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Abstract: A plant factory is typically considered to be an exceedingly advanced product management
system characterized by higher crop yields and better quality control. The pH value of the nutrient
solution is crucial for determining the health and productivity of crops. However, the nutrient solution
process exhibits inherent complexity, such as parameters uncertainty, multi-disturbances, and strong
nonlinearity. Therefore, the traditional control method cannot meet the necessary requirements. The
main objective of this paper is to address the issues of parameter uncertainty, strong nonlinearity,
and multiple disturbances in the regulation process of the nutrient solution while achieving accurate
control of the nutrient solution pH in a plant factory. This is performed so that a dynamic model
of a nutrient solution for pH is developed and a nonlinear adaptive controller is presented, which
comprises a linear adaptive generalized predictive controller, a nonlinear adaptive generalized
predictive controller, and a switching mechanism. The parameters of the controller are adjusted
by generalized predictive control (GPC) laws. In this approach, an adaptive neuro-fuzzy inference
system (ANFIS) is used to estimate the unmodeled dynamics to depress the influence of nonlinearity
on the system. The experiments show that the mean errors and standard errors for gain-scheduling the
proportional-integral-derivative (PID) control strategy are 0.1388 and 0.4784, respectively. The mean
errors and standard errors for the nonlinear adaptive controller are 0.1046 and 0.3009, respectively.
Simulation results indicate that the presented method can acquire a better control effect in the case of
various complex situations. Therefore, by achieving precise control of the pH value, it is possible
to provide a suitable growth environment for crops, promoting healthy crop growth and increasing
crop yield.

Keywords: plant factory; nutrient solution; pH control; nonlinear adaptive control; generalized
predictive control (GPC); adaptive neuro-fuzzy inference system (ANFIS)

1. Introduction

A plant factory is one of the most advanced development technologies of modern
agriculture; it is characterized by higher unit output, a higher degree of production au-
tomation, a higher resource utilization rate, and green health [1–3]. A nutrient solution
is an indispensable source of nutrients for crop growth in plant factories that is designed
to provide suitable ionic elements for crop growth. Hydroponics is a system in which the
nutrient solution supplies water, nutrients, and oxygen to crops instead of natural soil
so that crops can grow healthily during the life cycle [4,5]. The advantage of hydroponic
systems is that they can avoid continuous cropping obstacles and diseases that often occur
in soil cultivation [6,7]. The four essential indicators of nutrient solutions for plant factories
are pH, EC, temperature, and oxygen. Significantly, the pH value of the nutrient solution is
crucial for determining the health and productivity of crops. The pH value is a measure of
the acidity or alkalinity of a solution, representing the concentration of hydrogen ions (H+)

Processes 2023, 11, 2317. https://doi.org/10.3390/pr11082317 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-5056-5291
https://doi.org/10.3390/pr11082317
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082317?type=check_update&version=1


Processes 2023, 11, 2317 2 of 22

in the solution. Different crops in plant factories have specific pH requirements for optimal
nutrient absorption. Moreover, maintaining the appropriate pH level in nutrient solutions
ensures that crops can readily absorb essential nutrients [8,9]. However, it is a challenging
task for the pH control problem due to the strong nonlinearity, parameters uncertainty, and
multi-disturbances for the nutrient solution process.

Many forms of pH modeling for nutrient solutions have been proposed, which can
be represented by the continuous stirred tank reactor (CSTR) model [10]. The typical pH
general model has been developed from the perspective of these mechanisms [11]. The
abovementioned mathematical model can be described by the dynamic model and static
nonlinear model. The dynamic model describes the dynamic change of the concentra-
tion of each chemical component in CSTR. The nonlinear model reflects the balance of
chemical components in a system at equilibrium. A bilinear model of a pH model was
approached [12]. A pH model was presented by solving a non-linear algebraic equations
system based on chemical equilibrium equations, mass balances, and the electroneutrality
principle [13]. To accurately predict the behavior of pH processes in tubular mixers and
in-line systems, a distributed parameter model has been proposed in [14]. It should be
noted that an accurate mathematical model was difficult to obtain owing to a mismatch
in model parameters. In addition, there are also limitations when applying pH modeling
in plant factories. These include the significant upfront investment required for system
installation and the continuous requirement for monitoring system operations, particularly
in terms of electricity supply.

Over the past few years, many academics have put forward control strategies, such as ro-
bust control [15,16], feedforward control [17], adaptive control [18–20], fuzzy control [21–23],
optimal control [24,25], and so on. However, the control strategy proposed in aforemen-
tioned papers can only deal with systems whose dynamics are linearly characteristic.
Therefore, the classical linear control strategy can only achieve a good control effect within
a small range of working points for weak nonlinear systems. The controller design for
the pH value of nutrient solutions encounters a significant challenge due to its inherent
complexity. There are three main reasons, as follows:

(1) The nutrient solution process can be described as a dynamic system with strong
nonlinearity characterized by significant gain fluctuation at different working points. In
particular, the sensitivity of pH changes is very large when the pH reaches the neutral point.
A small input change may cause a great output change [26].

(2) Furthermore, the pH of nutrient solutions is severely influenced by multi-disturbances
and parameters uncertainty, such as fluctuations of fertilizer flow and irrigation water
flow, instable factors including acid concentration, and the alkali concentration of the feed
solution [27].

(3) The pH value of a nutrient solution is highly dynamic and primarily influenced by
the absorption of ions by crops roots, the hydrolysis of carbon dioxide (CO2), and the loss
of H+ ions, resulting in elevated cation levels. As a result, the pH variation in the nutrient
solution becomes intricate and challenging to control.

