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Abstract: The evolution of the variance and entropy of granule size in the fluidized bed agglomeration
process using two different aggregation kernels is examined. The first is a constant kernel (aggregation
is independent of both time and granule size) and permits the most unconstrained agglomeration
process that can occur where granules in any size class (up to a maximum size) can be formed at any
point in time. This gives the fastest and largest increase in the variance and entropy of the resulting
granule size distribution. The second kernel is a mechanistic kernel including a granule growth-
limiting mechanism, in this case implemented by the consideration that not all collisions result in
coalescence. This markedly changes the evolution of the variance and entropy of the distribution and
reduces both significantly. Quantifying the entropy of the distribution provides another perspective
on the change in the size distribution in an agglomeration process. It is shown that entropy can
provide a better measure of size evolution than variance in that it represents the changing shape of
the distribution more closely.

Keywords: fluidized bed agglomeration; granule size distribution; entropy; variance

1. Introduction

In a fluidized bed granulation (for this paper taken to be synonymous with aggregation
or agglomeration), particle coalescence occurs when a binder liquid solution is sprayed
over the particles to promote agglomeration. For agglomeration, granule volume and its
evolution with time is the main variable of interest; specifically, the mean granule size
and granule size distribution, as quantified by the moments of the distribution, are the
fundamental characteristics. The evolution of the granule size was first studied by Kapur
and Fuerstenau using a random coalescence model [1]. It is generally thought desirable to
minimize the amount of variation in the final granule size distribution as this improves
the subsequent functionality of the product. Dispersion is conventionally measured by the
second central moment (i.e., variance) of the corresponding probability density function
of size. The square root of the variance (standard deviation) is an alternative measure
of dispersion. Recently, Cronin and Gutiérrez Ortiz [2] examined the behavior of the
dispersion of the size distribution as measured by the standard deviation of the granule
volume. It can be noted that this paper also provides a more detailed review of fluidized
bed operations and their modeling. However, variance is very much influenced by the
fractional number of granules lying at either extreme of the size distribution and it suffers
from some other drawbacks in quantifying the spread of the particle size distribution [3].

Information entropy [4] is an alternative measure of dispersion, and because it draws
more equally from all size classes, it can be a more useful measure of dispersion. The
concept of information entropy has been used to examine particle size distributions in a
range of applications, although not for the fluidized bed granulation process [5–7]. Xie [8]
examined the evolution of entropy with time for the Smoluchowski coagulation kernel
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while Wu and McFarquhar [9] employed the principle of maximum entropy to determine a
theoretical form of the particle size distribution of cloud particles that satisfies the general
dynamic equation of their evolution with time. Furthermore, the concept of entropy and
the maximum entropy principle have been widely used to predict droplet size distributions
in a variety of systems [10–12]. Its relevance to agglomeration stems from the fact that
while there are a number of important physical sub-processes that determine the output
of a granulation process, inter-particle or inter-granule collisions are the primary physical
process. Because of the randomness that is inherent in the collision process, many outcomes
in terms of possible granule size distributions can be present. The basic concept of applying
(information) entropy analysis to the system is that, starting from a single state of mono-
dispersion, for unhindered or un-constrained agglomeration, the granule size should
disperse spontaneously across all possible size intervals, reflecting the inherent stochastic
dynamics of the process. Information entropy (also more simply termed entropy) is a
measure of the number of possible configurations for the granule size distribution, and the
more size intervals, the greater the entropy. When all the granules are in one size class, the
entropy of the size distribution is at a minimum. When they are equally distributed across
all possible size classes, the entropy is at a maximum. So, the former case corresponds to
the size distribution being in the least possible state of randomness, while the latter case
corresponds to the most random distribution in size that is possible. The inherent tendency
in a granulation process is for the entropy of the size distribution to increase, and entropy
can be interpreted as a measure of heterogeneity of the distribution. Where there are no
constraints on the formation of granules, then the resulting granule size distribution will
asymptotically converge to the uniform distribution. However, the presence of physical
constraints modifies the principle of entropy increase.

