Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used and Isolation of Bacterial and Fungal Isolates from NR Powder Waste
2.2. Screening of Bacterial and Fungal Isolates for Their Abilites to Biodegarde NR Powder Waste
2.2.1. Primary Screening
2.2.2. Secondary Screening
2.3. Identification of Bacterial and Fungal Isolates
2.4. Determination of NR Powder Waste Weight Loss
2.5. Biofilm Formation on the NR Powder Waste Surface
2.6. Characterization and Confirmation of Degraded NR Powder Waste
2.6.1. SEM of Non-Degraded NR and Degraded NR Powder Wastes
2.6.2. Analysis of the Non-Degraded NR and Degraded NR Powder Wastes Using ATR–FTIR Spectroscopy
2.6.3. GC–MS Profile of Organic Compounds in the Non-Degraded NR and Degraded NR Powder Wastes
2.7. Evaluation of Laccase and Manganese Peroxidase
2.8. Biological Activity of Biodegraded NR Powder Wastes
2.8.1. Antibacterial Activity
2.8.2. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Isolation, Screening, and Identification of Microbial Isolates for NR Degradation
3.2. Confirmation of NR Degradation by E. coli AY1, and A. oryzae
3.2.1. Determination of Microbial Effect on NR Weight Loss
3.2.2. NR Degradation by the Formation of Bacterial and Fungal Biofilm Accompanied by Growth
3.2.3. SEM Imaging of Degraded NR
3.2.4. ATR–FTIR Analysis of Degraded NR
3.2.5. GC–MS Profile of Lower Molecule Organic Compounds in Treated and Untreated NR
3.3. Enzymatic Activity of E. coli AY1 and A. oryzae
3.4. Biological Application of Biodegraded NR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bode, H.B.; Kerkhoff, K.; Jendrossek, D. Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2001, 2, 295–303. [Google Scholar] [CrossRef]
- Rose, K.; Steinbuchel, A. Biodegradation of natural rubber and related compounds: Recent insights into a hardly understood catabolic capability of microorganisms. Appl. Environ. Microbiol. 2005, 71, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Che, J.; Burger, C.; Toki, S.; Rong, L.; Hsiao, B.S.; Amnuaypornsri, S.; Sakdapipanich, J. Crystal and crystallites structure of natural rubber and synthetic cis-1, 4-polyisoprene by a new two dimensional wide angle X-ray diffraction simulation method. I. Strain-induced crystallization. Macromolecules 2013, 46, 4520–4528. [Google Scholar]
- Joseph, A.; Gupta, P.; De, G.; Lal, M.; Meena, M.K.; Singh, L.P.; Rattan, J. Biodegradation of natural rubber by fungi and bacteria. Nat. Environ. Pollut. Technol. 2022, 21, 1039–1048. [Google Scholar] [CrossRef]
- Europe, P. Plastics—The Facts 2022. An Analysis of European Plastics Production, Demand and Waste Data. 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 15 October 2022).