Artificial intelligence theories, such as neural networks, are utilized as a promising
approach for control problems. Because neural networks can approximate any continuous
functions between finite-dimensional spaces and arbitrary accuracy, many scholars have
tried to apply neural networks to nonlinear control. To stabilize certain types of nonlinear
strict-feedback systems with uncertain dynamics while considering full-state constraints,
an adaptive neural network control method was investigated [28]. A nonlinear multi-
agent adaptive neural network controller with constraints was presented [29]. Aiming
at a specific class of nonlinear systems that feature multiple-input and multiple-output
(MIMO) variables, an adaptive output feedback fault-tolerant controller based on a neural
network was proposed [30]. A control strategy based on neural networks was proposed
for adaptive decoupling of nonlinear systems to enhance evaporation efficiency [31]. A
feedback-based adaptive controller based on a neural network was presented for improved
control performance [32].
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By building upon the control strategy presented in references [33–36], a nonlinear
adaptive control scheme utilizing ANFIS is proposed to address the control problem related
to regulating the pH value of nutrient solutions. This article makes several contributions to
the field, including:

(1) To achieve precise control of pH value and ensure that the pH value of the nutrient
solution is suitable for crop growth, a dynamic model for nutrient solution pH is established
based on the actual conditions of the factory.

(2) To the best of our knowledge, there is a significant lack of research exploring the
potential application of the nonlinear generalized prediction adaptive control method on the
basis of ANFIS in pH control of nutrient solutions. The control method comprises a linear
adaptive generalized predictive controller, a nonlinear adaptive generalized predictive
controller, and a switching mechanism. The parameters of the controller are adjusted by
GPC laws. In this approach, ANFIS is used to estimate the unmodeled dynamics to depress
the influence of nonlinearity on the system.

2. Process Description of the Nutrient Solution

The model and control of the research are experimented on in the plant factory
(Figure 1a) located at Haicheng Sanxing Ecological Agriculture Co., Ltd. in Liaoning
Province. The size of the plant factory is 16 m in length, 6 m in width, and 3 m in height.
The interior of the plant factory (Figure 1b) has three cultivation racks, which are 14 m long,
0.3 m wide, and 0.5 m high. The nutrient solution process system in the plant factory is
shown in Figure 1c. From left to right, the four tanks contain fertilizer, acid, alkali, and
a mixed nutrient solution, and the volumes of the four tanks are 300 L, 300 L, 300 L, and
500 L, respectively. The initially composition of the fertilizer includes Ca(NO3)2 4H2O—
315 mg/L; KNO3—712 mg/L; MgSO4 7H2O—542 mg/L; and (NH4)2HPO4—301 mg/L.
For pH control, the acid solution uses HCL—0.36 mol/L, while the alkaline solution uses
NaOH—0.1 mol/L. The transmission pipe (Figure 1d) of the nutrient solution system is
made of polyvinyl chloride (PVC), with a diameter of 8 cm.
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Figure 1. Architecture diagram of the interior (a) and exterior (b) of the plant factory. Architecture
diagram of the nutrient solution system (c). Pipeline architecture diagram of the nutrient solution
system (d).
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A construction diagram of the nutrient solution system is displayed, as shown in
Figure 2. The system takes place at the reaction center and has four inputs and one output.
The inputs are acid solution, alkali solution, fertilizer solution, and irrigation water. The
output is mixed nutrient solution, which is sent to the cultivation rack under pressure
by the fertilization pump. The symbols in Figure 2 are explained as follows: GL—filter;
JL—metering pump; PH—sensor; d1, d2, d3, d4—electromagnetism valve.
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In the actual configuration process of the nutrient solution, the controller regulates the
input flow rate of acid liquid (Qa), alkali liquid (Qj), fertilizer liquid (Q f ), and irrigation
water (Qs) by the metering pumps (JL). In order to be well mixed for the nutrient solution,
the stirring device is activated when the liquid flows into the mixing tank (mh). The pH
value is detected by the sensor. After comparing the measurement value of pH with the
setpoint value, the controller adjusts each input flow and configures the qualified nutrient
solution. Finally, the qualified nutrient solution is extracted through the fertilization pump
supplied to the crops of the plant factory through the electromagnetism valve.

3. pH Model of the Nutrient Solution

Figure 3 displays the diagrammatic sketch of the pH of nutrient solution systems. The
dynamic model of the pH of nutrient solutions and the continuous stirred tank reactor
(CSTR) model are similar. The feed liquids include acid liquid, lye liquid, fertilizer liquid,
and irrigation water. The pH model of the nutrient solution is established according to the
ionization balance. It is assumed that complete ionization of acid and alkali is accomplished
in the mixed tank, which is represented by Equations (1) and (2).

V
dC1

dt
= QaXa −

[
Qa + Qj + Q f + QS

]
C1 (1)
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In Equation (1), C1 is the hydrogen ion concentration (i.e., C1 = H+), V is the reactor
volume, Qa is the inflow acid flow, Xa is the inflow acid concentration, Qj is the inflow
alkali flow, Q f is the inflow of fertilizer, and QS is the inflow water flow.

V
dC2

dt
= QjXb + Q f C f + QSCS −

[
Qa + Qj + Q f + QS

]
C2 (2)

In Equation (2), C2 is the concentration of hydroxide ions (i.e., C2 = OH−), C f is the
inflow fertilizer concentration, and CS is the inflow water concentration.

Make C1 = x1, C2 = x2, Qa = F(t), Qj = u(t) and define ∆x(t) = x1(t)− x2(t).