This paper will theoretically examine the evolution of the variance and entropy of size
distribution during a granulation process and explore their inter-relationships. The known
analytical solution for time- and size-independent aggregation will be used as a benchmark
comparison. Also, this kernel, by not including any additional physical constraints, yields
the distribution with the greatest entropy. Hence, the parts of a more realistic mechanistic
aggregation kernel that constrain or reduce the entropy of the size distribution can be
identified. It will be shown that examining the evolution of entropy of the size distribution
with time yields extra insights into explaining the dynamics of fluidized bed granulation.

2. Modeling of the FBG Process
2.1. System Definition

Considering a system where the initial size is not dispersed and all the initial particles
are in the smallest-size class, each of volume v0, and the maximum possible granule size is
vmax, then the number of size classes, k, will be

k =
vmax

v0
(1)

The number of the primary particles is N0. Because granule size is discretized and can
only exist in k-size classes, the variance of the size distribution will be given as

σ2 =
i=k

∑
i=1

ni(vi − µ)2 (2)

where ni is the fractional number of granules in each size class of volume vi (i.e., number of
granules in this size class divided by the total number of granules in the system) and µ is
mean granule volume. Variance quantifies the average value of the square of the departure
of granule volume from the mean. Similarly, the (information) entropy of the distribution,
H, can be defined as [13]

H =
i=k

∑
i=1

niLn(ni) (3)
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Equation (3) can be interpreted as meaning that if there are k possible states into
which N granules can be distributed, the entropy is a measure of the number of possible
configurations that these granules can be distributed. Specifically, the entropy of the
distribution is the average value of the natural logarithm of the fractional number of
granules in each size class. The lower this average value, the larger the entropy. The
entropy of the size distribution will tend to increase with time. However, where size is
upper limited, there is a maximum upper limit value for the entropy of the distribution,
which is

Hmax = Ln
vmax

v0
(4)

The entropy value predicted by Equation (3) is a dimensionless quantity. Its magnitude
will depend on the level of size discretization that is adopted. However, we are using it as
a comparative measure between two different aggregation kernels while maintaining the
same level of size discretization so discretization effects will not affect the output.

2.2. Analytical Model

The time- and size-independent kernel makes a good benchmark case as it needs the
fewest number of assumptions about the granulation process [14,15]. For this kernel, all
particle collisions produce coalescence at all times in the process. Furthermore, aggregations
are equally likely between all sized granules at every point in the process, so the aggregation
rate, β

(
vi, vj, t

)
, between two particles or two granules of volume vi and vj, at any moment,

is constant and equal to β0:
β
(
vi, vj, t

)
= β0 (5)

The characteristic time for this process, ta, will be

ta =
2

β0 N0
(6)

This time quantifies how fast aggregation occurs when there are no limiting mecha-
nisms present. For the theoretical situation of no upper limit on possible granule size, the
statistics of mean and variance of volume are as follows [16]:

µ(t) = v0

(
1 +

t
ta

)
(7)

σ2(t) = v2
0

(
t
ta

+

(
t
ta

)2
)

(8)

Also, the fractional number of granules in any size class, i, at any point in time is
as follows:

ni(t) =

(
t
ta

)i−1

(
1 + t

ta

)i (9)

Inputting the fractional number of granules from Equation (9) into the expression
for entropy of Equation (3) means that the entropy of the granule size distribution can be
theoretically determined at any point in time. An approximating analytical expression
based on the geometric distribution can be given to indicate the dependence of entropy on
granulation parameters and time as

H(t) =
(

1 +
t
ta

)
log2

(
1 +

t
ta

)
− t

ta
log2

(
t
ta

)
(10)

Equation (10) predicts that the entropy will be zero at the start and increase logarith-
mically with respect to time. It must be noted that Equations (7)–(10) technically only
apply where there is no upper size limit on granule volume, so their predictions will be
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approximate but will be valid at early stages of the process. An accurate numerical value
for these quantities can always be obtained and is valid at all times in the process. For this
constant kernel, entropy of the size distribution will tend to increase logarithmically with
respect to time, which is in contrast to the linear dependence of mean volume on time and
the quadratic dependence of variance.

