A Review of CO2 Marine Geological Sequestration
Abstract
:1. Introduction
2. Overview of CO2 Marine Geological Sequestration
3. Advantages and Disadvantages of CO2 Marine Geological Sequestration Methods
3.1. Sequestration as Hydrate in Shallow Sediment
3.2. Sequestration in Sub-Seabed Aquifers
3.3. CO2-CH4 Replacement Sequestration
4. Effects of CO2 Marine Geological Sequestration on the Marine Environment
5. Conclusions and Future Perspectives
- Implementing CO2 sequestration in shallow marine sediments is a challenge due to the complexity of early exploration work and the enormous pressure of the pipeline. At present, there are still shortcomings, such as unclear CH4- CO2 replacement mechanism and low replacement efficiency.
- A significant number of existing studies have primarily focused on theoretical aspects, with a noticeable lack of concrete case studies and accurate data feedback. This limitation has emerged as a significant obstacle to advancing the research. Furthermore, even some well-versed individuals have a limited understanding of CO2 sequestration. National policies, laws, and regulations regarding CO2 marine geological sequestration are notably absent, stifling motivation for further study among both enterprises and individuals. As a result, the development of CO2 marine geological sequestration technology still requires substantial advancement.
- From an engineering perspective, the aggregate cost of CO2 capture, transportation, and sequestration in CO2 marine geological sequestration is markedly higher than that of geological sequestration. In the specific case of the transportation phase, marine pipelines demand significantly higher pressure and lower temperature conditions. This requires the use of more flexible pipe materials and, therefore, costs more. Challenges such as geological exploration in the marine environment, unique aspects of marine construction, trenching and backfilling in deep ocean high-pressure environments, and pipeline installation all lead to considerable cost implications. In addition, preliminary tasks such as deep drilling and seismic exploration, which are essential for offshore operations, are much more complex and costly than those performed on land.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NGH | natural gas hydrate |
HBS | hydrate-bearing sediment |
HCS | Hydrate-based CO2 sequestration |
NBZ | negative buoyancy zone |
HFZ | hydrate forming zone |
References
- Leung, D.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Metz, B.; Davidson, O.; De Coninck, H.C.; Loos, M.; Meyer, L. The IPCC Special Report on Carbon Dioxide Capture and Storage (CCS); Cambridge University Press: Cambridge, UK, 2005; p. 481. [Google Scholar]
- Zhao, Y.; Itakura, K.-I. A State-of-the-Art Review on Technology for Carbon Utilization and Storage. Energies 2023, 16, 3992. [Google Scholar] [CrossRef]
- Inkeri, E.; Tynjälä, T. Modeling of CO2 Capture with Water Bubble Column Reactor. Energies 2020, 13, 5793. [Google Scholar] [CrossRef]
- Zeng, M.; Ouyang, S.; Zhang, Y.; Shi, H. CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis. Renew. Sustain. Energy Rev. 2014, 39, 604–616. [Google Scholar]
- Jiang, K.; Ashworth, P.; Zhang, S.; Liang, X.; Sun, Y.; Angus, D. China’s carbon capture, utilization and storage (CCUS) policy: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109601. [Google Scholar] [CrossRef]
- Stevens, S.H.; Kuuskraa, V.A.; Gale, J.; Beecy, D. CO2 Injection and Sequestration in Depleted Oil and Gas Fields and Deep Coal Seams: Worldwide Potential and Costs. Environ. Geosci. 2001, 8, 200–209. [Google Scholar] [CrossRef]
- Rezaei, F.; Rezaei, A.; Jafari, S.; Hemmati-Sarapardeh, A.; Mohammadi, A.H.; Zendehboudi, S. On the Evaluation of Interfacial Tension (IFT) of CO2–Paraffin System for Enhanced Oil Recovery Process: Comparison of Empirical Correlations, Soft Computing Approaches, and Parachor Model. Energies 2021, 14, 3045. [Google Scholar] [CrossRef]