∆
.
x =

(Xa − y)F(t)− (Xb + y)U(t)−
(

Q f + Qs

)
y−Q f C f −QsCs

V
(3)

In Equation (3):

∆x(t) = H+ −OH− = 10−pH − 10−pH−14 = 10−pH − 10−pH .Kw (4)

where Kw = 10−14 is the hydroelectric balance constant.
Defining pH = y from Formula (4), it can be solved that:

y(t) = log10
−∆x(t) + (∆x(t)2 + 4Kw)

1
2

2Kw
(5)

4. Dynamic Characteristics

The dynamic model of the pH of the nutrient solution is denoted in Equations (3)–(5).
Table 1 contains the parameters utilized in the simulations of the model. To design a
control strategy of the system, the dynamic characteristics, parameters uncertainty, and
nonlinearity are discussed in this section.
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Table 1. Simulation parameter table.

Parameter Meaning Value Range Unit

V reactor volume 500 L
Kw (25 ◦C) water ionization constant 10−14

Qa inflow acid flow 1.0 L/min
Xa inflow acid concentration 0.36 mol/L
Xb inflow alkali concentration 0.1 mol/L
Q f inflow of fertilizer 0.5 L/min
C f inflow fertilizer concentration 0.1 mol/L
Qs inflow water flow 1.5 L/min
Cs inflow water concentration 0.1 mol/L

4.1. Parameters Uncertainty

It is significant to notice that the model parameters are constant for many ideal
assumptions in establishing the pH model of the nutrient solution. Although it is possible
to avoid significant fluctuations by controlling the quantity of nutritional elements through
the monitoring system, there are many uncertainties for some parameters in the actual
system of the nutrient solution as time goes on. For example, Xa, Xb, and Qa vary with time
in Equation (3). Subsequently, parameters uncertainty experiments are discussed below.

The initial value of the system is u = 3.6 L/min; y = 7 and the input and output of the
system are not changed in the experimental process. The parameter Xa is adjusted from
the initial value of 0.36 mol/L to 0.32 mol/L, 0.34 mol/L, 0.38 mol/L, and 0.40 mol/L for
investigating the output response of the system. The results of the experiment are depicted
in Figure 4.
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Figure 4. Uncertainty of inflow acid concentration Xa.

The results show that the pH value has fluctuated dramatically with the change of
the model parameter Xa. As shown in Figure 4, the pH value changed from 7 to 11.5 at
Xa = 0.32 mol/L and varied from 7 to 11 at Xa = 0.34 mol/L. The pH value of the nutrient
solution changed from 7 to 3 at Xa = 0.38 mol/L and varied from 7 to 2.3 at Xa = 0.4 mol/L.

The model parameter Xb is adjusted from the initial value of 0.1 mol/L to 0.08 mol/L,
0.09 mol/L, 0.11 mol/L, and 0.12 mol/L for investigating the output response of the system.
The results of the experiment are depicted in Figure 5.
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Figure 5. Uncertainty of inflow alkali concentration Xb.

The results show that the pH value has changed significantly with the modification of
the model parameter Xb simultaneously. As shown in Figure 5, the pH value changed from
7 to 2 at Xb = 0.08 mol/L and varied from 7 to 2.5 at Xb = 0.09 mol/L. The pH value of the
nutrient solution changed from 7 to 11.5 at Xb = 0.11 mol/L and varied from 7 to 12 at Xb
0.12 mol/L.

The model parameter Qa is adjusted from the initial value of 1 L/min to 0.8 L/min,
0.9 L/min, 1.1 L/min, and 0.13 L/min for investigating the output response of the system.
The results of the experiment are depicted in Figure 6.
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Figure 6. Uncertainty of inflow acid flow uncertainty Qa.

The results show that the pH value has a similar response with the change of the
model parameter Qa. As shown in Figure 6, the pH value of the nutrient solution changed
from 7 to 12 at Qa = 0.8 L/min and varied from 7 to 11 at Qa = 0.9 L/min. The pH value
of the nutrient solution changed from 7 to 3 at Qa = 1.1 L/min and varied from 7 to 2.3 at
Qa = 1.2 L/min.

It is evident from the aforementioned three experiments that the pH value of the
system has changed remarkably with the slight modification of the model parameters Xa,
Xb, and Qa. Furthermore, fluctuations of fertilizer flow and irrigation water flow also affect
the dynamic characteristics of the pH of the nutrient solution. Therefore, it is necessary to
depress the influence of multi-disturbances and parameters uncertainty on the system.
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4.2. Nonlinearity of the System

Figure 7 shows the titration curve for the pH value, which describes the static input–
output relationship of the system [37]. It is seen clearly that the pH of the solution has a
small change where the reaction process is far away from the neutral point (pH = 7), even
if a large amount of alkali liquid is added. However, the sensitivity of the pH becomes
very large when the reaction process is around the neutral point. Adding a small amount
of alkali liquid can cause a large change in the pH value. As shown in Figure 7, the pH
of the solution system exhibits strong output multiplicity. The static curve increases from
nearly 0 degrees to nearly 90 degrees and then reduces from almost 90 degrees to almost
0 degrees. Based on the concept in [38], the pH of the nutrient solution system has strong
static nonlinearity.
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In order to further illustrate the nonlinear characteristic of the nutrient solution system,
this paper uses the gap metric method to measure the nonlinear strength of the pH of the
nutrient solution [39]. The working space of the nutrient solution system M can be meshed
with Ng working points in the working space. The linearization model at the i point and
the j point of the system is Li M, Lj M in the working area. Select the largest gap m as the
nonlinearity measure of the system in its working area. The degree of nonlinearity can be
expressed using the following formula:

m = max
i,j=1,,, Ng

{
δ
(

Li M, Lj M
)}

(6)

By following the steps for calculating the gap metric, one can obtain a measure
of nonlinearity:

(1) By leveraging existing knowledge about the system, distribute Ng working points
in the whole working space.