2.3. Mechanistic Model

The constant aggregation kernel enables theoretical expressions for parameters of
interest to be obtained but is not representative of actual aggregation processes, except
at their very early stages. It does not take into account the dependence of aggregation
on granule size and speed. Moreover, real granulation systems include effects such as
the dropping out of large granules that cannot be fluidized, the presence of unavoidable
granule breakage for some collisions, or alternatively, collisions that just produce rebound.
More mechanistic kernels, which include the physical sub-processes of agglomeration,
provide more realistic output although they can only provide numerical solutions. The
aggregation kernel is decomposed into time-dependent and size-dependent parts as

β
(
υi, vj, t

)
= β(t) β

(
vi, vj

)
(11)

The size-dependent part of the aggregation model, β
(
vi, vj

)
, is controlled by the

dynamics of collisions. The equi-partition of kinetic energy, EKE size kernel, is selected for
this form of agglomeration [17], and takes the following form:

β
(
vi, vj

)
= βi,j =

1

4
√

2 v
1
6
0

(
v

1
3
i + v

1
3
j

)2
√

1
vi

+
1
vj

(12)

Likewise, the time-dependent part β(t) is broken down into three parts as

β(t) = βc(t) ψg(t) ψp(t) (13)

where βc(t) is the collision-determined part of the process, ψg(t) is the geometric success
factor, which depends on the granule surface wetting regime, and ψp(t) is the physical suc-
cess factor, which measures how well collision energy is absorbed to produce coalescence.
The aggregation rate due to particle collisions, βc(t), has a time dependence [18]:

βc(t) = βc0 [1 + βctt]
1/5 (14)

where βc0 is the initial collision aggregation rate and the parameter βct measures the time
dependence of the collision aggregation rate. These parameters can be quantified knowing
bed volume, VB, and a scaling factor, fc

βc0 =
2 fc c0

VB
and βct =

(
2− 2

1
6

)
N0 βc0

2
(15)

The initial collision rate parameter, c0, is quantified in terms of the speed of the
particles in the bed, u0

c0 =
6

2
3 π

1
3

2
v

2
3
0 u0 (16)

Equations (14)–(16) are a summarized form of the aggregation model that has previ-
ously been developed and validated; more information on the model is available in [18]. To
simplify the analysis, the geometric success factor, ψg(t), is made equal to 1:

ψg(t) = 1 (17)



Processes 2023, 11, 2247 5 of 18

This means all granules are assumed to be properly wetted from the start. Its role in
granulation has been extensively examined in the literature, and excluding it reduces the
number of simulations that are needed. For any specific collision between two entities,
the physical success factor, ψp, is given in terms of a Stokes number, St, and critical Stokes
number, Stc [19,20].

ψp = 1 for St < Stc; ψp = 0 for St > Stc (18)

The Stokes number, St, for two granules of volume, vi and vj , respectively, has two
parts and is given as

Sti,j = St
(
vi, vj

)
= St0

v
1
3
i v

1
3
j

(
v

1
3
i + v

1
3
j

)2

vi + vj
where St0 =

4 ρ uc(
π
6
) 1

3 9 η
(19)

where the size-independent component depends on granule density, ρ, collision velocity,
uc, and η, the binder liquid viscosity. The critical Stokes number is given as

Stc =

(
1 +

1
e

)
ln
(

h
ha

)
(20)

where e is the coefficient of restitution between the particles, h is the average depth of the
binder liquid film on the particle surface, and ha is a surface roughness parameter. The
time dependence of the physical success factor can be found by evaluating the proportion
of collisions where Stokes numbers are less than critical Stokes number. The corresponding
probability mass function, ϕi,j, is given in terms of the number of granules in each size
class as

