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Abstract: A breakthrough has been made in the recent exploration of the deep oil and gas bearing
system in the eastern belt around the Penyijingxi sag of the Junggar Basin. These reservoirs are
characterized by mixed sources and multi-stage accumulation. However, this process has not
been thoroughly investigated, limiting our understanding of the fundamental rules of hydrocarbon
migration and accumulation and making it difficult to determine exploration plans. This study
mainly reconstructs this process using biomarkers, carbon isotopes, light hydrocarbons, and fluid
inclusions. According to the biomarkers and carbon isotopes for oil-source correlation, Permian crude
oil is a mixed-source oil from the Fengcheng Formation (P1f) and the Xiawuerhe Formation (P2w)
source rocks, while Jurassic crude oil originates from the P2w source rock. The carbon isotope and
light hydrocarbon data demonstrate that Jurassic natural gas has a mixed-gas characteristic with a
preponderance of coal-type gas, in contrast to Permian natural gas, which is primarily oil-type gas.
The hydrocarbon charging events in the study area were reconstructed based on a comprehensive
investigation of the hydrocarbon generation history of source rocks, the homogenization temperature
of fluid inclusion, and the burial history of the reservoir. According to the model, the P1f and P2w
source rocks have made contributions to the current regional oil reservoirs, which provides targets
for future exploration.

Keywords: mixed oil; oil-source correlation; hydrocarbon accumulation period; hydrocarbon
accumulation process; Penyijingxi sag

1. Introduction

Deep-seated oil and gas exploration has advanced significantly in recent years all over
the world, and it is currently the most important area, which will eventually replace conven-
tional oil and gas exploration. The deep-seated source rocks with a high thermal evolution
typically undergo multiple stages of hydrocarbon generation and expulsion, facilitating the
mixing effect of oil and gas in deep-seated reservoirs. Mixed oils have been discovered in
many oilfields around the world, such as the Prudhoe Bay Oilfield in the United States, the
Beatrice Oilfield in the United Kingdom, the Persian Gulf Basin crude oil [1,2], the Tarim
Basin [3,4], the Junggar Basin [5,6], and the Songliao Basin [7,8] in China. The mixing of
biodegraded oil and normal crude oil, as well as low-maturity oil and mature oil, makes it
complicated to determine the source and to reconstruct the accumulation process of oil and
gas [9–12]. The source determination of the mixed hydrocarbon system has always been
challenging; however, previous investigations suggest that a comprehensive analysis based
on biomarkers [13,14] and carbon isotopes [15,16] appears to be effective in addressing
this problem.

The Junggar Basin is a typical superimposed petroliferous basin in northwest China,
with the eastern belt around the Penyijingxi sag (Figure 1) being a current exploration
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highlight [17]. The Mobei and Mosuowan oilfields have been found in this area, reflecting
great exploration prospects for petroleum [18,19]. Given that there are two sets of source
sequences, which have produced hydrocarbons in the study area [20], the discovered
hydrocarbons are generally thought to be mixed sourced [10,17] and mainly accumulate
in the Permian reservoir in the Mobei nose convex belt and the Jurassic reservoir in the
Mosuowan uplift. The source of the hydrocarbons, however, has not been clearly defined,
making it difficult to simulate petroleum movement and accumulation [21]. Consequently,
the fundamental principles of migration and accumulation of hydrocarbons are not well
understood, which restricts exploration strategies.
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fluid inclusions in a mineral, which can provide valuable information regarding the chem-
ical as well as physical characteristics related to trapping [25]. Further, hydrocarbon-bear-
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Figure 1. Sketch map showing the locations of the main oil and gas accumulations in the study area.
(a) The geographic location of the Junggar Basin in China; (b) tectonic units in the Junggar Basin
(rectangular insert represents the area shown in (c)); (c) distribution plan of oil and gas in the eastern
belt around the Penyijingxi sag. Notes: SX means Shixi, MB means Mobei, PD means Pendong, SM
means Shimo, M means Mo, P means Pen, MS means Moshen, PC means Pencan.

Fluid inclusions are generally used for revealing the evolution of geological fluid
with the aim to discover the hydrocarbon charging history of a petroliferous basin [22–24].
During the migration and accumulation of hydrocarbon, aqueous fluids are trapped as fluid
inclusions in a mineral, which can provide valuable information regarding the chemical
as well as physical characteristics related to trapping [25]. Further, hydrocarbon-bearing
fluid inclusion compositions can be used for tracing the oil-source signature [26]. In this
study, we mainly use biomarkers, carbon isotopes, light hydrocarbons, and fluid inclusions
to identify the source and reconstruct the accumulation process of mixed oil in this area.
We aim to provide new ideas on the regional characteristics and laws of hydrocarbon
enrichment, expand hydrocarbon exploration, and provide references for similar studies.
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2. Geological Setting

The Junggar Basin is located in the north of Xinjiang Uygur Autonomous Region in
northwest China (Figure 1a). The basin is a triangular shape, with a length of approximately
700 km from east to west and a width of approximately 370 km from north to south. The
area is approximately 13.6 × 104 km2, which is a superimposed basin developed on the
Junggar basement in the late Paleozoic and Mesozoic Cenozoic [27,28]. Based on the
tectonic location, basement undulation, and regional closure development, the basin can
be divided into six main structural units. There are three uplifts (Luliang, Western and
Eastern Uplifts), two depressions (Central and Wulungu Depressions), and one piedmont
thrust belt (Northern Tianshan Piedmont Thrust Belt) (Figure 1b) [29,30]. The study area
is mainly located in the eastern belt around the Penyijingxi sag in the central part of the
basin, including the western part of the Dinan uplift, the Mobei uplift, and the central and
western regions of the Mosuowan uplift (Figure 1c).

