terrestrial Hydrocarbon Source Rock. Petroleum Industry Press: Beijing, China, 1995.
- Qin, X.M.; Chi, H.; Fang, W.J.; Li, X. Thermal stability characterization of n-alkanes from determination of produced aromatics. J. Anal. Appl. Pyrolysis 2013, 104, 593–602. [Google Scholar] [CrossRef]
- Tang, X.Q.; Huang, G.H.; Zhang, M.; Han, J.P. Compositional characteristics and geochemical significance of N-alkanes in process of crude oil cracking. Earth Sci. Front. 2009, 16, 372–378. [Google Scholar] [CrossRef]
- Liang, D.G.; Chen, J.P. Oil-source correlations for high and over matured marine source rocks in South China. Pet. Explor. Dev. 2005, 32, 8–14. [Google Scholar]
- Huang, D.F.; Zhang, D.J.; Li, J.C. On origin of 4-methyl steranes and pregnanes. Pet. Explor. Dev. 1989, 3, 8–15. [Google Scholar]
- Ten Haven, H.L.; De Leeuw, J.W.; Rullkotter, J. Restricted utility of the pristane/phytane radio as a palaeoenvironmental indicator. Nature 1987, 330, 641–643. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Xu, C.G.; Hao, F.; Wang, Q.; Miao, Q.Y.; Wang, Z.Q.; Zou, H.Y. Controls on organic matter enrichment in source rocks of the Shahejie Formation in the southwestern Bozhong Sag, Bohai Bay Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 110026. [Google Scholar] [CrossRef]
- Didyk, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Hao, F.; Zhou, X.; Zhu, Y.; Yang, Y.Y. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org. Geochem. 2011, 42, 323–339. [Google Scholar] [CrossRef]
- Holba, A.G.; Dzou, L.I.; Wood, G.D.; Ellis, L.; Adam, P.; Schaeffer, P.; Albrecht, P.; Greene, T.; Hughes, W.B. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Org. Geochem. 2003, 34, 441–469. [Google Scholar] [CrossRef]
- Sinninghe Damste, J.S.; Kenig, F.; Koopmans, M.P.; Schouten, S.; Hayes, J.M.; Leeuw, J.W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 1995, 59, 1895–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summons, R.E.; Hope, J.M.; Swart, R.; Walter, M.R. Origin of Nama basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Org. Geochem. 2008, 39, 589–607. [Google Scholar] [CrossRef]
- Venkatesan, M.I. Tetrahymanol: Its widespread occurrence and geochemical significance. Geochim. Cosmochim. Acta 1989, 53, 3095–3101. [Google Scholar] [CrossRef]
- Apostolopoulou, M.V.; Monteyne, E.; Krikonis, K.; Krikonis, K.; Pavlopoulos, K.; Patrick Roose, P.; Dehairs, F. N-alkanes and stable C, N isotopic compositions as identifiers of organicmatter sources in Posidonia oceanica meadows of Alexandroupolis Gulf, NE Greece. Mar. Pollut. Bull. 2015, 99, 346–355. [Google Scholar] [CrossRef]
- Souza, D.B.D.; Machado, K.S.; Froehner, S.; Scapulatempo, C.F.; Bleninger, T. Distribution of n-alkanes in lacustrine sediments from subtropical lake in Brazil. Chem. Erde 2011, 71, 171–176. [Google Scholar] [CrossRef]
- Ficken, K.J.; Li, B.; Swain, D.L.; Eglinton, G. An n-alkane proxy for the sedimentary inputs of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 2000, 31, 745–749. [Google Scholar] [CrossRef]