ϕi,j =
βi,jNi Nj

∑n
i=1 ∑n

j=1 βi,jNi Nj
(21)

where βi,j is shown in Equation (12). Hence, the physical success factor as a function of
time is

ψp(t) = ∑Stc
Stmin

ϕi,j (22)

While Equation (18) applies to a specific inter-granule collision, Equation (22) applies
to all the collisions for the whole ensemble of granules at any point in time. Figure 1a
shows the time dependence of the aggregation rate up to a time of 1500 s (using the data
provided in Table 1), while Figure 1b shows the size dependence of the aggregation rate up
to a granule volume of 1 mm3.

2.4. Model Implementation

The simulation parameter values are representative of batch agglomeration of glass
particles in a fluidized bed arrangement [21]. This specific granulation process was selected
because of its good correspondence with the physics of the mechanistic kernel. The dis-
cretized size interval was 0.01 mm3 and time interval was 1 s. The maximum size limit
was set to 10 mm3, giving 1000-size classes. The Population Balance Modeling (PBM)
solution method was implemented in MATLAB [22]. While there are many possible ap-
proaches in numerically evaluating the discretized PBM scheme [23–25], a simple, uniform,
one-dimensional method, based solely on granule volume is used here. The granulation
simulation time was set to 1500 s because previous numerical studies have shown that nu-
merical and theoretical methods are in good agreement up to this time. Table 1 summarizes
the input parameter data used by the constant and mechanistic kernels; the selection of the
aggregation rate values is influenced by the need to ensure that the aggregation intensity of
both kernels is comparable.
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Figure 1. (a) Time dependence of the total aggregation rate (to a time of 1500 s). (b) Size dependency
of the EKE collision kernel (to a volume of 1 mm3). Regarding the notation, 2.0E-09 = 2 × 10−9.
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Table 1. Main simulation parameter values.

Initial particle volume v0 mm3 0.01
Dropout volume vmax mm3 10
Maximum entropy Hmax - 6.908
Initial number of particles N0 - 1 × 107

Granulation time tg s 1500

Constant kernel

Constant aggregation rate β0 s−1 2 × 10−8

Characteristic aggregation time ta s 10

Mechanistic kernel

Initial aggregation rate βc0 s−1 1 × 10−8

Aggregation rate time dependence βct s−1 0.0439
Aggregation rate time dependence βct s−1 -
Stokes number constant St0 mm−1 23
Critical Stokes number Stc - 28

With the number of possible size classes limited to 1000, the maximum upper limit
value for entropy for this system, Hmax, will be the natural log of this, i.e., 6.908 (by
Equation (4)). This corresponds to the fractional number of granules in every size class being
equal to 0.001. All values quoted in the results for entropy will be expressed as a fraction
of this, i.e., normalized entropy. Also, for presenting and interpreting results, granule
volume statistics of mean and variance are best expressed in terms of a dimensionless
volume (equal to v/v0) and also time in terms of dimensionless time (t/ta). Finally, it
should be noted that this paper will not include experimental data. Further information on
the comparison and validation of the aggregation model with experimental FBG data has
been published and is available in [18].

3. Results
3.1. Comparison between the Constant and Mechanistic Kernels

The objective of the paper is to explore and understand how the variance and entropy
of granule size evolve with time in an aggregation process and to explain how their
evolution differs between a constant kernel and a mechanistic kernel. Figure 2a illustrates
the evolution of the dimensionless mean granule volume with dimensionless time for the
constant and mechanistic kernels. Figure 2b gives the evolution of dimensionless variance
in the granule volume with time for both aggregation models, and Figure 2c displays the
evolution of the normalized entropy of the granule size distribution versus dimensionless
time for the two kernels. The output is shown up to a dimensionless time of 150 for the
mean and entropy and up to a dimensionless time of 90 for variance.