- Yehia, A.A. Recycling of rubber waste. Polym. Plast. Technol. Eng. 2004, 43, 1735–1754. [Google Scholar] [CrossRef]
- Singh, E.; Kumar, A.; Mishra, R.; Kumar, S. Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere 2022, 288, 132451. [Google Scholar] [CrossRef]
- Chittella, H.; Yoon, L.W.; Ramarad, S.; Lai, Z.-W. Rubber waste management: A review on methods, mechanism, and prospects. Polym. Degrad. Stab. 2021, 194, 109761. [Google Scholar] [CrossRef]
- Jones, R.G. Compendium of Polymer Terminology and Nomenclature: IUPAC Recommendations 2008; RSC: London, UK, 2009; Volume 43. [Google Scholar]
- Yikmis, M.; Steinbüchel, A. Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl. Environ. Microbiol. 2012, 78, 4543–4551. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Farooq, D.; Thakur, R. Screening of natural rubber degradation by fungi Aspergillus and Phlebia sp. and bacteria Pseudomonas and Streptomyces sp. Res. J. Pharm. Technol. 2017, 10, 3939–3944. [Google Scholar] [CrossRef]
- Bosco, F.; Antonioli, D.; Casale, A.; Gianotti, V.; Mollea, C.; Laus, M.; Malucelli, G. Biodegradation of unvulcanized natural rubber by microorganisms isolated from soil and rubber surface: A preliminary study. Bioremediat. J. 2018, 22, 43–52. [Google Scholar] [CrossRef]
- Andler, R. Bacterial and enzymatic degradation of poly(cis-1, 4-isoprene) rubber: Novel biotechnological applications. Biotechnol. Adv. 2020, 44, 107606. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, I.S.; Shah, M.P. Bioremediation approaches for treatment of pulp and paper industry wastewater: Recent advances and challenges. Microb. Bioremediation Biodegrad. 2020, 1–48. [Google Scholar] [CrossRef]
- Khan, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, C.G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 2019, 222, 527–533. [Google Scholar] [CrossRef]
- Nayanashree, G.; Thippeswamy, B. Natural rubber degradation by Aspergillus niger and Penicillium sp. Int. J. Recent Sci. Res. 2013, 4, 1337–1341. [Google Scholar]
- Geldreich, E.E.; Nash, H.D.; Reasoner, D.J.; Taylor, R.H. The necessity of controlling bacterial populations in potable waters: Community water supply. Am. Water Works Assoc. 1972, 64, 596–602. [Google Scholar] [CrossRef]
- Howard, G.; Hilliard, N. Use of Coomassie blue-polyurethane interaction inscreening of polyurethanase proteins andpolyurethanolytic bacteria. Int. Biodeterior. Biodegrad. 1999, 43, 23–30. [Google Scholar] [CrossRef]
- Skariyachan, S.; Patil, A.A.; Shankar, A.; Manjunath, M.; Bachappanavar, N.; Kiran, S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 2018, 149, 52–68. [Google Scholar] [CrossRef]