The Junggar Basin has experienced many tectonic movements, such as the Hercynian,
Indosinian, Yanshanian, and Himalayan, forming the current tectonic framework [31,32].
The study area is divided by two sets of regional mudstone caps of the lower Cretaceous
(including Qingshuihe, Hutubihe, Shengjinkou, and Lianqinmu Formation) and the upper
Triassic Baijiantan Formation into three sets of reservoir-seal assemblages, namely the upper,
middle, and lower assemblage [33,34]. The lower assemblage is mainly composed of the
Permian and Carboniferous reservoirs, while the middle assemblage is mainly composed
of the Jurassic reservoir. The sedimentary sequence of the study area includes all strata
from the Carboniferous to the Quaternary reservoir. As the research object is the deep
reservoirs, it mainly consists of the Carboniferous to Jurassic reservoirs (Figure 2).
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3. Analytical Methods

A total of 262 samples were selected for this study, including source rock samples of
the P1f and P2w and crude oil samples from the Permian and Jurassic reservoirs. A total of
60 source rock samples were used for total organic carbon (TOC) and Rock-Eval analyses,
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and 64 samples were used to measure kerogen elements. A total of 52 source rock samples
and 36 crude oil samples were analyzed for specific stable carbon isotope. Sixty source rock
samples and twenty-five crude oil samples were used for GC-MS analysis. Twenty natural
gas samples were used for light hydrocarbon and carbon isotope of alkanes analyses. Fluid
inclusion observation and temperature measurement were carried out on four reservoir
rock core samples.

3.1. TOC, Rock-Eval, and Kerogen Element Analyses

TOC and Rock-Eval analyses were used to describe source rock properties. First, the
selected samples were crushed to a mesh size of 100. To eliminate carbonate, 6 mol/L
HCL was applied to the dried sample powder and allowed to sit for 24 h before TOC
testing. The powder should be washed three times with deionized water and dried in an
oven. Weigh 200 mg of powder and put it into the capsule, and measure it with the LECO
CS-230 analyzer (LECO Corporation, St. Joseph, MI, USA). The device was used to measure
free hydrocarbon (S1) and cracked hydrocarbon (S2) following the GB/T 18602-2012 [6]
standard of the Chinese petroleum industry. The temperature was set at 300 ◦C and held
for 3 min to test S1 parameters; it was then increased to 650 ◦C at a rate of 25 ◦C/min to
test S2 parameters.

The rock samples were crushed into powder (200 mesh) for kerogen element analysis.
Hydrochloric and hydrofluoric acids were used to remove inorganic minerals. To remove
soluble organic materials, the softened samples were extracted using a Soxhlet extractor
and a combination of methylene chloride and methanol (v/v = 9:1). As a result, kerogen
was separated from the core sample, and elemental analysis of kerogen was performed
using a Vario Micro Cube elemental analyzer (Elementar Analysensysteme GmbH, Hanau,
Germany). The carbon and hydrogen contents of kerogen were estimated after oxidizing
them to CO2 and H2O. At high temperatures, the oxygen was converted into CO, and
oxygen concentration was determined.

3.2. Carbon Isotope Analysis

The source rock and oil-bearing sandstone samples were crushed to 80 mesh, and 30 g
of the crushed samples was extracted with chloroform for 72 h using the Soxhlet method.
The carbon isotopes of the extracts were analyzed using a FLASH HT EA-MAT 253IRMS
under the following experimental conditions: the carrier gas was helium (99.999%) at
a flow rate of 100 mL/min; the combustion gas was oxygen (99.995%) at a flow rate of
250 mL/min; and the reactor temperature was 980 ◦C. Chromium oxide, reduced copper,
and silver/cobalt oxide were used as reactor filler materials. The results were given in
standard per mil notation in relation to the V-PDB standard.

