Study on the Surrounding Rock Deformation Laws of Facing-Mining Roadway and the Reasonable Space–Time Relationship of Hydraulic Fracturing
Abstract
:1. Introduction
2. Project Profile
2.1. Location and Conditions of Facing-Mining Roadway
2.2. Characteristics of Coal Seam and Roof and Floor
3. Model Set
3.1. Model Size and Parameters
3.2. Simulation Program
4. Deformation Law of Surrounding Rock in the Second Stage of Facing-Mining Roadway
4.1. Stress Distribution Characteristics of Surrounding Rock in Facing-Mining Roadway
4.2. Deformation Characteristics of Surrounding Rock in Facing-Mining Roadway
5. Reasonable Space–Time Relationship of Hydraulic Fracturing in Facing-Mining Roadway
5.1. Reasonable Time of Coal Rock Cracking Pressure Relief
5.2. Reasonable Space Position of Coal Rock Cracking Pressure Relief
6. Engineering Practice
6.1. Construction Scheme
6.2. Control Effect
6.2.1. Hydraulic Fracturing Performance
6.2.2. Control Effect of Roadway Surrounding Rock
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Ma, Q.; Du, X.; Zhan, K.; Sun, B. Numerical simulation and control of a rockburst induced by main roof fracture in a deep coal seam. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–17. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Bai, J.; Wu, B.; Wu, W. Research on the failure mechanism and control technology of surrounding rock in gob-side entry driving under unstable overlying strata. Eng. Fail. Anal. 2022, 138, 106361. [Google Scholar] [CrossRef]
- Kan, J.; Dou, L.; Li, X.; Li, J.; Chai, Y. Investigating the destressing mechanism of roof deep-hole blasting for mitigating rock bursts in underground coal mines. Geomat. Nat. Hazards Risk 2022, 13, 2508–2534. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Xu, S.; He, M.; Jiang, Z.; Li, S.; Wei, H.; Xiao, Y. Roof-cutting and energy-absorbing method for dynamic disaster control in deep coal mine. Int. J. Rock Mech. Min. Sci. 2022, 158, 105186. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.; Ju, W.; Yuan, W.; Su, C. Asymmetric Damage Mechanisms and Prevention Technology in Large-Section Gob-Side Entry Retaining. Sustainability 2023, 15, 739. [Google Scholar] [CrossRef]
- Kan, J.; Dou, L.; Li, X.; Li, J.; Bai, J.; Cao, J.; Liu, M. Effect of initiation pattern on rock damage and blasting seismic under multi-hole blasting. Geomat. Nat. Hazards Risk 2023, 14, 2192334. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, H.; Zhao, W. Branch fractures in oriented hydraulic fracturing, modeling, and experiments. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 563–573. [Google Scholar] [CrossRef]
- Shao, L.; Huang, B.; Zhao, X.; Xing, Y. Criteria for the progressive initiation and propagation of radial and axial fractures of borehole during rock hydraulic fracturing. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Guo, J.; Wang, S.; Zhao, Z. Optimization method of fracture parameters in multistage fracturing of horizontal wells. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–19. [Google Scholar] [CrossRef]
- He, T.; Huang, Z.; Li, C.; Luo, F.; Wang, D. Temporal and spatial evolution characteristics of lateral coal stress in fully mechanized top coal caving mining working face in ultra-thick coal seam. J. Min. Saf. Eng. 2018, 35, 100–105. (In Chinese) [Google Scholar] [CrossRef]
- Dou, L.; He, H. Study of OX-F-T spatial structure evolution of overlying strata in coal mines. Chin. J. Rock Mech. Eng. 2012, 31, 454–460. (In Chinese) [Google Scholar]
- Qi, W.; Zhang, Q.; Zhang, J.; Zhang, J.; Zhu, C. Design of coal pillars of gob-side entry between mining faces with large differences in mining height in deep mine. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2648–2663. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Dong, Y. Theoretical Study on the Mechanism of Asymmetrical Large Deformation of Heading Roadway Facing Mining. Sustainability 2022, 14, 15065. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, W.; Li, J.; Lian, X.; Ren, J. Analysis and evaluation of essential factors for rock burst mechanism. J. Min. Sci. Technol. 2021, 6, 651–658. (In Chinese) [Google Scholar] [CrossRef]
