Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. TOC, Rock-Eval, and Kerogen Element Analyses
3.2. Carbon Isotope Analysis
3.3. GC-MS Analysis
3.4. Microthermometry of Fluid Inclusions
3.5. Natural Gas Light Hydrocarbon and Carbon Isotope
4. Results and Discussion
4.1. Hydrocarbon Generation Potential and Evolution of Source Rock
4.1.1. Hydrocarbon Generation Potential of Source Rock
4.1.2. Hydrocarbon Generation Evolution of Source Rocks
4.2. Oil and Gas Source Correlation
4.2.1. Organic Matter Source and Sedimentary Environment of Source Rock
4.2.2. Source of Crude Oil
4.2.3. Natural Gas Characteristics and Sources
4.3. Hydrocarbon Accumulation Process
4.3.1. Fluid Inclusion Characteristics
4.3.2. Hydrocarbon Charging Period
4.3.3. Hydrocarbon Charging Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J. De-convoluting mixed crude oil in Prudhoe Bay field, NorthSlope, Alaska. J. Org. Geochem. 2008, 39, 623–645. [Google Scholar] [CrossRef]
- Alizadeh, B.; Alipour, M.; Chehrazi, A.; Mirzaie, S. Chemometric classification and geochemistry of oils in the Iranian sector of the southern Persian Gulf Basin. Org. Geochem. 2017, 111, 67–81. [Google Scholar] [CrossRef]
- Zhan, Z.W.; Tian, Y.; Zou, Y.R.; Liao, Z.; Peng, P. De-convoluting crude oil mixtures from Palaeozoic reservoirs in the Tabei Uplift, Tarim Basin, China. Org. Geochem. 2016, 97, 78–94. [Google Scholar] [CrossRef]
- Zhan, Z.W.; Zou, Y.R.; Pan, C.; Sun, J.N.; Lin, X.H.; Peng, P. Origin, charging, and mixing of crude oils in the Tahe oilfield, Tarim Basin, China. Org. Geochem. 2017, 108, 18–29. [Google Scholar] [CrossRef]
- Carroll, A.R.; Liang, Y.H.; Graham, S.A.; Xiao, X.X.; Hendrix, M.S.; Chu, J.C.; McKnight, C.L. Junggar basin, northwest China: Trapped Late Paleozoic ocean. Tectonophysics 1990, 181, 1–14. [Google Scholar] [CrossRef]
- Hou, M.G.; Zha, M.; Ding, X.J.; Yin, H.; Bian, B.L.; Liu, H.L.; Jiang, Z.F. Source and accumulation process of Jurassic biodegraded oil in the Eastern Junggar Basin, NW China. Petrol Sci. 2021, 18, 1033–1046. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; He, D.X. Biomarker compounds in the source rocks of Upperpedrmian Linxi formation in western Binbei area, Songliao Basin: Characteristics and Implications. J. Geol. Res. 2019, 28, 350–357. [Google Scholar] [CrossRef]
- Koopmans, M.P.; Larter, S.R.; Zhang, C.; Mei, B.; Wu, T.; Chen, Y. Biodegradation and mixing of crude oils in Eocene Es3 reservoirs of the Liaohe basin, northeastern China. AAPG Bull. 2002, 86, 1833–1843. [Google Scholar]
- Lu, X.X.; Jin, Z.J.; Liu, L.F.; Xu, S.L.; Zhou, X.Y.; Pi, X.J.; Yang, H.J. Oil and gas accumulations in the Ordovician carbonates in the Tazhong Uplift of Tarim Basin, west China. J. Pet. Sci. Eng. 2004, 41, 109–121. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, Z.C.; Zou, H.Y.; Zhang, Y.C.; Yang, Y.Y. Origin and mechanism of the formation of the low-oil-saturation Moxizhuang field, Junggar Basin, China: Implication for petroleum exploration in basins having complex histories. AAPG Bull. 2011, 95, 983–1008. [Google Scholar] [CrossRef]
- Zhang, S.C.; Huang, H.P.; Su, J.; Zhu, G.Y.; Wang, X.M.; Larter, S. Geochemistry of Paleozoic marine oils from the Tarim Basin, NW China. Part 4: Paleobiodegradation and oil charge mixing. Org. Geochem. 2014, 67, 41–57. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Su, J.; Yang, H.J.; Wang, Y.; Fei, A.G.; Liu, K.Y.; Zhu, Y.F.; Hu, J.F.; Zhang, B.S. Formation mechanisms of secondary hydrocarbon pools in the Triassic reservoirs in the northern Tarim Basin. Mar. Pet. Geol. 2013, 46, 51–66. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Seifert, W.K.; Gallegos, E.J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull. 1985, 69, 1255–1268. [Google Scholar]