- Afzali, S.; Mohamadi-Baghmolaei, M.; Zendehboudi, S. Application of Gene Expression Programming (GEP) in Modeling Hydrocarbon Recovery in WAG Injection Process. Energies 2021, 14, 7131. [Google Scholar] [CrossRef]
- Gale, J.; Freund, P. Coal-Bed Methane Enhancement with CO2 Sequestration Worldwide Potential. Environ. Geosci. 2010, 8, 210–217. [Google Scholar] [CrossRef]
- Fox, J.F.; Campbell, J.E.; Acton, P.M. Carbon Sequestration by Reforesting Legacy Grasslands on Coal Mining Sites. Energies 2020, 13, 6340. [Google Scholar] [CrossRef]
- Kaplan, R.; Kopacz, M. Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland. Energies 2020, 13, 5074. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Injection and Storage of Co: Analytical Solution for CO2 Plume Evolution during InjectioN2: Analytical Solution for CO2 Plume Evolution during Injection in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution during Injection. Transp. Porous Media 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 2010, 3, 464–467. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Wu, Q.; Nan, J.; Jiao, L. Feasibility study on replacement of CH4 gas from methane hydrate with CO2 in frigid permafrost region. Chem. Ind. Eng. Prog. 2014, 33, 133–140. [Google Scholar]
- Randolph, J.B.; Saar, M.O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration. Energy Procedia 2011, 4, 2206–2213. [Google Scholar] [CrossRef] [Green Version]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Mathiassen, O.M. CO2 storage capacity estimation: Methodology and gaps. Int. J. Greenh. Gas Control 2007, 1, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.G.; Ju, Y.; Gao, F.; Peng, Y.; Gao, Y. Effect of CO2 sorption-induced anisotropic swelling on caprock sealing efficiency. J. Clean. Prod. 2015, 103, 685–695. [Google Scholar] [CrossRef]
- Abdelrehim, N.; Cenci, S.; Corsini, L.; Dixon, J.; Jones, C.; Khanna, S.; Mathison, C.; Petersen, K.; Turley, C.; Whitmarsh, L. The Urgency of Climate Mitigation for COP27 and Beyond. In UK Universities Climate Network Briefing; 2022; Available online: https://www.researchgate.net/profile/Carol-Turley/publication/368709299_The_Urgency_of_Climate_Mitigation_for_COP27_and_Beyond_UK_Universities_Climate_Network_Briefing/links/63f62db00d98a97717ad4d76/The-Urgency-of-Climate-Mitigation-for-COP27-and-Beyond-UK-Universities-Climate-Network-Briefing.pdf (accessed on 1 June 2023).
- Marchetti, C. On geoengineering and the carbon dioxide problem. Clim. Chang. 1976, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Koide, H.; Shindo, Y.; Tazaki, Y.; Iijima, M.; Ito, K.; Kimura, N.; Omata, K. Deep sub-seabed disposal of CO2—The most protective storage. Energy Convers. Manag. 1997, 38, S253–S258. [Google Scholar] [CrossRef]
- Fujioka, Y.; Ozaki, M.; Takeuchi, K.; Shindo, Y.; Yanagisawa, Y.; Komiyama, H. Ocean CO2 sequestration at the depths larger than 3700 m. Energy Convers. Manag. 1995, 36, 551–554. [Google Scholar] [CrossRef]
- Haszeldine, R.S. Carbon capture and storage: How green can black be? Science 2009, 325, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, Y.; Chen, J.; Zhang, W.; Zhang, J.; Liang, J.; Zhang, Y. Geological Conditions and Suitability Evaluation for CO2 Geological Storage in Deep Saline Aquifers of the Beibu Gulf Basin (South China). Energies 2023, 16, 2360. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Duan, W.; Wu, T.; Yao, Z.; Chen, G.; Li, G.; Peng, X. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins. Chin. J. Theor. Appl. Mech. 2022, 55, 719–731. [Google Scholar]
- Luo, J.; Xie, Y.; Hou, M.Z.; Xiong, Y.; Wu, X.; Lüddeke, C.T.; Huang, L. Advances in subsea carbon dioxide utilization and storage. Energy Rev. 2023, 2, 100016. [Google Scholar] [CrossRef]
- House, K.Z.; Schrag, D.P.; Harvey, C.F.; Lackner, K.S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. USA 2006, 103, 12291–12295, Erratum in Proc. Natl. Acad. Sci. USA 2006, 103, 14255. [Google Scholar] [CrossRef]