(2) Linearize the nonlinear systems and obtain linearized models corresponding to all
working points.

(3) Calculate the gap metric values between the Ng linearized models, and the Ng×Ng
gap-matrix is computed.

(4) Compare the matrix components one by one and use the largest element to repre-
sent the nonlinearity measure of the system in the working space.

The pH of the nutrient solution system is divided within the range of pH ∈ [2–12].
The number of working points is Ng = 1100, where 1100 linear models can be obtained by
linearizing the dynamics of the nonlinear system near these points. Gap metric values are
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calculated for 1100 different linear systems, and the maximum gap among the Ng × Ng
gaps is selected as the nonlinearity degree. The gaps are displayed in Figure 8.
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The results show that the nonlinearity measure m = 1. Furthermore, there are great
differences in characteristics of the nutrient solution system at different working points
in the given working space. Thus, as the system exhibits significant nonlinearity in its
working range, a nonlinear control approach is required.

5. Nonlinear Adaptive Control Based on ANFIS
5.1. Nonlinear Generalized Predictive Controller

In the actual nutrient solution control system, there are different dynamic characteris-
tics for the different working points. Therefore, this paper adopts a multi-model method
that used different nonlinear models to describe the nutrient solution system at different
working points.

Near the i working point, the system can be described as follows [40]:

Ai

(
z−1
)

y(k) = Bi

(
z−1
)

u(k− 1) + vi(k− 1) i = 1, 2, · · · , m (7)

where m is the number of known working points. Ai
(
z−1) and Bi

(
z−1) are polynomials

about z−1, for which the formulas are as follows:

Ai

(
z−1
)
= 1 + ai1z−1 + . . . + aina z−na

Bi

(
z−1
)
= bi0 + bi1z−1 + · · ·+ binb z−nb

vi(k− 1) = f [y(k− 1), · · · y(k− na), u(k− 1), · · · u(k− nb − 1)] represents the high-order
nonlinear term.

The generalized predictive performance index is introduced in the following function:

J =
N

∑
j=1

[y(k + j)− rijw(k + j) + Sij

(
z−1
)

vi(k + j− 1)]
2
+

Nu

∑
j=1

λiju(k + j− 1)2 (8)
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where w(k) ∈ R is the known reference input, N, Nu denote the length of the prediction
and control horizon, respectively, λij is the weighted coefficient of the control quantity,
Sij
(
z−1) is the weighted polynomial about z−1, and rij is the weighted constant.

To predict j steps ahead, consider the following two Diophantine equations:

1 = Eij

(
z−1
)

Ai

(
z−1
)
+ z−jFij

(
z−1
)

(9)

Eij

(
z−1
)

Bi

(
z−1
)
= Gij

(
z−1
)
+ z−j Hij

(
z−1
)

(10)

where Eij
(
z−1) = ei0 + ei1z−1 + · · · + ei(j−1)z−j+1, Fij

(
z−1) = f ij

0 + f ij
1 z−1 +

· · ·+ f ij
na−1z−na+1, Gij

(
z−1) = gi0 + gi1z−1 + · · ·+ gi(j−1)z−j+1, Hij

(
z−1) = hij

0 + hij
1 z−1 +

· · ·+ hij
nb−1z−nb+1.

The j step output prediction can be obtained from Equations (7), (9) and (10), which is
given by:

y(k + j) = Gij

(
z−1
)

u(k + j− 1) + Fij

(
z−1
)

y(k) + Hij

(
z−1
)

u(k− 1) + Eij

(
z−1
)

vi(k + j− 1) (11)

Substituting Equation (11) into (8) and selecting a weighted polynomial Sij
(
z−1)

to make: [
Eij

(
z−1
)
+ Sij

(
z−1
)]

vi(k + j− 1) = Mij

(
z−1
)

vi(k− 1), j = 1, · · · , N (12)

where Mij
(
z−1) = mi0 + mi1z−1 + · · ·+ minm z−nm , and then yields:

J =
N

∑
j=1

[Gij

(
z−1
)

u(k + j− 1) + Fij

(
z−1
)

y(k) + Hij

(
z−1
)

u(k− 1) + Mij

(
z−1
)

vi(k− 1)− rijw(k + j)]
2
+

Nu

∑
j=1

λiju(k + j− 1)2 (13)

Expressing the performance index in Equation (13) in the form of a vector as follows:

J = [GiU + Hiu(k− 1) + Fiy(k) + Mivi(k− 1)− RiW]T [GiU + Hiu(k− 1) + Fiy(k) + Mivi(k− 1)− RiW] + UTλiU

where,

U =

 u(k)
...

u(k + Nu − 1)

, W =

 w(k + 1)
...

w(k + N)

, H =

 Hi1
(
z−1)
...

HiN
(
z−1)

, F =


Fi1
(
z−1)
...

FiN
(
z−1)



Gi =



gi0
gi1 gi0
...

...
gi(Nu−1) gi(Nu−2) · · · gi0

...
...

...
gi(N−1) gi(N−2) · · · gi(N−Nu)


, Mi =

 Mi1
(
z−1)
...

MiN
(
z−1)

, Ri = diag
[
rij
]

λi = diag[λi1, · · · , λiNu ], j = 1, · · · , N.