3.3. GC-MS Analysis

Avoid TOC 0.4% (low-quality source rocks) or S1 > S2 rock sample GC-MS test-
ing to eliminate the potential polluting impacts of external hydrocarbon input. The
Agilent 7890GC/5975Ims (Agilent Company, Santa Clara, CA, USA) with an HP-5MS
(60 m × 0.25 mm × 0.25 µm) gas chromatography–mass spectrometry was used to analyze
the saturated fractions. At a flow rate of 1 mL/min, the carrier gas was helium (99.999%).
The initial temperature was 50 ◦C, which was kept for 1 min before being escalated to
120 ◦C at a pace of 20 ◦C/min, and finally to 310 ◦C at a rate of 3 ◦C/min. The GC-MS
system was set to EI mode, with the current set at 70 eV. The signal abundance of biomarker
combinations was at least four orders of magnitude higher in the samples than in the
programmed blank samples. As a result, the biomarkers assessed can be regarded as
endogenous components, which do not contribute considerable contamination during
sample collection and treatment.
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3.4. Microthermometry of Fluid Inclusions

Polished thin sections were prepared for fluid inclusion observation in accordance
with the Chinese petroleum industry standard SY/T6010-2011 [6], and the results were
measured using a Leica DMRXP optical microscope (Leica Corporation, Wetzlar, Germany).
A Linkhan THMSG600 heating/freezing system (Linkam Corporation, Redhill, UK) was
used to measure microthermometers. There are two steps in fluid inclusion testing. The
first step is to study the diagenetic process of hydrocarbon inclusions in thin sections. The
homogenization temperature of the aqueous inclusions associated with the oil-bearing
inclusions is measured in the second stage. The China Metrology Accreditation (CMA)
certified all of the above apparatus and processing techniques. Because of the presence
of oil-bearing inclusions, only the homogenization temperature of the initial gas–liquid
two-phase aqueous inclusions associated with oil-bearing inclusions was measured. The
homogenization temperature of two-phase (liquid and vapor) aqueous inclusions in the
samples was tested on a two-sided polished wafer at a heating and cooling rate of 5 ◦C/min.

3.5. Natural Gas Light Hydrocarbon and Carbon Isotope

The Agilent 6890B GC (gas chromatograph) (Agilent Company, Santa Clara, CA, USA)
was used for light hydrocarbon analysis of natural gas. The sample pretreatment and exper-
imental process refer to the oil and natural gas industry standard of the People’s Republic of
China for stable light component analysis (SY/T 0542-2008 [30]). The instrument was also
equipped with a detector of thermal conductivity and flame ionization. In the experiment,
the constant temperature furnace was also used to heat the sample. High-purity (99.999%)
helium was used as the carrier gas with a flow rate of 1 mL/min. The cylinder outlet
pressure was controlled at 0.2 MPa and the air flow rate at 80 mL/min with the split ratio
controlled at 150:1. Pona chromatographic columns were used in the experiment. The
initial temperature of the chromatographic column box was 30 ◦C (for 15 min), and then,
the temperature was raised to 70 ◦C at a rate of 3 ◦C/min, and then to 300 ◦C (for 10 min)
at a rate of 3 ◦C/min.

The stable carbon isotopes of natural gas were analyzed by using a Finnigan MAT-252
mass spectrometer (Finnigan Corporation, Silicon Valley, CA, USA). The initial temperature
was set at 35 ◦C using a GC–C-irm-MS; it was then raised from 35 ◦C to 80 ◦C at a rate of
8 ◦C/min, and then to 250 ◦C at a rate of 5 ◦C/min and held for 10 min. Each sample was
analyzed three times and averaged, yielding an analytical precision of ±0.3‰. The results
are reported as relative to the Vienna Pee Dee Belemnite (VPDB).

4. Results and Discussion
4.1. Hydrocarbon Generation Potential and Evolution of Source Rock
4.1.1. Hydrocarbon Generation Potential of Source Rock

The abundance of organic matter is an important factor for determining the hydro-
carbon generation potential of the source rock. The P1f source rock yields a minimum,
a maximum, and an average TOC value of 0.13%, 4.28%, and 1.02%, respectively. The
range of S1 + S2 is from 0.01 mg/g to 56.73 mg/g, with an average value of 5.07 mg/g.
Overall, 30.68% of the samples fell into the category of fair source rocks, while 40.91% were
considered to be good source rocks (Figure 3a). The TOC values of P2w source rock range
from 0.27% to 3.88%, with an average of 1.06%. Their S1 + S2 values range from 0.12 mg/g
to 14.67 mg/g, with an average of 1.92 mg/g. Overall, fair source rocks account for 40.54%,
while good source rocks constitute 37.84% (Figure 3b). The above results show that two
sets of source rocks have a high organic matter abundance.
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Figure 3. Organic matter abundance of the P1f (a) and P2w (b) source rocks indicated by TOC and
Rock Eval S1 + S2.

The type of organic matter determines the hydrocarbon generation potential of oil-
prone or gas-prone source rocks, which is frequently indicated by the kerogen element and
rock pyrolysis analyses [35,36]. The hydrogen index (HI) of P1f source rock has a wide
distribution range, from 3.57 to 817.05 mg/g, with an average value of 303.17 mg/g. In the
Tmax–HI relationship diagram, the samples were mainly concentrated within the range of
the I–II1 type. The HI of P2w source rock ranged from 1.52 to 147.36 mg/g, with an average
value of 73.12 mg/g. In the relationship diagram, the samples were mainly concentrated
within the range of the II2–III type (Figure 4a).
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and H/C (b).