Regarding Figure 2a, for the constant kernel, the mean granule volume increases
linearly with respect to time without limit, while for the more realistic mechanistic kernel,
the mean volume increases in a quasi-sigmoidal fashion with time and approaches an
approximate asymptotic value. For variance in granule volume (Figure 2b) for the constant
kernel at short times, variance initially increases almost linearly with time, but for times
considerably longer than ta (i.e., a normalized time of 1), the dependence on time is
quadratic. By contrast, for the mechanistic kernel, variance rises to a peak value at a
dimensionless time equal to 51.5, and then falls back to an approximate asymptotic value.
Finally, for entropy of the granule size distribution (shown in Figure 2c), for the constant
kernel, it increases logarithmically with time toward the asymptotic normalized value.
While for the mechanistic kernel, its time behavior follows a similar pattern to that of
variance, although peak entropy occurs at a later dimensionless time of 58.6 compared to
peak variance.
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ized entropy of the granule size distribution (c) versus dimensionless time for the constant and
mechanistic kernels.
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The different behaviors between the two kernels arise because there is no restraining
mechanism for a constant kernel, and the granule size and dispersion can increase without
limit. For the mechanistic kernel, the physical success factor acts to stabilize the size
distribution and limit the growth of the moments of the distribution. More generally,
Figure 2c shows that each type of aggregation kernel will have its own unique profile of
how entropy varies with time depending on the physical processes and constraints that it
includes. Hence, graphs of entropy versus time can be used to compare the operation of
different possible aggregation kernels.

3.2. Relationship of Variance and Entropy to the Size Distribution

Figure 3a plots the normalized entropy of the distribution against the dimensionless
variance of the granule size distribution for the constant kernel, and Figure 3b plots the
same for the mechanistic kernel. By examining the behavior of the constant aggregation
kernel, because variance increases monotonically with respect to time, then entropy will
have a monotonic relationship with respect to variance. In fact, entropy is proportional to
the logarithm of the square root of variance. For the mechanistic kernel, strikingly different
behavior is observed. Entropy increases with variance up to the point at which variance
achieves its peak value (marked as point ‘a’ in the graph). Then, as variance falls, entropy
continues to increase to its peak value (point ‘b’ in the graph), and then both continue to
decay toward their respective quasi-asymptotic levels (point ‘c’). This behavior results
from the fact that variance achieves its peak value earlier than entropy does, so there is
a short time interval (from 51.5 to 58.6) where the entropy of the size distribution rises
although its variance falls. Figure 4 displays the granule size distribution as predicted by
the mechanistic kernel at a dimensionless time of 51.5 (which is the distribution with the
largest variance) and the size distribution for the mechanistic kernel at a dimensionless
time of 58.6 (which has the largest entropy).

For this kernel, the condition of maximum variance occurs earlier than maximum
entropy because at the earlier time, there are proportionally more small granules in the
distribution that contribute more to variance than to entropy. The bimodal distributions
seen in Figure 4 result from the fact that at the start, all the particles lie in the smallest-size
class, and this is where a single peak lies. As granulation proceeds, these particles become
distributed into the higher-size classes, but a large amount still remain un-granulated in
the smallest-size class or in the adjacent small-size classes. When the physical success
factor is activated at an intermediate time, the granules in the larger-size classes begin to
coalesce into the size class proximate to the mean size. Hence, there will be two peaks in
the distribution: one near the smallest-size class and one near the mean-size class. At long
times, the peak at the smallest-size classes diminishes, as all the small particles become
consumed by aggregation and one peak is left near the mean size value. These trends can
also be seen in Figure 5.