- Xu, X.; He, F.; Li, X.; He, W. Research on mechanism and control of asymmetric deformation of gob side coal roadway with fully mechanized caving mining. Eng. Fail. Anal. 2021, 120, 105097. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Experimental research on deformation failure process of roadway tunnel in fractured rock mass induced by mining excavation. Environ. Earth Sci. 2022, 81, 243. [Google Scholar] [CrossRef]
- Wu, P.; Liang, B.; Jin, J.; Li, G.; Wang, B.; Guo, B.; Yang, Z. Research of roadway deformation induced by mining disturbances and the use of subsection control technology. Energy Sci. Eng. 2022, 10, 1030–1042. [Google Scholar] [CrossRef]
- Wang, D.; He, F.; Wu, Y.; Xu, X.; Zhang, J.; Lv, K.; Li, L.; Zhai, W.; Song, J. Study on surrounding rock failure mechanism and rational coal pillar width of the gob-side coal roadway under influence of intense dynamic pressure. Energy Sci. Eng. 2023, 11, 1716–1733. [Google Scholar] [CrossRef]
- Han, C.; Yang, H.; Zhang, N.; Deng, R.; Guo, Y. Zoning Control Technology of Gob-Side Roadway Driving with Small Coal Pillar Facing Mining in a Special Isolated Island Working Face: A Case Study. Appl. Sci. 2021, 11, 10744. [Google Scholar] [CrossRef]
- He, Q.; Zhu, L.; Li, Y.; Zhang, B. Simulating Hydraulic Fracture Re-orientation in Heterogeneous Rocks with an Improved Discrete Element Method. Rock Mech. Rock Eng. 2021, 54, 2859–2879. [Google Scholar] [CrossRef]
- Li, H.; Bai, H.; Ma, L.; Kang, Z.; Li, Z.; Miao, X.; Wu, P.; Wei, J. Research on the Evolution Law of Water Flowing Fractures in the Jurassic and Carboniferous Coal Seams Based on FDEM Simulation. J. China Coal Soc. 2022, 47, 4443–4454. (In Chinese) [Google Scholar] [CrossRef]
- Heider, Y.; Markert, B. A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech. Res. Commun. 2017, 80, 38–46. [Google Scholar] [CrossRef]
- Sarmadi, N.; Nezhad, M.M. Phase-field modelling of fluid driven fracture propagation in poroelastic materials considering the impact of inertial flow within the fractures. Int. J. Rock Mech. Min. Sci. 2023, 169, 105444. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Dusseault, M.B.; Weng, L. Effect of excavation stress condition on hydraulic fracture behaviour. Eng. Fract. Mech. 2020, 226, 106871. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, T.; Xia, B.; Yu, B.; Huang, F. Target stratum determination of surface hydraulic fracturing for forefield hard roof control in underground extra-thick coal extraction: A case study. Rock Mech. Rock Eng. 2019, 52, 2725–2740. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Li, X. Determination of fracture location of double-sided directional fracturing pressure relief for hard roof of large upper goaf-side coal pillars. Energy Explor. Exploit. 2019, 38, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, C.; Yao, Q.; Si, G. The position of hydraulic fracturing to initiate vertical fractures in hard hanging roof for stress relief. Int. J. Rock Mech. Min. Sci. 2020, 132, 104328. [Google Scholar] [CrossRef]
- Lekontsev, Y.M.; Sazhin, P.V. Application of the directional hydraulic fracturing at Berezovskaya Mine. J. Min. Sci. 2008, 44, 253–258. [Google Scholar] [CrossRef]
- Huang, B.; Chen, S.; Zhao, X. Hydraulic fracturing stress transfer methods to control the strong strata behaviours in gob-side gateroads of longwall mines. Arab. J. Geosci. 2017, 10, 236. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, X.; Ma, J.; Sun, T. Field experiment of destress hydraulic fracturing for controlling the large deformation of the dynamic pressure entry heading adjacent to the advancing longwall face. Arch. Min. Sci. 2019, 64, 829–848. [Google Scholar] [CrossRef]