- Aditee, P.; Bharti, D.; Meenaxi, P. Mycoremediation of coomassie brilliant blue by Aspergillus spp. Biotechnology 2014, 10, 15567–15571. [Google Scholar] [CrossRef]
- Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D. Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl. Environ. Microbiol. 2004, 70, 2052–2060. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J. Molecular colning. In A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; Volume 1, pp. 81–82, 89. [Google Scholar]
- Fennell, D.I.; Raper, K.B. New species and varieties of Aspergillus. Mycologia 1955, 47, 68–89. [Google Scholar] [CrossRef]
- Sivan, A.; Szanto, M.; Pavlov, V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 2006, 72, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, D.; Nikolic, B. A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS. IEEE J. Solid-State Circuits 2013, 48, 971–982. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, A.-C.; Karlsson, S. The influence of biotic and abiotic environments on the degradation of polyethylene. Prog. Polym. Sci. 1990, 15, 177–192. [Google Scholar] [CrossRef]
- Zerbi, G.; Gallino, G.; Del Fanti, N.; Baini, L. Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer 1989, 30, 2324–2327. [Google Scholar] [CrossRef]
- Pino, J.A.; Barzola-Miranda, S.E. Characterization of odor-active compounds in pechiche (Vitex cymosa Berteo ex Speng) fruit. J. Raw Mater. Process. Foods 2020, 1, 33–39. [Google Scholar]
- Papinutti, L.; Martínez, M.J. Production and characterization of laccase and manganese peroxidase from the ligninolytic fungus Fomes sclerodermeus. J. Chem. Technol. Biotechnol. 2006, 81, 1064–1070. [Google Scholar] [CrossRef]
- Ashour, E.A.; El-Hack, M.E.A.; Shafi, M.E.; Alghamdi, W.Y.; Taha, A.E.; Swelum, A.A.; Tufarelli, V.; Mulla, Z.S.; El-Ghareeb, W.R.; El-Saadony, M.T. Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers. Agriculture 2020, 10, 457. [Google Scholar] [CrossRef]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. LWT 2021, 148, 111668. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar]
- Sharma, V.; Siedenburg, G.; Birke, J.; Mobeen, F.; Jendrossek, D.; Prakash, T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE 2018, 13, e0197448. [Google Scholar]
- Tsuchii, A.; Takeda, K. Rubber-degrading enzyme from a bacterial culture. Appl. Environ Microbiol. 1990, 56, 269–274. [Google Scholar] [CrossRef]
- Mollea, C.; Bosco, F. Natural rubber biodegradation by Alternaria alternata and Penicillium chrysogenum isolates. Bioremediat. J. 2020, 24, 112–128. [Google Scholar] [CrossRef]