- Sun, D.; Englezos, P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions. Int. J. Greenh. Gas Control 2014, 25, 1–8. [Google Scholar] [CrossRef]
- Li, X.C.; Yuan, W.; Bai, B. A review of numerical simulation methods for geomechanical problems induced by CO2 geological storage. Rock Soil Mech. 2016, 37, 1762–1772. [Google Scholar]
- Davis, E.E.; Becker, K. Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation. Earth Planet. Sci. Lett. 2002, 204, 231–248. [Google Scholar] [CrossRef]
- Almenningen, S.; Gauteplass, J.; Fotland, P.; Aastveit, G.L.; Barth, T.; Ersland, G. Visualization of hydrate formation during CO2 storage in water-saturated sandstone. Int. J. Greenh. Gas Control 2018, 79, 272–278. [Google Scholar] [CrossRef]
- Gerami, T.S. CO2 disposal as hydrate in ocean sediments. J. Nat. Gas Sci. Eng. 2012, 8, 139–149. [Google Scholar]
- Qanbari, F.; Pooladi-Darvish, M.; Tabatabaie, S.H.; Gerami, S. Storage of CO2 as hydrate beneath the ocean floor. In Proceedings of the 10th International Conference on Greenhouse Gas Control Technologies, Amsterdam, The Netherlands, 19–23 September 2010; pp. 3997–4004. [Google Scholar]
- Beaudoin, G.; Ross, A. The BP OBS node experience: Deepening the reach of ocean bottom seismic. Seg Tech. Program Expand. Abstr. 2008, 3713. [Google Scholar] [CrossRef]
- Ray, A. First nodal OBS acquisition from the Thunder Horse Field in the deep water of the Gulf of Mexico. Seg Tech. Program Expand. Abstr. 2004, 23, 406. [Google Scholar]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B.A.; Cheremisin, A. Insights into the CO2 Capture by Flue Gas Hydrate Formation: Gas Composition Evolution in Systems Containing Gas Hydrates and Gas Mixtures at Stable Pressures. ACS Sustain. Chem. Eng. 2018, 6, 5732–5736. [Google Scholar] [CrossRef]
- Yu, S.; Uchida, S. Geomechanical effects of carbon sequestration as CO2 hydrates and CO2-N2 hydrates on host submarine sediments. E3S Web Conf. 2020, 205, 11003. [Google Scholar] [CrossRef]
- Lee, S.; Liang, L.; Riestenberg, D.; West, O.R.; Tsouris, C.; Adams, E. CO2 Hydrate Composite for Ocean Carbon Sequestration. Environ. Sci. Technol. 2003, 37, 3701–3708. [Google Scholar] [CrossRef]
- Wu, P.; Li, Y. Microstructure Evolution of Hydrate-Bearing Sands During Thermal Dissociation and Ensued Impacts on the Mechanical and Seepage Characteristics. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019103. [Google Scholar] [CrossRef]
- Kalorazi, B.T. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2. Environ. Sci. Technol. 2010, 44, 1509–1514. [Google Scholar]
- Benson, S.M.; Dorchak, T.; Jacobs, G.; Ekmann, J.; Grahame, T. Carbon Dioxide Reuse and Sequestration: The State of the Art Today; Office of Scientific & Technical Information Technical Reports: Berkeley, CA, USA, 2000. [Google Scholar]
- De Silva, P.N.K.; Ranjith, P.G. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel 2012, 93, 13–27. [Google Scholar]
- Metz, B.; Davidson, O.; Coninck, H.D.; Loos, M.; Meyer, L. Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2005. [Google Scholar]
- Goldberg, D.S.; Takahashi, T.; Slagle, A.L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. USA 2008, 105, 9920–9925. [Google Scholar] [CrossRef]
- Rosenbauer, R.J.; Thomas, B.; Bischoff, J.L.; Palandri, J. Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results. Geochim. Cosmochim. Acta 2012, 89, 116–133. [Google Scholar] [CrossRef]
- Luhmann, A.J.; Tutolo, B.M.; Tan, C.; Moskowitz, B.M.; Saar, M.O.; Seyfried, W.E. Whole rock basalt alteration from CO2-rich brine during flow-through experiments at 150 °C and 150 bar. Chem. Geol. 2017, 453, 92–110. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.S.; Slagle, A.L. A global assessment of deep-sea basalt sites for carbon sequestration. Energy Procedia 2009, 1, 3675–3682. [Google Scholar] [CrossRef] [Green Version]