- Nady, M.M.E.; Hussein, S.A.; Ghanem, M.F.; Sharaf, L.M. Oil-source rock correlations of Jurassic and Cretaceous oils in the West Khalda area, North Western Desert, Egypt. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 330–338. [Google Scholar] [CrossRef]
- Deines, P. The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 1980, 44, 943–961. [Google Scholar] [CrossRef]
- Stahl, W.J. Source rock-crude oil correlation by isotopic type-curves. Geochim. Cosmochim. Acta 1978, 42, 1573–1577. [Google Scholar] [CrossRef]
- Cao, J.; Wang, X.L.; Sun, P.A.; Zhang, Y.Q.; Tang, Y.; Xiang, B.L.; Lan, W.F.; Wu, M. Geochemistry and origins of natural gases in the central Junggar Basin, northwest China. Org. Geochem. 2012, 53, 166–176. [Google Scholar] [CrossRef]
- Kuang, L.C.; Lv, H.T.; Qi, X.F.; Tang, Y.; Zhang, X. Exploration and targets for lithological reservoirs in Junggar Basin, NW China. Pet. Explor. Dev. 2005, 32, 32–37. [Google Scholar]
- Shi, X.P.; Wang, X.L.; Cao, J.; Hu, W.X.; Yao, S.P.; Xiang, B.L.; Lan, W.F.; Fan, T.L. Genetic type of oils and their migration/accumulation in the Mobei-Mosuowan area, Central Junggar basin. Acta Sedimentol. Sin. 2010, 28, 380–387. [Google Scholar]
- Wang, X.L. Hydrocarbon Source and Accumulation in the Penyijingxi Depression Petroleum System, Central Junggar Basin, NW China. Ph.D. Thesis, Southwest Petroleum Institute, Chengdu, China, 2001. [Google Scholar]
- Xiao, Q.L.; He, S.; Yang, Z.; He, Z.L.; Wang, F.R.; Li, S.F.; Tang, D.Q. Petroleum secondary migration and accumulation in the central Junggar Basin, northwest China: Insights from basin modeling. AAPG Bull. 2010, 94, 937–955. [Google Scholar] [CrossRef]
- Conliffe, E.B.; Wilton, D. The use of Integrated fluid inclusion studies for constraining petroleum charge history at Parsons Pond, Western Newfoundland. Can. Miner. 2017, 7, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.Y.; Chen, H.H.; Qing, H.R. Petrography, fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area, Tarim basin, NE China: Implications for the nature and timing of silicification. Sed. Geol. 2017, 359, 29–43. [Google Scholar] [CrossRef]
- Ping, H.W.; Chen, H.H.; Jia, G.H. Petroleum accumulation in the deeply buried reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China: New insights from fluid inclusions natural gas geochemistry and 1-D basin modeling. Mar. Pet. Geol. 2017, 80, 70–93. [Google Scholar] [CrossRef]
- Volk, H.; George, S.C. Using petroleum inclusions to trace petroleum systems a review. Org Geochem. 2019, 129, 99–123. [Google Scholar] [CrossRef]
- Jayanthi, J.L.; Nandakumar, V. Fluid Inclusion studies to determine the palaeotemperature and hydrocarbon quality of oils in petroliferous basins. J. Petrol. Sci. Eng. 2021, 197, 108082. [Google Scholar] [CrossRef]
- Wang, G.R. Classification of tectonic units and geologic evolution in the northern Xinjiang and neighboring area. Xinjiang Geol. 1996, 14, 12–27. [Google Scholar]
- Li, J.Y.; He, G.Q.; Xu, X.; Li, H.Q.; Sun, G.H.; Yang, T.N.; Gao, L.M.; Zhu, Z.X. Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation. Acta Sedimentol. Sin. 2006, 80, 148–168. [Google Scholar]
- Zhao, J.M.; Ma, Z.J.; Yao, C.L. Analysis on gravity-magnetic anomalies in basement geotectonic divisions in the Junggar Basin. Xinjiang Pet. Geol. 2008, 29, 7–11. [Google Scholar]
- Liu, K.S.; Qu, J.X.; Zha, M.; Liu, H.L.; Ding, X.J.; Zhou, M.H.; Gao, T.Z. Genesis Types and Migration of Middle and Lower Assemblages of Natural Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes 2023, 11, 689. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.J.; Gao, C.H.; Zha, M.; Chen, H.; Su, Y. Depositional environment and factors controlling β-carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 833–842. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Hu, W.; Yao, S.; Wang, X.; Zhang, Y.; Tang, Y. The Permian hybrid petroleum system in the northwest margin of the Junggar Basin, NW China. Mar. Pet. Geol. 2005, 22, 331–349. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Luo, X.L.; Liu, H.W. Analysis of hydrocarbon reservoir forming in the east belt around Pengyijingxi depression. Xinjiang Oil Gas. 2005, 1, 16–20. [Google Scholar]