- Williams, G. The breakdown of rubber polymers by microorganisms. Int. Biodeterior. Bull. 1982, 18, 31–36. [Google Scholar]
- Borel, M.; Kergomard, A.; Renard, M. Degradation of natural rubber by fungi imperfecti. Agric. Biol. Chem. 1982, 46, 877–881. [Google Scholar] [CrossRef]
- Bosco, F.; Mollea, C. Biodegradation of natural rubber: Microcosm study. Water Air Soil Pollut. 2021, 232, 227. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, H.D.; Tran, P.T.; Nghiem, T.T.; Nguyen, T.T.; Dao, V.L.; Phan, T.N.; To, A.K.; Hatamoto, M.; Yamaguchi, T.; et al. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Biodegradation 2020, 31, 303–317. [Google Scholar] [CrossRef]
- Sarkar, B.; Gupta, A.M.; Shah, M.P.; Mandal, S. Poly-cis-isoprene degradation by Nocardia sp. BSTN01 isolated from industrial waste. Appl. Biochem. Biotechnol. 2022, 194, 3333–3350. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef]
- Miyazawa, K.; Umeyama, T.; Hoshino, Y.; Abe, K.; Miyazaki, Y. Quantitative monitoring of mycelial growth of Aspergillus fumigatus in liquid culture by optical density. Microbiol. Spectr. 2022, 10, e00063-21. [Google Scholar] [CrossRef] [PubMed]
- Maheswaran, B.; Al-Ansari, M.; Al-Humaid, L.; Sebastin Raj, J.; Kim, W.; Karmegam, N.; Mohamed Rafi, K. In vivo degradation of polyethylene terephthalate using microbial isolates from plastic polluted environment. Chemosphere 2023, 310, 136757. [Google Scholar] [CrossRef] [PubMed]
- Linos, A.; Reichelt, R.; Keller, U.; Steinbüchel, A. A gram-negative bacterium, identified as Pseudomonas aeruginosa AL98, is a potent degrader of natural rubber and synthetic cis-1, 4-polyisoprene. FEMS Microbiol. Lett. 2000, 182, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Braga, S.P.; Dos Santos, A.P.; Paganini, T.; Barbosa, D.; Epamino, G.W.C.; Morais, C.; Martins, L.F.; Silva, A.M.; Setubal, J.C.; Vallim, M.A. First report of cis-1, 4-polyisoprene degradation by Gordonia paraffinivorans. Braz. J. Microbiol. 2019, 50, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Verran, J.; Rowe, D.L.; Cole, D.; Boyd, R.D. The use of the atomic force microscope to visualise and measure wear of food contact surfaces. Int. Biodeterior. 2000, 46, 99–105. [Google Scholar] [CrossRef]
- Nawong, C.; Umsakul, K.; Sermwittayawong, N. Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz. J. Microbiol. 2018, 49, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Das, M.P.; Kumar, S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 2015, 5, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef]