- Eccles, J.K.; Pratson, L. Global CO2 storage potential of self-sealing marine sedimentary strata. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Furre, A.K.; Eiken, O. Dual sensor streamer technology used in Sleipner CO2 injection monitoring. Geophys. Prospect. 2014, 62, 1075–1088. [Google Scholar] [CrossRef]
- Baklid, A.; Korbol, R.; Owren, G. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 6–9 October 1996. [Google Scholar]
- Verdon, J.P.; Kendall, J.M.; Stork, A.L.; Chadwick, R.A.; White, D.J.; Bissell, R.C. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah. Proc. Natl. Acad. Sci. USA 2013, 10, E2762–E2771. [Google Scholar]
- Widdicombe, S.; Dashfield, S.L.; McNeill, C.L.; Needham, H.R.; Beesley, A.H.; McEvoy, A.W.; Øxnevad, S.; Clarke, K.R.; Berge, J.A. Effects Of CO2 Induced Seawater Acidification on Infaunal Diversity and Sediment Nutrient Fluxes. Mar. Ecol. Prog. Ser. 2009, 379, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Pegler, S.S.; Huppert, H.E.; Neufeld, J.A. Fluid Migration Between Confined Aquifers. J. Fluid Mech. 2014, 757, 330–353. [Google Scholar] [CrossRef] [Green Version]
- Raknes, E.B.; Weibull, W.; Arntsen, B. Seismic Imaging of the Carbon Dioxide Gas Cloud at Sleipner Using 3D Elastic Time-lapse Full Waveform Inversion. Int. J. Greenh. Gas Control. 2015, 42, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Shahkarami, A.; Mohaghegh, S.D.; Gholami, V.; Haghighat, A.; Moreno, D.A. Modeling Pressure and Saturation Distribution In A Co2storage Project Using A Surrogate Reservoir Model (Srm). Greenh. Gas Sci. Technol. 2014, 3, 289–315. [Google Scholar] [CrossRef]
- He, J.; Liang, Q.; Ma, Y.; Shi, Y.; Xia, Z. Geohazards types and their distribution characteristics in the natural gas hydrate area on the northern slope of the South China Sea. Geol. China 2018, 45, 15–28. [Google Scholar]
- Brown, H.E.; Holbrook, W.S.; Hornbach, M.J.; Nealon, J. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar. Geol. 2006, 229, 179–186. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Dai, S.; Terzariol, M.; Jang, J.; Waite, W.F.; Winters, W.J.; Nagao, J.; Yoneda, J.; Konno, Y.; Fujii, T. Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Mar. Pet. Geol. 2015, 66, 434–450. [Google Scholar] [CrossRef] [Green Version]
- Ohgaki, K.; Takano, K.; Sangawa, H.; Matsubara, T.; Nakano, S. Methane Exploitation by Carbon Dioxide from Gas Hydrates—Phase Equilibria for CO2-CH4, Mixed Hydrate System. J. Chem. Eng. Jpn. 1996, 29, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Wilder, J.W.; Seshadri, K.; Smith, D.H. Thermodynamics of the Sequestration of Carbon Dioxide in Methane Hydrates in Porous Media; Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2002. [Google Scholar]
- Kim, D.; Lee, H. Thermodynamic and Spectroscopic Analysis of Pure and Mixed Gas Hydrates Formed in Porous Media. J. Health Sci. 2003, 7, 7–15. [Google Scholar]
- Yezdimer, E.M.; Cummings, P.T.; Chialvo, A.A. Determination of the Gibbs Free Energy of Gas Replacement in SI Clathrate Hydrates by Molecular Simulation. J. Phys. Chem. A 2002, 106, 7982–7987. [Google Scholar] [CrossRef]
- Espinoza, D.N.; Santamarina, J.C. P-wave monitoring of hydrate-bearing sand during CH4–CO2 replacement. Int. J. Greenh. Gas Control 2011, 5, 1031–1038. [Google Scholar] [CrossRef]
- Zhou, X.; Fan, S.; Liang, D.; Du, J. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. Energy Convers. Manag. 2008, 49, 2124–2129. [Google Scholar] [CrossRef]
- Qi, Y.; Ota, M.; Hua, Z. Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Convers. Manag. 2011, 52, 2682–2687. [Google Scholar] [CrossRef]
- Yahaya, A.; Enyi, G.; Abbas, A.; Nasr, G. The influence of temperature and pressure on surface tension and bubble diameter of methane (CH4) and Carbon dioxide (CO2) in water. J. Pet. Environ. Biotechnol. 2017, 8, 46. [Google Scholar]