Minimizing the performance index in Equation (13) yields the nonlinear generalized
predictive control law as follows:

U = (Gi
TGi + λi)

−1
Gi

T [RiW − Fiy(k)− Hiu(k− 1)−Mivi(k− 1)] (14)
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The defined (Gi
TGi +λi)

−1Gi
T first row is pi

T = [pi · · · piN ]; the nonlinear generalized
predictive control law is obtained as follows, and the nonlinear controller structure is shown
in Figure 9:

Hic

(
z−1
)

u(k) = Pi

(
z−1
)

w(k + N)− Fi

(
z−1
)

y(k)−Mic

(
z−1
)

vi(k− 1) (15)

where, Pi
(
z−1) = piNriN + pi(N−1)ri(N−1)z−1 + · · ·+ pi1ri1z−N+1, Fic

(
z−1) = ∑N

k=1 pikFik(
z−1), Hic

(
z−1) = 1 + z−1 ∑N

k=1 pik Hik
(
z−1), Mic

(
z−1) = ∑N

k=1 pik Mik
(
z−1) and deg[Fic(

z−1)] = na − 1. deg
[
Hic
(
z−1)] = nb.
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5.2. Estimation Model and Corresponding Adaptive Controller 

In practical nutrient solution systems, the parameters of the model always change 

with various factors, such as influent acid and alkali concentration. Therefore, it is neces-

sary to update the coefficient in Equation (7) at different working conditions. 

Figure 9. Nonlinear controller structure.

Substituting Equation (15) into the system Equation (7), the equation for the closed-
loop system can be derived as follows:

[Ai
(
z−1)Hic

(
z−1)+ z−1Bi

(
z−1)Fic

(
z−1)]y(k)

= z−1Bi
(
z−1)Pi

(
z−1)w(k + N)+[Hic

(
z−1)− z−1Bi

(
z−1)Mic

(
z−1)]vi(k− 1)

(16)

To guarantee the stability of the closed-loop system, appropriate selection of weighting constants
λij needs to be preset (note that Hic

(
z−1) and Fic

(
z−1) are related to λij):

Ti

(
z−1
)
= Ai

(
z−1
)

Hic

(
z−1
)
+ z−1Bi

(
z−1
)

Fic

(
z−1
)
6= 0, |z| ≥ 1 (17)

To remove the steady-state error and unmodeled dynamic on the system, appropriately selecting
weighting polynomials rij, Sij

(
z−1) satisfies the following equation (note that Pi

(
z−1) is related to

rij and Mic
(
z−1) are related to Sij

(
z−1)):

Ai(1)Hic(1) + Bi(1)Fic(1) = Bi(1)Pi(1) (18)

Hic(1) = Bi(1)Mic(1) (19)

If the nonlinear term is not considered, the linear control strategy can be seen in Figure 10, and
the linear generalized predictive controller law is obtained by Equation (20):

Hic

(
z−1
)

u(k) = Pi

(
z−1
)

w(k + N)− Fic

(
z−1
)

y(k) (20)
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5.2. Estimation Model and Corresponding Adaptive Controller
In practical nutrient solution systems, the parameters of the model always change with various

factors, such as influent acid and alkali concentration. Therefore, it is necessary to update the
coefficient in Equation (7) at different working conditions.

From Equation (7), the parameters of the nonlinear system can be identified as follows:

y(k) = Xi
T(k− 1)θi + vi(k− 1) (21)

where, θi =
[
ai1, · · · , aina , bi0, · · · , binb

]T , Xi(k− 1) =[ − y(k− 1), · · · ,−y(k− ina), u(k− 1),
· · · , u(k− inb − 1)]T .

The definition of the linear estimation model Mi1 is as follows:

ŷ1(k) = Xi
T(k− 1)θ̂i1(k− 1) (22)

where θ̂i1(k) represents the estimated value of the parameter at time k based on the linear model (22)
and θ̂i1(k) can be determined by the following algorithm:

θ̂i1(k) = θ̂i1(k− 1) +
µi1(k)Xi(k− 1)ei1(k)

1 + Xi
T(k− 1)Xi(k− 1)

(23)

µi1(k) =
{

1 , i f |ei1(k)| > 4∆
0 , else

(24)

ei1(k) = y(k)− ŷ1(k) = y(k)− Xi
T(k− 1)θ̂i1(k− 1) (25)

From Equation (20), the linear generalized predictive adaptive controller C11 can be obtained
as follows:

Ĥic1

(
z−1
)

u(k) = P̂i1

(
z−1
)

w(k + N)− F̂ic1

(
z−1
)

y(k) (26)

Because the neural networks can more accurately approximate the original nonlinear system (7),
ANFIS is used to estimate the nonlinear terms to enhance the control effectiveness of the system. The
model Mi2 based on the nonlinear estimation term is defined as:

ŷ2(k) = Xi
T(k− 1)θ̂i2(k− 1) + v̂i(k− 1) (27)

where θ̂i2(k) is the estimate based on the nonlinear estimation model for parameter θi at k time. The
parameter identification algorithm of θ̂i2(k) is as follows:

θ̂i2(k) = θ̂i2(k− 1) +
µi2(k)Xi(k− 1)ei2(k)

1 + Xi
T(k− 1)Xi(k− 1)

(28)

µi2(k) =
{

1 , i f |ei2(k)| > 4∆
0 , else

(29)

ei2(k) = y(k)− ŷ2(k) = y(k)− Xi
T(k− 1)θ̂i2(k− 1)− v̂i(k− 1) (30)
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The nonlinear adaptive control law is presented as follows, corresponding to the ANFIS nonlin-
ear estimation model C12. The structure of this nonlinear adaptive controller is shown in Figure 11.