The kerogen H/C ratio of the P1f ranges from 0.27 to 3.23, with an average of 1.40.
The kerogen O/C ratio dispersedly distributes in the range of 0.02 to 2.22, with an average
of 0.19. The P2w possesses relatively smaller kerogen H/C ratios, with a range of 0.53 to
1.13 and an average of 0.75. Its kerogen O/C ratio displays a maximum value of 0.76, a
minimum value of 0.06, and an average value of 0.33. In summary, the kerogens of P1f
source rock are characterized by types I and II1, which typify the characteristics of oil-prone
rocks. The kerogens of P2w source rock match well with the characteristics of type III,
which are prone to generate gas (Figure 4b). This is consistent with the results obtained
through the analysis of rock pyrolysis mentioned above.

4.1.2. Hydrocarbon Generation Evolution of Source Rocks

Reconstruction of the thermal evolution history of hydrocarbon generation in source
rocks can be favorable to identify the source and the accumulation stage of hydrocarbon.
Based on this geothermal evolution model and stratigraphic burial history, we reconstructed
the thermal evolution and hydrocarbon generation process of the source rock in the Penyi-
jingxi sag (Figure 5). The results show that at the end of the Early Triassic (250 Ma), the P1f
source rock began to enter the oil generation stage; the peak of oil generation was reached
in the Middle Triassic (230 Ma); and the source rock entered the gas generation stage at the
end of the Jurassic (150 Ma) and reached the gas generation peak in the Early Cretaceous
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(120 Ma). Afterward, its hydrocarbon generation potential gradually declined and was
completely lost after the Paleogene. The P2w source rock reached the peak of oil generation
in the Early Cretaceous (130 Ma). In the Early Paleogene, the source rock was highly mature
and began to generate gas. In the Middle Paleogene (20 Ma), it entered a peak of gas
generation, and it is still in the stage of large amount of gas generation nowadays. This is
highly similar to previous studies on the thermal evolution history of source rocks in the
study area [37], indicating that the result is viable.
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4.2. Oil and Gas Source Correlation
4.2.1. Organic Matter Source and Sedimentary Environment of Source Rock

The organic matter source of the source rock is controlled by paleoproductivity, while
the sedimentary environment affects the preservation of organic matter. Different types of
source rock are often formed by different types of organic matter input and preservation
environments. The related research is the basis for oil-source correlation. Pr/nC17 and
Ph/nC18 are usually used to evaluate the sedimentary environment of organic matter. In
the chart of Pr/nC17 and Ph/nC18 proposed by Shanmugan [38], most samples of P1f
source rock are distributed in the blue area of the algae-organic matter type, and a few
samples fall into the white mixed type area, indicating that P1f formed mainly in a reducing
environment. The P2w source rock samples are widely distributed in three areas, including
the green area of the terrigenous-organic matter type, white area of the mixed type, and blue
area of the algae type, generally indicating a sedimentary environment of weak oxidation
to weak reduction (Figure 6a).

Sterane compounds can reflect the input of organic matter. The ternary diagram of
the relative content of C27, C28, and C29 regular steranes is often used to determine the
relationship between organic matter sources and crude oil. It is generally believed that the
content of C29 regular steranes in terrigenous plants is at high levels, with relatively low
levels of C27 and C28, while C27 regular steranes dominate in aquatic organic matter, with
relatively low levels of C28 and C29 [39,40]. The relative content of C29 regular steranes
of P1f source rock is slightly higher than that of C28 and C27, indicating that the organic
matter is mainly input by terrigenous plants and aquatic organic matter. Compared with
P1f source rock, the P2w has higher content of C29 regular sterane, indicating that organic
matter has more contributions from terrigenous plants (Figure 6b).
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P1f and P2w source rocks.

The Pr/Ph is commonly indicative of depositional environments of organic matter
and can thus identify the source of crude oil [41,42]. Gammacerane is generally considered
as the salinity indicator of sedimentary environments [43,44]. The Pr/Ph and Gam/C30H
(Gammacerane/C30Hopane) of P1f and P2w source rocks are significantly different. The
Gam/C30H of the P1f is significantly higher than that of the P2w, while the Pr/Ph of the
P1f is lower than that of the P2w. In total, 79% of the P1f sample indicates high Gam/C30H
and low Pr/Ph, while 82% of the P2w sample indicates low Gam/C30H and high Pr/Ph
(Figure 7a).
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Figure 7. Relationship between Ph/Ph-Gam/C30H (a) and β-Carotane/Cmax-γ-Carotane/Cmax (b)
of P1f and P2w source rocks.

β-Carotane is mainly derived from algal organic matter in the sedimentary environ-
ment of anoxic and salt lakes [45]. β-Carotane developed widely in the research area, but
there are significant differences in its content. The β-Carotane/Cmax (Cmax denotes the
main peak of n-alkanes) of the P1f source rock was significantly higher than that of the P2w.
The β-Carotane/Cmax of P1f source rock is generally greater than 0.2, while that of the P2w
is generally less than 0.2. Overall, 92% of P1f source rock samples have the characteristics of
high β-Carotane/Cmax and high γ-Carotane/Cmax, while 87% of P2w source rock samples
have the characteristics of low β-Carotane/Cmax and γ-Carotane/Cmax (Figure 7b).