It is informative to examine the granule size distributions at three points in time
corresponding to an early, intermediate, and later stage of the process. Figure 5a plots the
granule size distribution for the constant and mechanistic kernels at a time equal to the
aggregation time, ta (of 10 s). The distributions are shown up to a dimensionless volume of
10 for clarity. Figure 5b gives the distributions at a time of 10 times the aggregation time
(i.e., 100 s), up to a dimensionless volume of 30, while Figure 5c gives both distributions
for a time 100 times the aggregation time (i.e., a time of 1000 s), up to a dimensionless
volume of 200. At short times, the predicted size distributions from both kernels are very
similar, and both are approximately discrete exponential in nature. As time progresses, the
mean and dispersion increase, so the number of granules in any size class falls for both
kernels. For the constant kernel, after a long period of time, the ratio of the successive
fractional number of granules in any size class converges to one, meaning that the granule
size distribution approaches uniform distribution. However, once the physical success
factor becomes significant after a long period of time, then the mechanistic kernel produces
a markedly divergent size distribution, as seen in Figure 5c. The fractional number of



Processes 2023, 11, 2247 10 of 18

granules in any size class no longer falls monotonically with increasing granule size but
rather produces a large number of granules with a volume clustering around the mean
volume. The mechanistic kernel predicts much fewer very small and very large granules
compared to the constant kernel, reflecting its tighter distribution.

Processes 2023, 11, x FOR PEER REVIEW  10  of  18 
 

 

of granules in any size class no longer falls monotonically with increasing granule size but 

rather produces a large number of granules with a volume clustering around the mean 

volume. The mechanistic kernel predicts much fewer very small and very large granules 

compared to the constant kernel, reflecting its tighter distribution. 

 

 
(a) 

 
(b) 

Figure 3. Normalized entropy of the distribution versus dimensionless variance of the distribution 

for (a) the constant kernel and (b) mechanistic kernel. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000

N
o

rm
a

lis
e

d
 E

n
tr

o
p

y

Dimensionless Variance

Constant

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400 1600

N
or

m
a

lis
ed

 E
nt

ro
py

Dimensionless Variance

Mechanistic
a

b
c

Figure 3. Normalized entropy of the distribution versus dimensionless variance of the distribution
for (a) the constant kernel and (b) mechanistic kernel.



Processes 2023, 11, 2247 11 of 18Processes 2023, 11, x FOR PEER REVIEW  11  of  18 
 

 

 

Figure 4. Granule size distribution as predicted by the mechanistic kernel at a dimensionless time 

of 51.5 (largest variance and shown in blue) and 58.6 (largest entropy and shown in red). 

Using these size distributions, the contribution of each dimensionless-size class to the 

total variance of the distribution for each kernel can be established at the three respective 

times. Figure 6a plots the fractional variance of each size class (up to a dimensionless-size 

class of 10) for both kernels at the time 𝑡. Figure 6b gives the same information (up to a 

dimensionless-size class of 50) at 10   𝑡, while Figure 6c does so at 100   𝑡 (up to a dimen-

sionless-size class of 200). These graphs display  the distribution of variance. The mean 

granule volume as predicted by each kernel is shown on the graphs. From the definition 

of variance, the contribution of each size class to the total variance of the distribution is 

the product of the square of its difference from the mean volume multiplied by the frac-

tional number of granules  in  that class. For  the  two shorter  times, both kernels yield a 

similar pattern because the size distributions are similar. For size ranges below the mean, 

the smallest-size class (i.e., primary particles) makes the largest contribution to variance 

because of the many particles present and its extreme position in the size distribution. As 

the mean is approached, the contribution of each successive size class is diminished. For 

size ranges above the mean, the contribution to variance initially rises but then falls, as 

fewer and fewer granules are present in the very large-size classes. By contrast, at later 

stages in the process (100   𝑡), a different behaviour is seen. The constant kernel maintains 

the same pattern as early stages, but the mechanistic kernel has a considerably different 

pattern. For this reason, the very small size ranges no longer make a dominant contribu-

tion to the variance, and the variance primarily comes from mid-sized granules that lie on 

either side of the mean. 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 21 41 61 81 101 121 141 161 181

F
ra

ct
io

n
a

l N
u

m
b

e
r

Dimensionless Volume

Max Variance Max Entropy

Figure 4. Granule size distribution as predicted by the mechanistic kernel at a dimensionless time of
51.5 (largest variance and shown in blue) and 58.6 (largest entropy and shown in red).