- Khandare, S.D.; Chaudhary, D.R.; Jha, B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. Mar. Pollut. Bull. 2021, 169, 112566. [Google Scholar] [CrossRef]
- Cheng, X.; Xia, M.; Yang, Y. Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms. J. Hazard. Mater. 2023, 448, 130940. [Google Scholar] [CrossRef]
- Roy, R.V.; Das, M.; Banerjee, R.; Bhowmick, A.K. Comparative studies on rubber biodegradation through solid-state and submerged fermentation. Process. Biochem. 2006, 41, 181–186. [Google Scholar] [CrossRef]
- Berekaa, M.M.; Linos, A.; Reichelt, R.; Keller, U.; Steinbüchel, A. Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol. Lett. 2000, 184, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchii, A.; Tokiwa, Y. Colonization and disintegration of tire rubber by a colonial mutant of Nocardia. J. Biosci. Bioeng. 1999, 87, 542–544. [Google Scholar] [CrossRef]
- Basik, A.A.; Sanglier, J.-J.; Yeo, C.T.; Sudesh, K. Microbial Degradation of Rubber: Actinobacteria. Polymers 2021, 13, 1989. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhao, S.; Li, C.; Wang, B.; Fu, Y.; Wang, Y. Biodesulfurization of vulcanized rubber by enzymes induced from Gordonia amicalisa. Polym. Degrad. Stab. 2016, 128, 8–14. [Google Scholar] [CrossRef]
Time Trial (Days) | Weight Loss (%) of NR after Different Treatments | |||
---|---|---|---|---|
Control (UNR) | E. coli (BNR) | A. oryzae (FNR) | E. coli + A. oryzae (BFNR) | |
0 | 0 | 0 | 0 | 0 |
30 | 0 | 5 ± 0.2 a | 8 ± 0.1 b | 10 ± 0.3 c |
60 | 0 | 5 ± 0.2 a | 10 ± 0.2 b | 15 ± 0.1 c |
90 | 0 | 9 ± 0.1 a | 15 ± 0.3 b | 20 ± 0.5 c |
120 | 0 | 16 ± 0.5 a | 22 ± 0.9 b | 27 ± 0.2 c |
150 | 2 ± 0.1 a | 24 ± 0.6 b | 31 ± 0.0 c | 41 ± 0.6 d |
180 | 3 ± 0.0 a | 39 ± 0.8 b | 46 ± 0.2 c | 55 ± 0.7 d |
210 | 5 ± 0.6 a | 44 ± 0.9 b | 57 ± 0.6 c | 69 ± 0.4 d |
Bacterial Isolates | PC * | NC ** | NC + NR *** | NR Concentrations | ||||
---|---|---|---|---|---|---|---|---|
NR 1% | NR 2% | NR 3% | NR 4% | NR 5% | ||||
ITB1 | 0.12 ± 0.01 ab | 0.11 ± 0.03 a | 0.10 ± 0.05 a | 0.59 ± 0.01 b | 0.62 ± 0.04 c | 0.63 ± 0.07 c | 0.64 ± 0.05 cd | 0.69 ± 0.01 d |
ITB2 | 0.10 ± 0.02 ab | 0.09 ± 0.01 a | 0.11 ± 0.04 b | 0.17 ± 0.07 c | 0.23 ± 0.09 d | 0.26 ± 0.01 de | 0.37 ± 0.03 e | 0.41 ± 0.04 f |
ITB7 | 0.17 ± 0.01 b | 0.08 ± 0.03 a | 0.09 ± 0.04 ab | 0.36 ± 0.07 c | 0.42 ± 0.08 d | 0.42 ± 0.01 d | 0.42 ± 0.05 d | 0.44 ± 0.01 d |
ITB9 | 0.11 ± 0.02 ab | 0.09 ± 0.01 a | 0.09 ± 0.04 a | 0.36 ± 0.08 b | 0.40 ± 0.04 bc | 0.49 ± 0.06 c | 0.58 ± 0.01 d | 0.61 ± 0.05 d |