4.2.2. Source of Crude Oil

In order to compare the relationship between crude oil and source rock, gas
chromatography–mass spectrometry (GC-MS) of the reservoir extracts was also carried out.
In the cross-plot of Pr/nC17 and Ph/nC18, most crude oil from the Mosuowan uplift was
distributed in the white area, indicating a weak oxidation and weak reduction sedimentary
environment, which is similar to the sedimentary environment of the P2w source rock.
Most crude oil samples from the Mobei nose convex belt are distributed in the blue area,
indicating a reduction sedimentary environment (Figure 8a).
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crude oils. Notes: MSWU means Mosuowan uplift, MNCB means Mobei nose convex belt.

In the regular sterane ternary diagram, most crude oil samples from the Mobei nose
convex belt are distributed in the area of mixed sources, indicating organic matter from
terrigenous and aquatic organisms with mixed-source characteristics. In contrast, crude oil
from the Mosuowan uplift has a higher content of C29 regular sterane, and most samples
indicate that the input of organic matter is mainly terrigenous plant, which is similar to the
regular sterane distribution characteristics of the P2w source rock (Figure 8b).

Mosuowan uplift crude oil is characterized by high Pr/Ph and low Gam/C30H. The
cross-plots of Pr/Ph and Gam/C30H or β-Carotane/Cmax and γ-Carotane/Cmax show that
most crude oil samples are distributed in the green area, indicating that Mosuowan uplift
crude oil mainly originates from the P2w source rock. However, compared with the crude
oil from the Mosuowan uplift, the crude oil from the Mobei nose convex belt has lower
Pr/Ph and higher Gam/C30H. In the cross-plot, this crude oil is widely distributed in both
green and blue areas, indicating crude oil derived from the source rocks of P1f and P2w
with characteristics of mixed-source oil (Figure 9).
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(b) of crude oils.

Tricyclic terpenes (TTs) are suggested to be derived from primitive algae [46,47]. TTs
in marine and salt lake facies crude oil are often dominated by C23, and those in freshwater
lake facies crude oil are often dominated by C21 [48]. The distribution of TTs is widely
used to distinguish oils derived from P1f and P2w in the Junggar Basin. The crude oils
in the study area can be divided into two types. The first type of crude oil has a higher
content of C21 and C23TT, with a weak ascending-type distribution of C20, C21, and C23TT
(Figure 10a,b), indicating crude oil generated in a brackish water environment. This type
of crude oil is mainly distributed in the Permian reservoirs of the Mobei nose convex belt.
The second type of crude oil, mainly distributed in the Jurassic reservoirs of the Mosuowan
uplift, possesses a predominance of C21TT and exhibits a clear mountain peak distribution
(Figure 10c), which is possibly derived from a freshwater environment.
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Based on the distribution characteristics of TTs, the first type of crude oil in the study
area is mixed-source oil from the P1f and P2w source rocks, while the second type of crude
oil originates from the P2w source rocks.

The carbon isotope records the biological source of organic matter in source rocks,
which is frequently used for oil and gas source correlation. The carbon isotope of oil
generated through organic matter biologically sourced from terrigenous higher plants
is typically heavier than that from aquatic organisms [49]. Carbon isotope analysis of
chloroform extracts of P1f and P2w source rocks and the Permian and Jurassic crude oil
was carried out to show the correlation between source rocks and crude oil. The carbon
isotopes of P1f source rock were the lowest, ranging from −33.01‰ to −27.63‰, with
a mean value of −29.75‰, indicating that the P1f organic matter input is dominated by
aquatic organisms. This conclusion is consistent with previous findings suggested by the
predominance of green algae or cyanobacteria [50,51]. The carbon isotope values of P2w
are significantly higher than those of P1f, exhibiting a maximum, a minimum, and an
average of −21.21‰, −28‰, and −24.61‰, respectively. This implies a higher input of
terrigenous higher plants in P2w compared to P1f, which appears to match well with the
above findings that the P2w and P1f source rocks are characterized by type III and type I
or II1 kerogens, respectively. The carbon isotopes of crude oil from the Permian reservoir
in the Mobei nose convex belt range from −29.76‰ to −27.24‰. The crude oil from the
Permian reservoir has mixed-source characteristics, with 50% of the samples showing a
carbon isotope affinity with P1f and 50% with P2w. In addition, the carbon isotopes of crude
oil from the Jurassic reservoir in the Mosuowan uplift range from −29.52‰ to −23.89‰,
with 86% of the samples indicating crude oil derived from the P2w source rock (Figure 11).
This is consistent with the results of biomarker analysis mentioned above.
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4.2.3. Natural Gas Characteristics and Sources