Ĥic2

(
z−1
)

u(k) = P̂i2

(
z−1
)

w(k + N)− F̂ic2

(
z−1
)

y(k)− M̂ic2

(
z−1
)

v̂i(k− 1) (31)
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5.3. Switching System Design 
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2 (𝑙)

2(1 + 𝑋𝛵(𝑙 − 1)𝑋(𝑙 − 1))
+

𝑘

𝑙=1

 𝑐 ∑ (1 − 𝜇𝑖𝑗(𝑙)) 𝑒𝑖𝑗
2 (𝑙)

𝑘

𝑙=𝑘−𝑇+1

  

(𝑖 = 1,…𝑚; 𝑗 = 1,2) 

(32) 
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5.3. Switching System Design
In the nutrient solution system, if the nonlinear term v̂i(k− 1) is small, a linear adaptive

controller can be employed for guaranteeing the stability of the closed-loop system. However,
if the estimated value of the nonlinear term v̂i(k− 1) is large, the control performance is greatly
depressed using the linear adaptive controller alone. Therefore, a nonlinear adaptive controller is
needed to minimize the effect of the nonlinear term on the system. However, the nonlinear adaptive
controller cannot guarantee the stability of the closed-loop system. Therefore, a switching mechanism
is proposed to enhance the characteristics of the control system and to ensure the stability of the
closed-loop system, simultaneously. The switching mechanism utilizing multiple models is depicted
in Figure 12. The switching criterion is defined by Equations (32) and (33):

Jij(k) =
k

∑
l=1

µij(l)e2
ij(l)

2(1 + XT(l − 1)X(l − 1))
+ c

k

∑
l=k−T+1

(
1− µij(l)

)
e2

ij(l) (i = 1, . . . m; j = 1, 2) (32)

where T is a positive int and c ≥ 0 is a constant. j = 1 denotes linear and j = 2 denotes nonlinear.
At any time k, Jξρ(k), (1 ≤ ξ ≤ m, 1 ≤ ρ ≤ 2) is the minimum switching function, which is defined as
follows:

Jξρ(k) = min
1≤i≤m,j=1,2

{
Jij(k)

}
(33)
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Then, the system will select the corresponding model Mξρ. The controller Cξρ will output
counterpart values to the model Mξρ. These output values will be used as the control input u(k) for
the k time system. At each time, the system’s output is predicted by both the linear model (22) and
the nonlinear model (27), and the parameters of both models are simultaneously renewed using the
input–output data of the system.

5.4. ANFIS for Unmodeled Dynamics
It is a commonly accepted fact that neural networks can approximate nonlinear terms with

arbitrary precision. Therefore, the unmodeled dynamics of the nutrient solution process are estimated
using ANFIS. The ANFIS network structure diagram is shown in Figure 13.
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The ANFIS has five layers, and the output of each layer can be obtained by the following
relations.

Layer1: Each square node q indicated by Aq or Bq in layer1 has a node function as follows:

O1,q = µAq(x), q = 1, 2 (34)
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O1,q = µBq(y), q = 1, 2 (35)

O1,q is the membership function of the fuzzy set Aq or Bq, which can be selected appropriately,
such as the bell-shaped function µAq(x) or µBq(y).

µAq(x) = exp

[
−
(

x− cq

aq

)2
]

, q = 1, 2 (36)

µBq(y) = exp

[
−
(

y− cq

aq

)2
]

, q = 1, 2 (37)

where aq and cq are premise parameters.
Layer2: Nodes are indicated by circles and labeled with “Π” in Figure 13. It takes layer1’s

outputs as input and multiplies them to yield weight. The output of layer2 can be showed as follows:

O2,q = wq = µAq(x)× µBq(y) (38)

Layer3: Each output function is calculated by normalizing the weight of a certain node by
comparing with the weights of other nodes.

O3,q = wq =
wq

wq + wq
, q = 1, 2 (39)

Layer4: Each node q of this layer is an adaptive node.

O4,q = wq fq = wq
(

pqx + sqy + rq
)
, q = 1, 2 (40)

where rq represents bias and pq and sq indicate consequent parameters.
Layer5: This is the convergence layer. It calculates the total of rules and yields a single output.

O5,q = ∑
q

wq fq =
∑q wq fq

∑q wq
, q = 1, 2 (41)

In this paper, the output of the ANFIS is v̂i(k− 1), the input vector is xi(k− 1) = [y(k− 1), . . . , y(k− ina), û(k− 1, . . . , u(k− inb − 1)]T

= [ϕ1, ϕ2,. . .. ϕm], and the membership function of ANFIS can be expressed as follows:

pij[ϕi(k− 1)] = exp

−
[
ϕi(k− 1)− cij

]2

2(σij)
2

 (42)

where pij is the connection weights and σij and cij are the width and center of the membership
function. Expressing the i fuzzy rule is accomplished as follows [41]:

Rr: if ϕ1 is Ar
1j, ϕ2 is Ar

2j,. . ., and ϕm is Ar
mj, then

φr(k) =
m

∑
i=0

pr
ij ϕi(k) (43)

According to Ref. [42], the estimate v̂i(k− 1) is as follows and the estimation algorithm structure
of virtual unmodeled dynamics is in Figure 14.

v̂i(k− 1) = ∑m
r=1 wr(k− 1)φr(k− 1), l = 1, 2, · · · , m (44)

where wr(k− 1) =
wr(k−1)

∑m
r=1 wr(k−1) ,wr(k− 1) = ∏m

i=1 pij[ϕi(k− 1)]. The parameters cij and σij are ad-
justed by estimate error |vi(k− 1)− v̂i(k− 1)|.