ITB15 | 0.13 ± 0.04 b | 0.08 ± 0.04 a | 0.11 ± 0.02 b | 0.24 ± 0.06 c | 0.26 ± 0.03 cd | 0.39 ± 0.01 d | 0.40 ± 0.04 de | 0.43 ± 0.08 e |
ITB17 | 0.13 ± 0.05 b | 0.08 ± 0.06 a | 0.09 ± 0.07 ab | 0.28 ± 0.01 c | 0.37 ± 0.05 d | 0.45 ± 0.01 e | 0.56 ± 0.03 f | 0.65 ± 0.05 g |
IDB5 | 0.11 ± 0.03 b | 0.08 ± 0.01 a | 0.09 ± 0.03 ab | 0.24 ± 0.05 c | 0.26 ± 0.09 cd | 0.29 ± 0.00 d | 0.30 ± 0.04 de | 0.45 ± 0.05 e |
IBB5 | 0.12 ± 0.06 b | 0.10 ± 0.09 ab | 0.09 ± 0.08 a | 0.39 ± 0.02 c | 0.43 ± 0.01 d | 0.49 ± 0.04 e | 0.52 ± 0.01 f | 0.67 ± 0.02 g |
ASB7 | 0.11 ± 0.05 b | 0.07 ± 0.02 a | 0.09 ± 0.02 ab | 0.31 ± 0.06 c | 0.36 ± 0.01 d | 0.48 ± 0.05 e | 0.50 ± 0.08 ef | 0.59 ± 0.06 f |
ASB5 | 0.13 ± 0.03 bc | 0.11 ± 0.05 b | 0.07 ± 0.09 a | 0.34 ± 0.01 c | 0.44 ± 0.05 d | 0.53 ± 0.01 e | 0.54 ± 0.00 ef | 0.54 ± 0.02 f |
Fungal Isolates | PC * | NC ** | NC + NR *** | NR Concentrations | ||||
---|---|---|---|---|---|---|---|---|
NR 1% | NR 2% | NR 3% | NR 4% | NR 5% | ||||
FA | 0.11 ± 0.01 b | 0.10 ± 0.03 b | 0.03 ± 0.04 a | 0.46 ± 0.05 c | 0.88 ± 0.01 d | 1.56 ± 0.04 e | 2.68 ± 0.04 f | 4.52 ± 0.00 g |
IBF2 | 0.17 ± 0.02 b | 0.07 ± 0.04 a | 0.08 ± 0.07 a | 0.56 ± 0.09 c | 0.88 ± 0.01 d | 1.26 ± 0.02 d | 2.05 ± 0.05 f | 4.39 ± 0.01 g |
ASF1 | 0.10 ± 0.05 b | 0.08 ± 0.04 b | 0.046 ± 0.09 a | 0.63 ± 0.06 c | 0.69 ± 0.09 cd | 0.70 ± 0.08 cd | 1.32 ± 0.00 d | 2.06 ± 0.01 e |
IBF4 | 0.13 ± 0.02 bc | 0.09 ± 0.06 b | 0.01 ± 0.08 a | 0.73 ± 0.00 c | 0.97 ± 0.03 d | 1.02 ± 0.04 de | 2.55 ± 0.02 e | 3.48 ± 0.05 f |
IBF3 | 0.11 ± 0.06 bc | 0.09 ± 0.07 b | 0.05 ± 0.03 a | 0.48 ± 0.01 c | 0.51 ± 0.00 cd | 0.58 ± 0.06 d | 0.81 ± 0.04 e | 1.96 ± 0.09 f |
IDF1 | 0.15 ± 0.06 b | 0.05 ± 0.01 a | 0.08 ± 0.06 ab | 0.75 ± 0.09 c | 0.92 ± 0.00 d | 1.36 ± 0.04 e | 2.69 ± 0.00 f | 3.85 ± 0.04 g |
FA2 | 0.11 ± 0.06 bc | 0.04 ± 0.05 a | 0.096 ± 0.06 b | 0.59 ± 0.08 c | 0.98 ± 0.06 d | 1.81 ± 0.01 e | 2.44 ± 0.00 f | 3.64 ± 0.04 g |
ASF3 | 0.15 ± 0.08 bc | 0.09 ± 0.04 b | 0.05 ± 0.03 a | 0.66 ± 0.04 c | 1.18 ± 0.05 d | 2.03 ± 0.00 e | 2.84 ± 0.02 f | 3.53 ± 0.09 g |
ASF2 | 0.18 ± 0.06 c | 0.01 ± 0.00 a | 0.06 ± 0.03 b | 0.93 ± 0.04 d | 1.68 ± 0.01 e | 2.73 ± 0.06 f | 3.75 ± 0.04 g | 4.75 ± 0.05 h |
ASF8 | 0.18 ± 0.06 b | 0.08 ± 0.08 ab | 0.06 ± 0.01 a | 0.79 ± 0.03 c | 1.25 ± 0.07 d | 1.90 ± 0.06 e | 2.59 ± 0.04 f | 3.37 ± 0.00 g |
Bacterial Isolates | PC * | NC ** | NC + NR *** | NR Concentrations | ||||
---|---|---|---|---|---|---|---|---|
NR 1% | NR 2% | NR 3% | NR 4% | NR 5% | ||||
ITB1 | 0.17 ± 0.06 b | 0.05 ± 0.04 ab | 0.02 ± 0.01 a | 1.66 ± 0.04 c | 1.77 ± 0.04 d | 2.04 ± 0.07 e | 2.24 ± 0.07 f | 2.70 ± 0.09 g |