The δ13C2 (ethane carbon isotope) of natural gas has a strong inheritance from the
original parent material and is less affected by maturity, so it is often used as an indicator
to identify the genetic types of natural gas [52]. It is generally believed that the δ13C2 of
coal-type gas is heavier than −28.0‰, the δ13C2 of oil-type gas is basically lighter than
−28.5‰, and the coexistence zone between −28.5‰ and −28.0‰ is between coal-type gas
and oil-type gas [53]. The δ13C2 of Permian natural gas samples is significantly lighter than
−28.5‰, ranging from −33.6‰ to −33.9‰ for a typical oil-type gas. The δ13C2 of Jurassic
natural gas samples is between −28.3‰ and 26.2‰; most of the δ13C2 of natural gas
samples is heavier than −28‰, which belongs to the category of coal-type gas. The δ13C2
of Permian natural gas is significantly lighter than that of Jurassic natural gas, indicating
that it contains more contributions from aquatic organisms. In addition, due to the positive
carbon isotope distribution sequence of all natural gas samples, this further indicates that
the natural gas in the study area is of organic origin [54,55] (Figure 12a).
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Light hydrocarbon is an important component of natural gas, which can reflect the char-
acteristics of natural gas parent material, sedimentary environment, and maturity [56]. C7
light hydrocarbon compounds are commonly used, including Methylcyclohexane (MCC6),
Dimethylcyclopentane (DMCC5), and normal Heptane (nC7). The ternary diagram of C7
light hydrocarbon can reflect the type of natural gas parent material [57]. Among them,
due to the MCC6 being mainly derived from terrigenous plants and having high thermal
stability, it is a good indicator of humic organic matter [58]. The majority of Jurassic samples
have MCC6 greater than 45%, while the majority of Permian samples have MCC6 less than
45%, indicating that Permian natural gas is mainly composed of sapropelic organic matter,
while Jurassic natural gas is mainly composed of humic organic matter, which is consistent
with the results of carbon isotope (Figure 12b).
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4.3. Hydrocarbon Accumulation Process
4.3.1. Fluid Inclusion Characteristics

Hydrocarbons emit fluorescence under ultraviolet light, and their fluorescent colors
can reflect the difference in organic component and maturity [59]. The fluorescent color
order of organic compounds is brown, yellow, green, and blue-white, which corresponds to
the maturity evolution of organic compounds from low to high [60,61]. Multi-stage charging
may lead to the coexistence of hydrocarbons with different fluorescent colors [62], which
is an effective indicator of the mixing characteristics of hydrocarbons [63,64]. According
to the petrographic and fluorescent characteristics of the inclusions, no yellow fluorescent
oil inclusions are found in the Permian reservoirs, but a large number of oil inclusions
with blue fluorescent and methane gas inclusions without fluorescent display can be
seen (Figure 13a,b). Liquid hydrocarbon inclusions mainly occur in feldspar dissolution
pores and quartz enlarged edges, while gas inclusions are mainly distributed along the
microfractures, which cut through the quartz grains (Figure 13c).
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Figure 13. Micrographs of hydrocarbon inclusions in Permian and Jurassic reservoirs in the eastern
belt around the Penyijingxi sag. Abbreviations: Transmitted light microphotograph (TLM), UV
light microphotograph (ULM). (a) Blue fluorescent oil inclusions in the dissolution gap of feldspar
particles, well PD1, 5266.59 m, ULM; (b) Blue fluorescent oil inclusions in the quartz particle enlarged
edge, well PD1, 5266.59 m, ULM; (c) Dark-gray gas–hydrocarbon inclusions in the dissolution gap of
feldspar particles, well PD2, 5266.59 m, TLM; (d) Yellow fluorescent oil inclusions in quartz particle
microfractures, well PC2, 5131.95 m, ULM; (e) Blue fluorescent oil inclusions in the dissolution gap of
feldspar particles, well PC2, 5131.95 m, ULM; (f) Dark-gray gas–hydrocarbon inclusions in quartz
particle microfractures, well PC2, 5131.95 m, TLM.

Two distinct groups of fluid inclusions were recognized in the Jurassic reservoir. The
first group consists of irregularly shaped oil inclusions with yellow fluorescent color, which
occur within the quartz particle microfractures (Figure 13d). The second group’s fluid
inclusions are oil and gas inclusions with blue and non-fluorescent colors, respectively,
which are trapped in the microfractures of quartz particles and the dissolution gap of
feldspar particles (Figure 13e,f). It is inferred that the oil inclusions in the first group
occurred during the charging stage of oil with a relatively low maturity, while the oil and
gas inclusions in the second group are the product of the highly mature stage.

The Th (homogenization temperature) of fluid inclusions is an important parameter
commonly used in the study of the hydrocarbon accumulation process. It is adjusted
by the cold and hot platform. When the multi-phase system in the inclusions becomes
homogeneous, the temperature, which reaches the homogenization of the phase state
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of the inclusions, is called the Th of fluid inclusions. Compared with the fluctuation of
Th of hydrocarbon inclusions, the Th stability of aqueous inclusions is relatively high.
Therefore, the Th of aqueous inclusions associated with hydrocarbon inclusions is studied
and measured [65,66].