- Golyshev, S.I.; Verkhovskaya, N.A.; Burkova, V.N.; Matis, E.Y. Stable carbon isotopes in source-bed organic matter of West and East Siberia. Org. Geochem. 1991, 17, 277–291. [Google Scholar] [CrossRef]
- Tissot, B.P.; Wilt, D.H. Petroleum Formation and Distribution; Petrol. Ind. Press: Beijing, China, 1982. [Google Scholar]
- Wang, X.L.; Zhi, D.M.; Wang, Y.T.; Chen, J.P.; Qin, Z.J.; Liu, D.G.; Xiang, Y.; Lan, W.F.; Li, N. Source Rocks and Oil-Gas Geochemistry in Junggar Basin; Petrol. Ind. Press: Beijing, China, 2013. [Google Scholar]
- Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Peters, K.E.; Snedden, J.W.; Sulaeman, A.; Sarg, J.F.; Enrico, R.J. A New Geochemical-Sequence Stratigraphic Model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia. AAPG Bull. 2001, 85, 1102–1105. [Google Scholar]
- Peng, X.F.; Li, Z.B. The application of biomarker in the research of petroleum geology. Res. Env. Eng. 2006, 20, 279–283. [Google Scholar]
- Didyk, B.M.; Simoneit, B.R.T.; Brasselll, S.C.; Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta. 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Wang, X.L.; Kang, S.F. The oil source of the Mabei oil field, northwest Junggar Basin. J. SW. Pet. Inst. 2001, 23, 6–8. [Google Scholar]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; p. 1155. [Google Scholar]
- Jiang, Z.S.; Fowler, M.G. Carotenoid-derived alkanes in oils from northwestern China. Org. Geochem. 1986, 10, 831–839. [Google Scholar] [CrossRef]
- Grande, S.M.B.; Aqunio, N.F.R.; Mello, M.R. Extended tricyclic terpanes in sediments and petroleums. Org. Geochem. 1993, 20, 1039–1047. [Google Scholar] [CrossRef]
- Philp, P.; Symcox, C.; Wood, M.; Nguyen, T.; Wang, H.; Kim, D. Possible explanations for the predominance of tricyclic terpanes over pentacyclic Sterpanes in oils and rock extracts. Org. Geochem. 2021, 155, 104220. [Google Scholar] [CrossRef]
- Xiao, H.; LI, M.; Yang, Z.; Zhu, Z. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments. Geochimica 2019, 48, 161–170. [Google Scholar] [CrossRef]
- Aichner, B.; Herzschuh, U.; Wilkes, H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Org. Geochem. 2010, 41, 706–718. [Google Scholar] [CrossRef]
- Xia, L.; Cao, J.; Lee, C.; Stüeken, E.E.; Zhi, D.; Love, G.D. A new constraint on the antiquity of ancient haloalkaliphilic green algae that flourished in a ca. 300 Ma Paleozoic lake. Geobiology 2021, 19, 147–161. [Google Scholar] [CrossRef]
- Hou, M.G.; Qu, J.X.; Zha, M.; Swennen, R.; Ding, X.J.; Ablimiti, Y.M.; Liu, H.L.; Bian, B.L. Significant contribution of haloalkaliphilic cyanobacteria to organic matter in an ancient alkaline lacustrine source rock: A case study from the Permian Fengcheng Formation, Junggar Basin, China. Mar. Petrol. Geol. 2022, 138, 105546. [Google Scholar] [CrossRef]
- Jamesa, T. Correlationofnaturalgasbyuseof carbon isotopic distribution between hydrocabon components. AAPG Bull. 1983, 74, 1176–1191. [Google Scholar]
- Dai, J.X. Significance of the study on carbon isotopes of alkane gases. Nat. Gas Ind. 2011, 31, 1–6. [Google Scholar]
- Alexei, V.M.; Mohinudeen, F.; Giuseppe, E. Geochemistry of shale gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Org. Geochem. 2020, 143, 103997. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, X.; Wang, X.; Jin, Z.; Zhu, D.; Meng, Q.; Fu, Q. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth-Sci. Rev. 2019, 190, 247–272. [Google Scholar] [CrossRef]
- Mango, F.D. The light hydrocarbons in petroleum: A critical review. Org. Geochem. 1997, 26, 417–440. [Google Scholar] [CrossRef]