Using these size distributions, the contribution of each dimensionless-size class to the
total variance of the distribution for each kernel can be established at the three respective
times. Figure 6a plots the fractional variance of each size class (up to a dimensionless-
size class of 10) for both kernels at the time ta. Figure 6b gives the same information
(up to a dimensionless-size class of 50) at 10 ta, while Figure 6c does so at 100 ta (up
to a dimensionless-size class of 200). These graphs display the distribution of variance.
The mean granule volume as predicted by each kernel is shown on the graphs. From
the definition of variance, the contribution of each size class to the total variance of the
distribution is the product of the square of its difference from the mean volume multiplied
by the fractional number of granules in that class. For the two shorter times, both kernels
yield a similar pattern because the size distributions are similar. For size ranges below
the mean, the smallest-size class (i.e., primary particles) makes the largest contribution
to variance because of the many particles present and its extreme position in the size
distribution. As the mean is approached, the contribution of each successive size class is
diminished. For size ranges above the mean, the contribution to variance initially rises but
then falls, as fewer and fewer granules are present in the very large-size classes. By contrast,
at later stages in the process (100 ta), a different behaviour is seen. The constant kernel
maintains the same pattern as early stages, but the mechanistic kernel has a considerably
different pattern. For this reason, the very small size ranges no longer make a dominant
contribution to the variance, and the variance primarily comes from mid-sized granules
that lie on either side of the mean.
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Figure 5. Granule dimensionless volume distribution for the constant and mechanistic kernels at
(a) ta (10 s), (b) 10 ta (100 s), and (c) 100 ta (1000 s).
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Figure 7a–c plots the fractional contribution of each dimensionless size class to the
entropy of the distribution for each kernel at the three respective times above and using the
same dimensionless size ranges, i.e., the entropy distribution. According to the definition
of entropy, the contribution of each size class is the product of the fractional number of
granules in the class times the natural logarithm of that fractional number. After short
periods of time, both kernels produce the same pattern: the larger the size of the class,
the smaller its contribution to the total entropy of the distribution, primarily because the
number of granules in successively larger-size classes is successively smaller. So, entropy is
preferentially determined by the smaller-size classes. This pattern remains invariant for the
constant kernel even at later stages of the process, but for the mechanistic kernel, the size
range centered about the mean makes the greatest contribution to entropy toward the end.
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Figure 7. Fractional contribution of each size class to the entropy for the constant and mechanistic
kernels at (a) ta (10 s), (b) 10 ta (100 s), and (c) 100 ta (1000 s).

4. Discussion
4.1. Physical Success Factor

The transformation of the granule size distribution, using constant and mechanistic
aggregation kernels, has been explored using the concepts of variance and entropy. The
different outcomes for both kernels can be explained by considering three salient granule
sizes of the primary particle volume, v0, Stokes volume, vs, and drop out volume, vmax. The
significance of the physical success factor in terms of acting as a constraint on granulation
and thus limiting the increase in entropy and variance can be understood by comparing
these volumes. The Stokes volume is present because two granules will not agglomerate
when their Stokes number equals the critical Stokes number and the corresponding volume
is given as

vs =
1
8

(
Stc

St0

)3
(23)

Agglomeration is not possible between two granules that both exceed this size. Hence,
the domain of the granule volume is divided into a number of distinct zones. No granules
with a volume less than v0 or greater than vmax can be present in the system. Where
both contacting granules are larger than vs (and less than vmax), then no aggregation
between them is possible. When one granule has a volume greater than vs while the other
has a volume less than vs, then conditional aggregation is possible (once the resulting
granule volume that is formed is less than vmax). When both granules are less than vs,
then agglomeration can occur. At the early stages of the granulation process, where most
granules have a volume less than vs, the influence of the Stokes number is negligible,
but as granule sizes increase, an increasing proportion have a volume larger than vs, and
the limiting effect on growth becomes more pronounced. At later stages, the aggregation
process is limited to where most relatively large-sized granules can only combine either
with primary particles or very small granules. This phenomenon explains why the mean
size can continue to increase, albeit very slowly.