The Th of the Permian reservoir aqueous inclusions in the Mobei nose convex belt is
shown in Figures 5–13. A large number of blue fluorescent oil inclusions and gas inclusions
are found in this reservoir, but no yellow fluorescent oil inclusions are found. Among
them, the Th of the aqueous inclusions associated with the blue fluorescent oil inclusions is
between 79 ◦C and 138 ◦C, and its peak value is between 80 ◦C and 90 ◦C. The Th of the
aqueous inclusions associated with the gas inclusions is between 119 ◦C and 141 ◦C, and
its peak value is between 130 ◦C and 140 ◦C. The Th of the Permian reservoir in the Mobei
nose convex belt presents a bi-modal feature (Figure 14a); it is considered that the Permian
reservoir experienced at least two stages of hydrocarbon charging.
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Figure 14. Histogram of Th distribution of aqueous inclusions associated with hydrocarbon inclusions
of Permian (a) and Jurassic (b) reservoirs in the eastern belt around the Penyijingxi sag. A: Aqueous
inclusions associated with gas inclusions; B: Aqueous inclusions associated with blue fluorescent oil
inclusions; C: Aqueous inclusions associated with yellow fluorescent oil inclusions.

The Th of the aqueous inclusions associated with the yellow fluorescent oil inclusions
in the Jurassic reservoir of the Mosuowan uplift is distributed between 50.4 ◦C and 119.4 ◦C,
and its peak is between 70 ◦C and 80 ◦C. The Th of the aqueous inclusions associated with
the blue fluorescent oil inclusions is between 90.3 ◦C and 129 ◦C, and its peak is between
110 ◦C and 120 ◦C. The Th of the aqueous inclusions associated with the gas–hydrocarbon
inclusions ranges from 129 ◦C to 139 ◦C, with a peak between 130 ◦C and 140 ◦C. The Th
of the Jurassic reservoir presents a bi-modal feature (Figure 14b); it is considered that the
Jurassic reservoir experienced at least two stages of hydrocarbon charging.

4.3.2. Hydrocarbon Charging Period

The depth and corresponding geological age for the formation of fluid inclusions can be
determined based on the Th of aqueous inclusions and the reservoir’s burial history, further
determining the hydrocarbon charging time [67–69]. Two major hydrocarbon charging
stages were recognized by the Th and the reservoir’s burial history. The first charging
stage in the Permian reservoir is the early Jurassic (approximately from 190 Ma to 175 Ma).
The second stage is after the late Cretaceous (approximately from 82 Ma to the present)
(Figure 15a). It can be seen that the period of hydrocarbon accumulation in the Jurassic
reservoir is different from that in the Permian reservoir. The first stage of hydrocarbon
charging in the Jurassic reservoir occurred in the early Cretaceous (approximately from
122 Ma to 116 Ma), while the second stage of charging occurred in the late Paleogene to
early Neogene (approximately from 35 Ma to 15 Ma) (Figure 15b).
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4.3.3. Hydrocarbon Charging Process

Hydrocarbon charging in the Permian reservoir began in the early Jurassic. According
to the thermal evolution history of the source rock, in the early Jurassic, the P1f source rock
entered a highly mature evolution stage and began to generate condensation. At this time,
the P2w source rock did not enter a large number of hydrocarbon generation stages. It
is believed that the hydrocarbon charged in the early stage of the Permian reservoir was
derived from the P1f source rock, and the blue fluorescent oil inclusions in the reservoir may
be the products of this stage of hydrocarbon charging. In addition, no yellow fluorescent
oil inclusions were found in the Permian reservoir, reflecting that it could only accumulate
highly mature crude oil. The second stage of hydrocarbon charging in the Permian reservoir
occurred after the late Cretaceous. At this stage, both the P1f and P2w source rocks had
entered the gas generation stage, and oil-type gas from the P1f and coal-type gas from
the P2w were charged into the Permian reservoir. The large amount of gas inclusions
discovered in the Permian reservoir may have formed during this stage.

The quantitative fluorescence technology mainly includes quantitative grain fluo-
rescence (QGF), QGF on extract (QGF-E), and total scanning fluorescence (TSF). QGF
parameters, such as the QGF index and λmax (maximum wavelength), are commonly used
to detect the abundance and maturity of hydrocarbon inclusions in particles to identify
paleo-oil layers. The QGF index of the paleo-oil layers is typically greater than 4, while it
is less than 4 in the water layers. λmax of the QGF spectrum can indicate the maturity of
hydrocarbon: 350 nm < λmax < 400 nm for condensate, 400 nm < λmax < 450 nm for light
oil, 450 nm < λmax < 550 nm for moderately heavy oil, λmax > 550 nm for heavy oil [70].
QGF-E is frequently used to detect the relative concentration and maturity of adsorbed
hydrocarbons, to identify the current or residual oil layers, and to determine the oil–water
interfaces. Generally, the QGF-E intensity of current and residual oil layers is higher than
40 pc, while that of the water layers is lower than 20 pc. When it comes to the λmax of
QGF-E, 350 nm < λmax < 400 nm, 420 nm < λmax < 460 nm, and 460 nm < λmax < 500 nm
typically indicate condensate, light oil, and heavy oil [71].