ITB2 | 0.13 ± 0.01 b | 0.04 ± 0.07 ab | 0.02 ± 0.04 a | 1.53 ± 0.01 c | 1.72 ± 0.04 d | 1.90 ± 0.06 e | 2.05 ± 0.02 f | 2.12 ± 0.01 f |
ITB7 | 0.18 ± 0.01 b | 0.05 ± 0.06 ab | 0.03 ± 0.04 a | 1.69 ± 0.08 c | 1.70 ± 0.09 cd | 2.01 ± 0.01 d | 2.16 ± 0.07 f | 2.23 ± 0.07 f |
ITB9 | 0.11 ± 0.00 b | 0.06 ± 0.07 ab | 0.02 ± 0.01 a | 1.63 ± 0.02 c | 1.74 ± 0.01 d | 1.81 ± 0.05 e | 1.86 ± 0.06 ef | 1.93 ± 0.00 f |
ITB15 | 0.18 ± 0.00 b | 0.04 ± 0.05 a | 0.07 ± 0.08 ab | 1.76 ± 0.01 c | 1.80 ± 0.02 cd | 1.94 ± 0.09 d | 2.10 ± 0.04 f | 2.21 ± 0.07 g |
ITB17 | 0.14 ± 0.01 b | 0.04 ± 0.04 a | 0.07 ± 0.02 ab | 1.58 ± 0.05 c | 1.84 ± 0.03 d | 1.88 ± 0.00 de | 1.99 ± 0.01 e | 2.01 ± 0.07 e |
IDB5 | 0.10 ± 0.06 b | 0.04 ± 0.01 a | 0.05 ± 0.09 ab | 1.40 ± 0.01 c | 1.53 ± 0.03 d | 1.65 ± 0.06 e | 1.80 ± 0.02 f | 1.98 ± 0.01 g |
IBB5 | 0.16 ± 0.03 b | 0.04 ± 0.07 a | 0.07 ± 0.03 ab | 1.44 ± 0.01 c | 1.79 ± 0.01 d | 1.96 ± 0.06 e | 2.23 ± 0.09 f | 2.30 ± 0.00 f |
ASB7 | 0.15 ± 0.06 b | 0.04 ± 0.01 ab | 0.01 ± 0.06 a | 1.50 ± 0.07 c | 1.78 ± 0.01 d | 1.93 ± 0.09 e | 1.97 ± 0.01 ef | 2.38 ± 0.09 g |
ASB5 | 0.18 ± 0.01 b | 0.04 ± 0.08 a | 0.03 ± 0.09 a | 1.58 ± 0.04 c | 1.76 ± 0.06 d | 2.08 ± 0.04 e | 2.10 ± 0.00 e | 2.29 ± 0.01 g |
Fungal Isolates | PC * | NC ** | NC + NR *** | NR Concentrations | ||||
---|---|---|---|---|---|---|---|---|
NR 1% | NR 2% | NR 3% | NR 4% | NR 5% | ||||
FA | 0.16 ± 0.02 b | 0.06 ± 0.06 a | 0.05 ± 0.01 a | 1.44 ± 0.02 c | 1.53 ± 0.08 d | 1.63 ± 0.09 e | 1.73 ± 0.07 f | 1.86 ± 0.05 g |
IBF2 | 0.15 ± 0.01 b | 0.08 ± 0.02 ab | 0.04 ± 0.03 a | 1.44 ± 0.00 c | 1.59 ± 0.06 d | 1.78 ± 0.07 e | 1.86 ± 0.03 f | 1.89 ± 0.01 g |
ASF1 | 0.12 ± 0.06 b | 0.07 ± 0.05 ab | 0.05 ± 0.04 a | 1.58 ± 0.07 c | 1.61 ± 0.06 cd | 1.77 ± 0.01 e | 1.88 ± 0.03 f | 2.00 ± 0.05 g |
IBF4 | 0.10 ± 0.05 b | 0.05 ± 0.01 a | 0.04 ± 0.00 a | 1.18 ± 0.03 c | 1.29 ± 0.09 d | 1.36 ± 0.01 e | 1.46 ± 0.07 f | 1.57 ± 0.09 g |
IBF3 | 0.10 ± 0.01 b | 0.05 ± 0.02 a | 0.04 ± 0.05 a | 1.52 ± 0.01 c | 1.66 ± 0.06 d | 1.75 ± 0.08 e | 1.87 ± 0.04 f | 1.99 ± 0.06 g |
IDF1 | 0.16 ± 0.01 b | 0.06 ± 0.00 a | 0.05 ± 0.06 a | 1.44 ± 0.09 c | 1.57 ± 0.08 d | 1.61 ± 0.06 de | 1.74 ± 0.09 e | 1.84 ± 0.03 f |
FA2 | 0.11 ± 0.06 b | 0.09 ± 0.08 b | 0.02 ± 0.03 a | 1.29 ± 0.01 c | 1.31 ± 0.08 cd | 1.45 ± 0.04 d | 1.57 ± 0.06 e | 1.776 ± 0.04 f |
ASF3 | 0.12 ± 0.01 b | 0.06 ± 0.06 a | 0.06 ± 0.04 a | 1.50 ± 0.01 c | 1.78 ± 0.04 d | 1.80 ± 0.09 de | 1.91 ± 0.00 e | 2.04 ± 0.01 f |
ASF2 | 0.17 ± 0.05 b | 0.07 ± 0.01 ab | 0.03 ± 0.00 a | 1.64 ± 0.09 c | 1.79 ± 0.01 d | 1.90 ± 0.02 e | 2.01 ± 0.01 f | 2.25 ± 0.05 g |