Processes 2023, 11, 2317 16 of 22Processes 2023, 11, x FOR PEER REVIEW 16 of 22 
 

 

ANFIS

⋮ 

⋮ 

⋮ 

⋮ 

∅
m

 

w 1f1 

w m∅m
 Π 

w 1 

w m 

w1 

wm 

⋮ ⋮ 

⋮ 
⋮ 

y(k) u(k-nB) 

⊗ 

⊗ 
Hybrid 

correction 

algorithms

p
ij
r wr 

𝑣𝑖(k-1), l=1, 2,…,n 

v̂i(k-1) 

φT(k)Θ̂j(k) 

-
+

y（k） 

f (·) 

Based on the AFIS estimator

Error corrector

+
-△vi(k-1) 

⋮ 

⋮ 

⋮ 

⋮ 

Anj
r  

A1j
r  

A1j
r  

Anj
r  

A1j
r  

Anj
r  

y（k-1） 

u（k） 

u（k-1） 

y（k） 

y（k-nA+1） 

u（k） 

u（k-nB） 

N

N

Σ 

Π 

u(k-nB) y(k) 

∅
m

 

⋮ 

⋮ 

 

Figure 14. Estimation algorithm structure of virtual unmodeled dynamics �̂�𝑖(𝑘 − 1). 

6. Simulation Results 
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6. Simulation Results
To validate the effectiveness of the present method, the nonlinear adaptive control strategy

was applied to the nutrient solution pH value system. In this paper, two kinds of experiments were
carried out in the simulation research: (1) A setpoint tracking experiment was devised to examine
the tracking effect of the present method. (2) A parameter uncertainty experiment was devised to
investigate the control performance under the condition of time-varying parameters. (3) A noise
and unmeasurable disturbances experiment was devised to validate the feasibility of the nonlinear
adaptive strategy.

(1) Setpoint tracking experiment. To further illustrate the availability and feasibility of the
method put forward in this paper, the pH scale was designed to be adjusted from 3 to 10. The
experimental design is outlined as follows. The pH setpoint of the nutrient solution was changed
every 10 min during a 50 min experimental process. The set value of the pH is changed from 3.3 to
4.5 at t = 0–10 min and then was designed from 4.5 to 6.8 at 10–20 min. Subsequently, the setpoint of
pH was changed from 6.8 to 9.5 at t = 20–30 min. In the end, the set value of pH was changed from
9.5 to 7.2 at t = 30–50 min.

The initial parameters of the model are given as follows: xa = 0.36 mol/L, xb = 0.1 mol/L, Qa =
1.0 L/min, v = 500 L, Q f = 0.5 L/min, C f = 0.1 mol/L, Qs = 1.5 L/min, and Cs = 0.1 mol/L. The initial
working point is as follows: u = 3.42 L/min and y = 3.3; the open-loop step experiment was carried
out at this working point to obtain the experimental data, and the system order is expressed as na = 2,
nb = 1. The model of the system is obtained around the working point through system identification:
A
(
z−1) = 1− 1.926z−1 + 0.9926z−2, B

(
z−1) = 0.5891− 0.5877z−1. The parameters of the nonlinear

adaptive controller are designed as follows: λ = 0.1, the parameters of switching criterion C = 1, T =
2, ∆ = 0.001. The membership function of ANFIS is arranged as the Gaussian function which the
training time is set to 40. The input of ANFIS is divided into three fuzzy intervals.

In comparison, the gain-scheduling PID control method was adopted in this process. The exper-
iments were devised as follows. The pH setpoint of the nutrient solution was changed every 50 min
due to the long adjustment time for the PID control method. The set value of the pH was changed from
3.1 to 4.5 at t = 0–50 min and then was designed from 4.5 to 6.8 at 50–100 min. Subsequently, the set-
point of the pH was changed from 6.8 to 9.5 at t = 100–150 min. In the end, the set value of the pH was
changed from 9.5 to 7.2 at
t = 150–250 min. In this paper, the classic incremental PID structure is applied to the nutrient
solution and the PID controller as follows:

u(t) = u(t− 1) + Kp[e(t)− e(t− 1)] + KIe(t) + Kd[e(t)− 2e(t− 1) + e(t− 2)] (45)

where
e(t) = w(t)− y(t) (46)
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Kp, KI , and Kd denote the proportional gain, integral gain, and derivative gain, respectively.
To mitigate the impact of nonlinearity and varying dynamics on the system, the gain-scheduling

PID strategy was applied to the process by modifying the proportional, integral, and derivative gains
in specific operating conditions. The parameters of the PID controller are provided in Table 2 at
different operating points.

Table 2. The parameters of the gain-scheduling PID controller.

Operating Points Kp KI Kd

pH = 4.5 0.0003 0.000012 0

pH = 6.8 0.00025 0.000015 0

pH = 9.5 0.0005 0.00005 0

pH = 7.2 0.0004 0.000015 0

(2) Parameters uncertainty experiment. In fact, the parameters, such as acid flow rate, are very
difficult to be obtained precisely in advance and may vary with different operation conditions on
the basis of actual production for the nutrient solution. To prove the effectiveness of the present
method, the abovementioned parameters were changed during the experiment when the system was
in steady-stage. The experimental design is outlined as follows. Acid flow was changed from 1.0 to
1.1 L at t = 33 min. The gain-scheduling PID control method was also adopted here for comparison.
The changes in the parameter amplitude were similar to the above experiment and were designed as
follows. The acid flow was changed from 1.0 to 1.1 L at t = 158 min.