The QGF index of the overall reservoir samples in the Jurassic Sangonghe Formation
ranges from 2.8 to 4.9. The QGF indices are all less than 4 below 4456 m, and the QGF index
is greater than 4 above 4456 m, indicating a depth of 4456 m for the paleo-oil–water interface.
The fluorescence spectrum of oil inclusions exhibits a λmax value range of 401.7–426.0 nm,
which indicates that the paleo-oil is medium to light oil (Figure 16).
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The reservoir samples from the Jurassic Sangonghe Formation range in QGF-E inten-
sity from 64.1 pc to 1596.0 pc, with a QGF-E intensity of at least 40 pc for every sample. The
λmax of the QGF-E spectrum ranges from 370 nm to 380 nm, indicating that the current
hydrocarbons are mainly condensate (Figure 16). This reflects that the Jurassic reservoir
is mainly charged with highly mature oil and gas of the second stage, and the charging
intensity is much greater than that of the first stage.

The first oil charging time of the Jurassic reservoir occurred in the early Cretaceous,
which does not match the peak period of hydrocarbon generation of P1f and P2w source
rocks. It is hypothesized that the oil and gas from this stage may have been derived
from the stratum in the underlying Jurassic reservoir, and the first stage of hydrocarbon
accumulation in the Jurassic reservoir may be a secondary oil reservoir. Before the Jurassic
reservoir, the P1f source rock entered a peak period of oil generation, and the oil mainly
accumulated in the stratum below the Jurassic reservoir (Figure 17). The early oil reservoir,
which was derived from the P1f source rock, was destroyed by the faults created by
the Yanshanian movement in the early Cretaceous. This provided the power for the
upward adjustment of the hydrocarbon, which caused the early crude oil gathered in the
Carboniferous and Permian reservoirs to move along the fault to the Jurassic reservoir,
forming a secondary oil reservoir, which was the initial stage of oil charging in the Jurassic
reservoir. The data from Well MS1 demonstrate that the Tmax and C29 sterane 20S/(S + R)
thermal evolution parameters in deep and shallow formations are essentially unchanged
(Figure 18). The crude oil maturity of both deep and shallow strata is similar, leading to
speculation that thermal fluids are flowing from the deep to the shallow reservoirs. This,
in turn, provides further evidence that the initial stage of crude oil in the Jurassic period
originated from deep reservoirs.
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During the Paleogene, the P1f source rock reached the final stage of hydrocarbon
generation, while the P2w source rock entered a high maturity evolution stage, starting
to generate oil and gas. The generated oil and gas were charged into the reservoir of
the Jurassic Sangonghe Formation, forming predominantly light oil and gas reservoirs
(Figure 17).

5. Conclusions

In the Penyijingxi sag, there exist two sets of source rocks: P1f and P2w. The P1f source
rock is a mixed type, consisting of terrigenous plant and aquatic organisms. It belongs
to the I-II1 kerogen, which indicates a high potential for hydrocarbon generation. On the
other hand, the P2w source rock has a higher input of terrigenous plant material, mainly
characterized by type III kerogen, making it more prone to gas generation.
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The Permian crude oil’s parent material was formed in a reducing sedimentary en-
vironment, primarily derived from terrigenous plants and aquatic organisms. It exhibits
low Pr/Ph ratios, high Gam/C30H values, and a light carbon isotope composition. The
tricyclic terpane peak type displays a weak rise and is mainly derived from the P1f and
P2w source rocks, indicating a mixed-oil characteristic. In contrast, the parent material
of Jurassic crude oil was formed in a sedimentary environment, which ranges from weak
oxidation to weak reduction. The organic matter is primarily sourced from terrigenous
plants. This crude oil possesses high Pr/Ph ratios, low Gam/C30H values, and a heavy
carbon isotope composition. The tricyclic terpane peak type is mountain peak, derived
predominantly from the P2w source rock. Regarding Permian natural gas, it exhibits a
lighter ethane carbon isotope signature and lower MCC6 content. It is mainly classified
as oil-type gas derived from the P1f source rock. On the other hand, Jurassic natural gas
displays a heavier ethane carbon isotope composition and higher MCC6 content, indicating
a mixed gas primarily composed of coal-type gas.

There are two stages of hydrocarbon accumulation in the Permian reservoir. The
first stage charging is the early Jurassic, which matches the oil generation peak period
of the P1f source rock. A large number of blue fluorescent oil inclusions had formed
in this stage. At the end of the Cretaceous, the P1f source rock entered a stage of large
amount of gas generation, while the P2w source rock experienced a peak in oil generation.
The generated oil and gas were then charged to the Permian reservoir, undergoing the
second stage of charging in the Permian reservoir. Similarly, the Jurassic reservoir also
experienced two stages of hydrocarbon charging. The first stage occurred during the early
Cretaceous, involving the secondary reservoir formed by crude oil adjustment from the
Jurassic underlying reservoirs. From the late Paleogene to the early Neogene periods,
the P2w source rock entered a highly mature stage, generating a large amount of oil and
natural gas, which charged into the Jurassic reservoir. This represents the second stage
of charging in the Jurassic reservoir, resulting in the present hydrocarbon accumulation
primarily composed of light oil and natural gas.
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