- Bush, R.T.; McInerney, F.A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 2013, 117, 161–179. [Google Scholar] [CrossRef]
- Cranwell, P.A.; Eglinton, G.; Robinson, N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org. Geochem. 1987, 11, 513–527. [Google Scholar] [CrossRef]
- Liu, D.; Xie, C.Q.; Chen, Z.J.; Liu, H.C.; Han, C.C.; Gao, Y.W. Effctiveness of n-alkanes distribution on determining parent material composition of hydrocarbon source rock. Faul-Block Oil Gas Field 2019, 26, 42–47. [Google Scholar] [CrossRef]
- Huang, W.; Meinschein, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Phys. Chem. Earth 1980, 12, 229–237. [Google Scholar] [CrossRef]
- Volkman, J.K. A review of sterol biomarkers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–89. [Google Scholar] [CrossRef]
- Mackenzie, A.S.; Patience, R.L.; Maxwell, J.R.; Vandenbroucke, M.; Durand, B. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Paleoreconstruction by biological markers. Geochim. Cosmochim. Acta 1981, 45, 783–794. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Slougui, N.E.; Watt, D.S.; Maruca, R.; Dowan, M.M. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Org. Geochem. 1990, 16, 1033–1038. [Google Scholar] [CrossRef]
- Li, M.W.; Yao, H.X.; Fowler, M.G.; Stasiuk, L.D. Geochemical constraints on models for secondary petroleum migration along the upper Devonian rimbey-meadow brook reef trend in central Al berta, Canada. Org. Geochem. 1998, 29, 163–182. [Google Scholar] [CrossRef]
TOC (wt%) | (S1 + S2) (mg/g) | Chloroform Bitumen “A” (%) | Ro (%) | Tmax/°C | δ13CPDBEOM (‰) |
---|---|---|---|---|---|
6.05 | 14.34 | 0.3355 | 0.56 | 436 | −28.4 |
No. | Temperature (°C) | Ro/% | Measuring Number | ||
---|---|---|---|---|---|
Maximum | Minimum | Average | |||
1 | 250 | 0.659 | 0.501 | 0.60 | 31 |
2 | 300 | 0.664 | 0.514 | 0.61 | 31 |
3 | 350 | 0.895 | 0.562 | 0.75 | 36 |
4 | 375 | 1.086 | 0.732 | 0.84 | 39 |
5 | 400 | 1.321 | 1.022 | 1.12 | 39 |
6 | 425 | 1.627 | 1.262 | 1.45 | 35 |
7 | 450 | 1.941 | 1.624 | 1.79 | 30 |
8 | 475 | 2.095 | 1.629 | 1.83 | 39 |
9 | 500 | 2.362 | 1.767 | 2.06 | 30 |
10 | 550 | 2.661 | 2.193 | 2.39 | 35 |
No. | Ro (%) | Bulk Compositions Parameters | Parent Source Parameters | Paleosedimentary Environmental Parameters | Maturity Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | ||
extract 1 | 0.60 | 0.13 | 0.006 | nC25 | 0.094 | 0.41 | 0.46 | 0.31 | 0.30 | 0.24 | 0.19 | 0.10 | 0.18 | 0.47 |
extract 2 | 0.61 | 0.13 | 0.007 | nC25 | 0.116 | 0.42 | 0.44 | 0.31 | 0.30 | 0.25 | 0.2 | 0.12 | 0.19 | 0.47 |
extract 3 | 0.75 | 0.14 | 0.013 | nC23 | 0.182 | 0.44 | 0.43 | 0.33 | 0.25 | 0.25 | 0.2 | 0.13 | 0.2 | 0.48 |
extract 4 | 0.84 | 0.18 | 0.017 | nC23 | 0.236 | 0.47 | 0.43 | 0.33 | 0.28 | 0.25 | 0.21 | 0.14 | 0.23 | 0.48 |
extract 5 | 1.12 | 0.21 | 0.028 | nC23 | 0.297 | 0.55 | 0.48 | 0.32 | 0.33 | 0.27 | 0.23 | 0.15 | 0.3 | 0.50 |