(3) Noise and unmeasurable disturbances experiment. As a matter of fact, the actual process
has noise and additional unmeasurable interferences in the plant factory. The acidity and alkalinity
concentrations are difficult to detect in real-time in practical systems. The above factors belong to
unmeasurable disturbances. Moreover, to further prove the feasibility of the present method, the noise
was also added for testing purposes during the experiment when the system was in steady-stage.
The experimental design is outlined as follows. The acidity and alkalinity concentrations were added
random disturbances with amplitudes ranging from [−0.05 +0.05] around their operating point at t
= 35 min. The noise was added to the pH measurement with amplitudes ranging from [−0.1 +0.1]
at t = 42.5 min. The gain-scheduling PID control method is also adopted here for comparison. The
acidity and alkalinity concentrations were added random disturbances with amplitudes ranging
from [−0.05 +0.05] around their operating point at t = 170 min. The noise was added to the pH
measurement with amplitudes ranging from [−0.1 +0.1] at t = 210 min.

Figures 15–20 display the simulation results. Figures 15–18 show the control effect using a
gain-scheduling PID control strategy, and Figures 18–20 show the control effect by nonlinear adaptive
control strategy. The gain-scheduling PID control strategy does not produce a desirable control effect,
as can be observed. Due to the uncertainties and strong nonlinearity in the nutrient solution system,
the pH value has a long adjustment time and reaches the steady state very slowly, especially at the
setpoint of 4.5 and 9.5. However, the adjustment time of the nonlinear adaptive control strategy is
short and reaches the steady state within 5 min. In additional, the pH has small overshoot, which
greatly enhances the control effect of the system.
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Regarding the situation of parameter uncertainties, the pH value features large fluctuations
based on the gain-scheduling PID control strategy from Figure 15. However, as depicted in Figure 18,
the pH value undergoes less fluctuations and rapidly adjusts towards the setpoint during parameter
variations. Therefore, the pH is capable of fast setpoint tracking and mitigating the effects of
uncertainties on the system.

Concerning the situation of noise and unmeasurable disturbances, the proposed method has
good robustness similar to the gain-scheduling PID controller, as depicted in Figure 18. Therefore,
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the nonlinear adaptive controller is not sensitive to interference and noise. The precise control of
pH for the nutrient solution can adjust the acidity or alkalinity of the nutrient solution to regulate
the solubility and stability of the nutrients, thereby promoting nutrient absorption and utilization,
maintaining healthy root development, and, ultimately, enhancing crops yield.

To further substantiate the control performance of the nonlinear adaptive control strategy, the
average error and standard error are selected to measure the control effect. The formula for calculating
the average error and standard error is as follows and the results of two methods are show in Table 3.

η =
1
n

n

∑
i=1
|xi − x| (47)

τ =

√
1
n

n

∑
i=1
|(xi − x)2| (48)

Table 3. Performance comparison between gain-scheduling PID controller and nonlinear
adaptive controller.

Methods
Nutrient Solution pH Error

Mean Standard

Gain-scheduling PID 0.1338 0.4784

Nonlinear adaptive control 0.1046 0.3009

The above table shows the average error and standard error of the gain-scheduling PID control
strategy and the nonlinear adaptive control strategy, respectively. The average error and standard
error of the gain-scheduling PID control strategy are 0.1338 and 0.4784, respectively. The average
error and standard error of the nonlinear adaptive control strategy are 0.1046 and 0.3009, respectively.

By comparing with two control strategies, it can be deduced that the nonlinear adaptive control
strategy has a good control effect on the actual nutrient solution pH in many aspects. For one
thing, the nonlinear adaptive controller enhances the setpoint tracking performance that shortens
the adjustment time and decreases overshoot; for another, it has a better adaptability of parameter
uncertainties. Therefore, the proposed method can improve the dynamic performance and has good
robustness in the face of strong nonlinearity and parameters uncertainty.

The setpoint tracking experiment, the parameters uncertainty experiment, and the noise and
unmeasurable disturbances experiments are conducted to validate the effectiveness and feasibility of
the proposed control method for the plant factory. Precisely regulating the pH value under various
complex situations promotes nutrient transformation and metabolism, improving crops’ nutrient
utilization efficiency while creating a suitable environment for plant growth. Furthermore, it can
reduce nutrient waste and loss, increasing crops yield and thereby enhancing the economic efficiency
of plant factories.

7. Conclusions
According to the actual process of nutrient solutions, this paper constructs a dynamic model

of the pH of nutrient solutions based on the law of acid–base balance. To address the complex
dynamic characteristics of strong nonlinearity and parameter uncertainty of the model, a nonlinear
adaptive generalized predictive control method based on ANFIS is put forward. The setpoint tracking
experiment and parameters uncertainty experiment were devised. For the PID control strategy, the
mean error and standard error are 0.1338 and 0.4784, respectively. In comparison, the nonlinear
controller has a significant enhancement, with the results of 0.1046 and 0.3009 corresponding to
the mean and standard error. The experiments’ results show that the presented method can track
the set value quickly. Moreover, the pH undergoes less fluctuations and achieves a better control
effect compared to the gain-scheduling PID controller in the presence of the parameter uncertainties.
Therefore, the proposed control strategy can provide the suitable growth environment, promoting
healthy crops’ growth and enhancing the economic efficiency.
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