- Mohammadi, A.H.; Eslamimanesh, A.; Richon, D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system. Chem. Eng. Sci. 2013, 94, 284–290. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Zhang, B. Influence of THF and THF/SDS on the Kinetics of CO2 Hydrate Formation under Stirring. Front. Energy Res. 2021, 9, 633929. [Google Scholar] [CrossRef]
- Pivnyak, G.; Bondarenko, V.; Kovalevs’Ka, I. Technical and Geoinformational Systems in Mining: School of Underground Mining 2011; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Shin, K.; Park, Y.; Cha, M.; Park, K.P.; Huh, D.G.; Lee, J.; Kim, S.J.; Lee, H. Swapping Phenomena Occurring in Deep-Sea Gas Hydrates. Energy Fuels 2008, 22, 3160–3163. [Google Scholar] [CrossRef]
- Niu, M.; Wu, G.; Yin, Z.; Sun, Y.; Chen, D. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition. Chem. Eng. J. 2021, 420, 129615. [Google Scholar] [CrossRef]
- Geng, C.Y.; Wen, H.; Zhou, H. Molecular Simulation of the Potential of Methane Reoccupation during the Replacement of Methane Hydrate by CO2. J. Phys. Chem. A 2009, 113, 5463. [Google Scholar] [CrossRef]
- And, K.C.; Wickett, M.E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. Ocean. 2005, 110, C09S04. [Google Scholar]
- Dean, M.; Blackford, J.; Connelly, D.; Hines, R. Insights and guidance for offshore CO2 storage monitoring based on the QICS, ETI MMV, and STEMM-CCS projects. Int. J. Greenh. Gas Control 2020, 100, 103120. [Google Scholar] [CrossRef]
- Weber, V. Sub-seabed Carbon Dioxide Storage Regulation in the European Union—Environmental Law, the Law of the Sea and Liability. In Proceedings of the UKCCSC Winter School, Cambridge, UK, 9–12 January 2012. [Google Scholar]
- Shitashima, K.; Maeda, Y.; Sakamoto, A. Detection and monitoring of leaked CO2 through sediment, water column and atmosphere in a sub-seabed CCS experiment. Int. J. Greenh. Gas Control 2015, 38, 135–142. [Google Scholar] [CrossRef]
Measures | Reference | Conclusion |
---|---|---|
temperature and pressure | Yahaya et al. [67] | The influence on the temperature is more significant than the replacement on pressure. |
catalysts | Mohammadi et al. [68] and Wang et al. [69] | Catalysts or using CO2 emulsion can improve the replacement rate. |
adding N2 | Pivnyak et al. [70] and Shin et al. [71] and Niu et al. [72] | Appropriate concentration of N2 could accelerate the replacement rate. |
electrostatic interaction | Geng et al. [73] | Improving the electrostatic interaction with H2O is an effective way to improve the replacement efficiency. |
Marine Geological Sequestration Technology | Advantages | Constrains | Gaps and Technical Barriers |
---|---|---|---|
Sequestration in shallow sediment | With abundant pore space and unconsolidated skeleton structure, the sequestration process does not need drilling | Permeability is reduced, causing the diffusion difficult to the far field | Complexity of early exploration work and the massive pressure of pipeline |
Sequestration in sub-seabed aquifers | High sequestration security and reliability | Sequestration cost is high, pipeline pressure is too high | Complexity of early exploration work and the massive pressure of pipeline |
CO2-CH4 replacement | It can not only store CO2, but also extract CH4 without disturbing formation stability. | Low replacement efficiency | Unclear replacement mechanisms and low replacement efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Shang, A.; Wu, P.; Liu, T.; Li, Y. A Review of CO2 Marine Geological Sequestration. Processes 2023, 11, 2206. https://doi.org/10.3390/pr11072206
Sun X, Shang A, Wu P, Liu T, Li Y. A Review of CO2 Marine Geological Sequestration. Processes. 2023; 11(7):2206. https://doi.org/10.3390/pr11072206
Chicago/Turabian StyleSun, Xiang, Anran Shang, Peng Wu, Tao Liu, and Yanghui Li. 2023. "A Review of CO2 Marine Geological Sequestration" Processes 11, no. 7: 2206. https://doi.org/10.3390/pr11072206
APA StyleSun, X., Shang, A., Wu, P., Liu, T., & Li, Y. (2023). A Review of CO2 Marine Geological Sequestration. Processes, 11(7), 2206. https://doi.org/10.3390/pr11072206