extract 6 | 1.45 | 0.23 | 0.036 | nC23 | 0.502 | 0.7 | 0.55 | 0.31 | 0.26 | 0.3 | 0.25 | 0.19 | 0.4 | 0.52 |
extract 7 | 1.79 | 0.36 | 0.053 | nC20 | 1.047 | 1.12 | 0.67 | 0.27 | 0.34 | 0.36 | 0.31 | 0.35 | 0.54 | 0.55 |
extract 8 | 1.83 | 0.39 | 0.055 | nC20 | 0.506 | 1.16 | 0.69 | 0.27 | 0.36 | 0.37 | 0.32 | 0.35 | 0.55 | 0.56 |
extract 9 | 2.06 | 0.48 | 0.067 | nC20 | 0.211 | 1.27 | 0.73 | 0.28 | 0.30 | 0.41 | 0.35 | 0.44 | 0.7 | 0.57 |
extract 10 | 2.39 | 0.58 | 0.078 | nC20 | 0.194 | 1.35 | 0.78 | 0.30 | 0.33 | 0.38 | 0.33 | 0.44 | 0.8 | 0.53 |
oil 1 | 0.60 | 0.21 | 0.019 | nC19 | 1.152 | 0.37 | 0.49 | 0.21 | 0.42 | 0.24 | 0.17 | 0.09 | 0.1 | 0.46 |
oil 2 | 0.61 | 0.22 | 0.02 | nC19 | 1.142 | 0.38 | 0.50 | 0.21 | 0.45 | 0.24 | 0.17 | 0.10 | 0.1 | 0.46 |
oil 3 | 0.75 | 0.25 | 0.024 | nC18 | 1.089 | 0.4 | 0.48 | 0.21 | 0.51 | 0.24 | 0.18 | 0.12 | 0.13 | 0.47 |
oil 4 | 0.84 | 0.27 | 0.029 | nC20 | 1.152 | 0.48 | 0.47 | 0.25 | 0.52 | 0.24 | 0.18 | 0.12 | 0.13 | 0.48 |
oil 5 | 1.12 | 0.32 | 0.042 | nC18 | 1.182 | 0.57 | 0.5 | 0.25 | 0.46 | 0.25 | 0.19 | 0.12 | 0.13 | 0.49 |
oil 6 | 1.45 | 0.36 | 0.048 | nC18 | 1.144 | 0.6 | 0.49 | 0.24 | 0.53 | 0.26 | 0.20 | 0.15 | 0.16 | 0.50 |
oil 7 | 1.79 | 0.48 | 0.059 | nC18 | 1.147 | 0.77 | 0.62 | 0.25 | 0.43 | 0.29 | 0.24 | 0.2 | 0.24 | 0.51 |
oil 8 | 1.83 | 0.50 | 0.062 | nC21 | 0.903 | 0.8 | 0.65 | 0.24 | 0.45 | 0.30 | 0.25 | 0.21 | 0.26 | 0.51 |
oil 9 | 2.06 | 0.54 | 0.077 | nC21 | 0.698 | 1.03 | 0.68 | 0.26 | 0.48 | 0.33 | 0.30 | 0.27 | 0.35 | 0.53 |
oil 10 | 2.39 | 0.63 | 0.086 | nC21 | 0.337 | 1.13 | 0.72 | 0.27 | 0.54 | 0.30 | 0.28 | 0.28 | 0.38 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, Y.; Wen, Z.; He, Y.; Zhang, C.; Zhang, G.; Han, C.; Li, Z. Study on the Applicability of Saturated Hydrocarbon Parameters in the Evaluation of Lacustrine Source Rocks and Oils Based on Thermal Simulation Experiments. Processes 2023, 11, 2187. https://doi.org/10.3390/pr11072187
Chen Z, Zhang Y, Wen Z, He Y, Zhang C, Zhang G, Han C, Li Z. Study on the Applicability of Saturated Hydrocarbon Parameters in the Evaluation of Lacustrine Source Rocks and Oils Based on Thermal Simulation Experiments. Processes. 2023; 11(7):2187. https://doi.org/10.3390/pr11072187
Chicago/Turabian StyleChen, Zhijun, Yaxiong Zhang, Zhigang Wen, Yonghong He, Chunming Zhang, Ge Zhang, Changchun Han, and Ziliang Li. 2023. "Study on the Applicability of Saturated Hydrocarbon Parameters in the Evaluation of Lacustrine Source Rocks and Oils Based on Thermal Simulation Experiments" Processes 11, no. 7: 2187. https://doi.org/10.3390/pr11072187
APA StyleChen, Z., Zhang, Y., Wen, Z., He, Y., Zhang, C., Zhang, G., Han, C., & Li, Z. (2023). Study on the Applicability of Saturated Hydrocarbon Parameters in the Evaluation of Lacustrine Source Rocks and Oils Based on Thermal Simulation Experiments. Processes, 11(7), 2187. https://doi.org/10.3390/pr11072187