- Li, C.; Xin, D.; Liu, Y.; Chen, T. A Case Study on Strong Strata Behaviors Mechanism of Mining Reserved Roadway and Its Prevention Techniques. Processes 2023, 11, 1341. [Google Scholar] [CrossRef]
- Liu, J. Research on Mechanism and Control of Stress Field Change of Artificial Cracking Coal and Rock Mass. Ph.D. Thesis, China University of Mining & Technology, Xuzhou, China, 2020. [Google Scholar] [CrossRef]
- Zhang, H. Study on Hydraulic Fracturing Pressure Relief Control in Pre-Excavated Retreat Way of Fully Mechanized Coal Mining Face. Master’s Thesis, China University of Mining & Technology, Xuzhou, China, 2022. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, X.; Chen, S.; Liu, J. Theory and technology of controlling hard roof with hydraulic fracturing in underground mining. Chin. J. Rock Mech. Eng. 2017, 36, 2954–2970. [Google Scholar] [CrossRef]
- Kang, H.; Jiang, P.; Huang, B.; Guan, X.; Wang, Z.; Wu, Y.; Gao, F.; Yang, J.; Cheng, L.; Zheng, Y.; et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines. J. China Coal Soc. 2020, 45, 845–864. [Google Scholar] [CrossRef]
No. | Name | Thickness/m | Density/kg·m−3 | Bulk Modulus/GPa | Shear Modulus/GPa | Cohesion/MPa | Angle of Internal Friction/° | Tensile Strength/MPa |
---|---|---|---|---|---|---|---|---|
1 | medium sandstone | 7.4 | 2534 | 26.7 | 6.0 | 3.2 | 25 | 4.0 |
2 | mudstone | 2.4 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
3 | No.4 coal | 0.8 | 1426 | 9.2 | 8.0 | 1.0 | 24 | 1.15 |
4 | mudstone | 4.3 | 2747 | 18.1 | 5.0 | 3.5 | 19 | 2.37 |
5 | fine sandstone | 2.6 | 2534 | 27.1 | 7.0 | 4 | 27 | 5.0 |
6 | mudstone | 1.7 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
7 | No. 5 coal | 0.5 | 1426 | 9.2 | 8.0 | 1.0 | 24 | 1.15 |
8 | mudstone | 4.5 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
9 | No. 6 coal | 0.6 | 1426 | 9.2 | 8.0 | 1.0 | 24 | 1.15 |
10 | mudstone | 8.4 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
11 | medium sandstone | 12 | 2534 | 26.7 | 6.0 | 3.2 | 25 | 4.0 |
12 | mudstone | 2.45 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
13 | No. 8 coal | 5.2 | 1426 | 9.2 | 8.0 | 1.0 | 24 | 1.15 |
14 | mudstone | 1.51 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
15 | fine sandstone | 4.18 | 2534 | 27.1 | 7.0 | 4 | 27 | 5.0 |
16 | mudstone | 10 | 2747 | 18.1 | 5.0 | 1.5 | 19 | 2.37 |
No. | Fracturing Project | No. | Fracturing Project |
---|---|---|---|
1 | No fracturing zone | 4 | The lower 8 m range of main roof |
2 | The lower 4 m range of main roof | 5 | The lower 10 m range of main roof |
3 | The lower 6 m range of main roof | 6 | The lower 12 m range of main roof |
Name | Bulk Modulus/GPa | Shear Modulus/GPa | Cohesion/MPa | Angle of Internal Friction/° |
---|---|---|---|---|
medium sandstone | 5.72 | 5.15 | 2.62 | 20.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Liu, C.; Bian, J.; Zhang, H.; Liu, H. Study on the Surrounding Rock Deformation Laws of Facing-Mining Roadway and the Reasonable Space–Time Relationship of Hydraulic Fracturing. Processes 2023, 11, 2215. https://doi.org/10.3390/pr11072215
Yu X, Liu C, Bian J, Zhang H, Liu H. Study on the Surrounding Rock Deformation Laws of Facing-Mining Roadway and the Reasonable Space–Time Relationship of Hydraulic Fracturing. Processes. 2023; 11(7):2215. https://doi.org/10.3390/pr11072215
Chicago/Turabian StyleYu, Xin, Changyou Liu, Junqi Bian, Hanrui Zhang, and Huaidong Liu. 2023. "Study on the Surrounding Rock Deformation Laws of Facing-Mining Roadway and the Reasonable Space–Time Relationship of Hydraulic Fracturing" Processes 11, no. 7: 2215. https://doi.org/10.3390/pr11072215
APA StyleYu, X., Liu, C., Bian, J., Zhang, H., & Liu, H. (2023). Study on the Surrounding Rock Deformation Laws of Facing-Mining Roadway and the Reasonable Space–Time Relationship of Hydraulic Fracturing. Processes, 11(7), 2215. https://doi.org/10.3390/pr11072215