- Hu, T.L.; Ge, B.X.; Zhang, Y.G.; Liu, B. Development and application of fingerprint parameters of source rock adsorbed hydrocarbon and natural gas light hydrocarbon. Pet. Geol. Exp. 1990, 12, 375–394, 450. [Google Scholar]
- Leythaeuser, D.; Schaefer, R.; Cornford, C.; Weiner, B. Generation and migration of light hydrocarbons (C2–C7) in sedimentary basins. Org. Geochem. 1979, 1, 191–204. [Google Scholar] [CrossRef]
- Munz, I.A. Petroleum inclusions in sedimentary basins: Systematics, analytical methods and applications. Lithos 2001, 55, 195–212. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Chen, H.H. The relationship between fluorescence colors of oil inclusions and their maturities. J. Earth Sci. J. China Univ. Geos. 2008, 33, 91–96. [Google Scholar] [CrossRef]
- Bodnar, R. Petroleum migration in the Miocene Monterey Formation, California, USA: Conception, classification, formation mechanism and significance. Eur. J. Miner. 2006, 25, 19–26. [Google Scholar]
- Eadington, P.J.; Hamilton, P.J.; Bai, G.P. Fluid history analysis—A new concept for prospect evaluation. APEA J. 1991, 31, 282–294. [Google Scholar] [CrossRef]
- Lin, H.M.; Cheng, F.Q.; Wang, Y.S. Fluid inclusion evidence for multiperiod oil charge in Shahejie member 4, Bonan subsag, Bohai Bay Basin. Oil Gas Geol. 2017, 38, 209–218. [Google Scholar] [CrossRef]
- Si, S.H.; Chen, H.H.; Feng, Y.; Wang, Y. Two sources and three charging events of hydrocarbons in Lower Cretaceous reservoirs in Shaya uplift, Tarim Basin: Evidence from fluid inclusion analysis. Acta Pet. Sin. 2013, 34, 12–21. [Google Scholar] [CrossRef]
- Goldstein, R.H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- Li, J.; Zha, M. Determination of oil accumulation period and building up of paleopressure of Wumishan formation in Renqiu Oilfield by using fluid inclusion. J. China Univ. Petrol. (Ed. Nat. Sci.) 2010, 34, 38–43. [Google Scholar] [CrossRef]
- Middleton, D.; Parnell, J.; Carry, P.; Xu, G. Reconstruction of fiuld migration history in northwest Ireland using fluid inclusion studies. J. Geochem Explor. 2000, 69–70, 673–677. [Google Scholar] [CrossRef]
- Volk, H.; George, S.C.; Middleton, H.; Schofield, S. Geochemical comparison of fluid inclusion and present-day oil accumulations in the Papuan Foreland—Evidence for previously unrecognised petroleum source rocks. Org. Geochem. 2005, 36, 29–51. [Google Scholar] [CrossRef]
- Liu, L.J.; Richards, J.P.; DuFrane, S.A.; Rebagliati, M. Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia. Can. J. Earth Sci. 2016, 53, 10–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; George, S.C.; Lu, X.; Gong, S.; Tian, H.; Gui, L. Innovative fluorescence spectroscopic techniques for rapidly characterising oil inclusions. Org. Geochem. 2014, 72, 34–45. [Google Scholar] [CrossRef]
- Liu, K.Y.; Eadington, P. Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org. Geochem. 2005, 36, 1023–1036. [Google Scholar] [CrossRef]
- Ma, W.J.; Wang, R.; Wang, F.; Li, X.L. Application of Quantitative Grain Fluorescence Technique in Restoration of Hydrocarbon Charging History of Jurassic Reservoirs in Mosuowan Swell, Junggar Basin. Xinjiang Pet. Geol. 2016, 37, 524–529. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Zhang, Q.; Hou, M.; Ding, X.; Ablimit, I. Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes 2023, 11, 2340. https://doi.org/10.3390/pr11082340
Qu J, Zhang Q, Hou M, Ding X, Ablimit I. Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes. 2023; 11(8):2340. https://doi.org/10.3390/pr11082340
Chicago/Turabian StyleQu, Jiangxiu, Qinglan Zhang, Maoguo Hou, Xiujian Ding, and Imin Ablimit. 2023. "Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China" Processes 11, no. 8: 2340. https://doi.org/10.3390/pr11082340
APA StyleQu, J., Zhang, Q., Hou, M., Ding, X., & Ablimit, I. (2023). Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes, 11(8), 2340. https://doi.org/10.3390/pr11082340