4.2. Entropy of the Granule Size Distribution

Entropy and variance both measure how ‘spread out’ a distribution is. Variance mea-
sures how spread out it is from the mean value, while entropy does not have any specific
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datum point. However, entropy is also a measure of the evenness of the spread: the more
dispersed the distribution and the more even (or uniform) it is, the larger the entropy.
Entropy more directly quantifies the rate at which granules disperse into the increasingly
available size classes as granulation proceeds. As such, it provides a good measure of how
dispersed the distribution is and also its proximity to the uniform distribution, where all
size classes are evenly occupied. Variance is a narrower concept measuring the average
value of the square of the departure from the mean value for the distribution and has the
disadvantage, compared to entropy, of being quite sensitive to the tails of the distribution,
which may contain a relatively small fraction of the total number of granules. The distinc-
tion between variance and entropy is particularly marked for the output of the constant
kernel; the variance increases rapidly with time because the size distribution becomes much
more dispersed, but the entropy increases much more slowly because the shape of the
distribution only changes slightly. Even for the mechanistic kernel, after a long period of
time, i.e., 100 ta, there is a strong similarity between the size distribution (Figure 5c) and the
entropy distribution (Figure 7c) that is not present for the variance distribution (Figure 6c),
indicating the strong correspondence between size and entropy distribution.

In summary, entropy measures both the amount of dispersion in the size distribution
and the shape of the size distribution. An increase in entropy with time is a sign that the
size distribution is increasing and also that the distribution is becoming more uniform.
Hence, monitoring the entropy of the granule size distribution in an agglomeration process
provides information on both aspects of the distribution. This is particularly important
when inferences are drawn from sampling of the granule size distribution; the larger the
entropy of the distribution, the more sampling is needed to obtain the same information
about the distribution. Furthermore, entropy provides extra insight into the fractional
number of granules in any sub-intervals of the size distribution that may be of interest.
Of course, ultimately, both variance and entropy are useful statistics that shed light on
different attributes of a distribution.

5. Conclusions

The evolution of variance and entropy of the granule size distribution in the fluidized
bed agglomeration process for two different aggregation kernels has been analyzed. The
constant kernel (aggregation is independent of both time and granule size) is the most
unconstrained agglomeration process that can occur, where granules in any size class
(up to a maximum size) can be formed at any point in time. This gives the fastest and
largest increase in the variance and entropy of the resulting granule size distribution. More
realistic aggregation kernels include granule growth-limiting mechanisms, in this case,
implemented by the viscous Stokes number method. This markedly changes the evolution
of the variance and entropy of the distribution and reduces both significantly. Entropy can
provide another perspective on the evolution of the size distribution in an agglomeration
or granulation process in addition to the usual focus on the moments of the distribution.
Specifically, it provides important insights into how the shape of the size distribution
evolves with time, in addition to the width of the distribution. Information entropy can
provide a measure of the rate at which a mono-dispersed initial size distribution tends
to approach a uniform (flat) distribution as an asymptotic limit. Because each type of
aggregation kernel will achieve this transformation in a different fashion, entropy can be a
powerful tool to understand their respective operations and characteristics.
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Notation

H Entropy
k Number of granule size classes -
N0 Initial number of primary particles -
ni Fractional number of entities in size class i
St Stokes number -
Stc Critical Stokes number -
St0 Stokes number constant m−1

t Time s
v Granule volume m3

vmax Maximum granule volume m3

v0 Volume of individual elementary particle m3

ta Characteristic aggregation time s
Greek Letters
β Aggregation rate s−1

βc0 Initial aggregation rate s−1

β0 Reference (constant) aggregation rate s−1

βct Aggregation rate time dependency parameter s−1

ψg Geometric success factor -
ψp Physical success factor -
µ Mean volume m3

σ Standard deviation in volume m3

ϕ Relative frequency of Stokes number -
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