ASF8 | 0.14 ± 0.03 b | 0.08 ± 0.00 ab | 0.03 ± 0.01 a | 1.45 ± 0.01 c | 1.65 ± 0.05 d | 1.78 ± 0.07 e | 1.92 ± 0.02 f | 2.17 ± 0.08 g |
Active Groups | UNR | BNR | FNR | BFNR | E. coli | A. oryze |
---|---|---|---|---|---|---|
OH | + (alcohol) | + (carboxylic acid) | + (alcohol) | + (alcohol; carboxylic acid) | + (carboxylic acid) | + (alcohol; carboxylic acid) |
NH | + (nitro compounds) | – | + (secondary amine) | + (primary aliphatic amine) | + (aldehyde) | + (aldehyde) |
CN | – | – | + (aromatic amine) | – | – | – |
N=N=N | – | – | – | + (azide) | – | – |
NO | – | – | – | + (nitro compounds) | + (nitro compounds) | + (nitro compounds) |
C=O | + (cyclopentanone) | + (conjugated anhydride; primary amide) | + (conjugated anhydride) | + (aldehyde) | – | – |
CO | – | + (secondary alcohol) | – | + (aliphatic ether) | + (aromatic ester) | + (aromatic ester) |
S–S | + (disulfide) | – | – | – | – | – |
SO | – | – | – | + (sulfoxide) | – | + (sulfoxide) |
CH | + (alkene) | + (alkyne; aromatic compound) | + (aldehyde) | + 1,2,3 trisubstituted | + 1,2,3 trisubstituted | + 1,2,3 trisubstituted |
C=C | + (alkene) | – | + (alkene) | + (alkene) | – | – |
C≡C | – | – | + (alkyne) | – | – | – |
C–Br | – | + (halo compound) | + (halo compound) | – | – | – |
CF | – | – | – | + (fuloro compound) | – | – |
C–Cl | – | + (halo compound) | – | – | – | + (halo compound) |
C–I | – | – | – | – | – | + (halo compound) |
RT (min) | Organic Components | MF | UNR (%) | BNR | FNR | BFNR | % Relative Degradation (+/−) | ||
---|---|---|---|---|---|---|---|---|---|
Hydrocarbons | |||||||||
1.34 | Buta-1,3-diene | C4H6 | 21.6 ± 0.9 d | 10.3 ± 0.2 c | 8.5 ± 0.2 b | 4.1 ± 0.1 a | −109.7 | −147.2 | −170 |
1.46 | Isoprene | C5H8 | 3.6 ± 0.1 b | 0.9 ± 0.01 ab | 0.5 ± 0.01 a | − | −300.0 | −344.4 | −380 |
2.45 | Benzene | C6H6 | 2.8 ± 0.2 b | 0.7 ± 0.03 ab | 0.3 ± 0.02 a | − | −300.0 | −357.1 | −400 |
4.01 | Toluene | C7H10 | 5.9 ± 0.7 b | 0.8 ± 0.08 ab | 0.5 ± 0.07 a | − | −637.5 | −675.0 | −714 |
4.15 | Hepta-1,5-diene | C7H12 | 33.9 ± 0.2 d | 12.5 ± 0.1 c | 8.9 ± 0.1 b | 3.9 ± 0.2 a | −171.2 | −200.0 | −250 |
4.80 | 4-vinylcyclohexene | C7H12 | 1.5 ± 0.1 b | 0.2 ± 0.02 a | − | − | −650.0 | −750.0 | −850 |
5.82 | Ethylbenzene | C8H10 | 2.6 ± 0.2 b | 0.9 ± 0.01 a | 0.7 ± 0.08 a | − | −188.9 | −211.1 | −260 |
5.95 | m-, p-xylenes | C8H10 | 1.9 ± 0.9 b | 0.5 ± 0.07 ab | 0.2 ± 0.02 a | − | −280.0 | −340.0 | −400 |
7.54 | Propylbenzene | C9H12 | 2.0 ± 0.3 b | 0.6 ± 0.09 ab | 0.1 ± 0.09 a | − | −233.3 | −316.7 | −390 |
8.48 | Limonene | C10H16 | 6.8 ± 0.6 c | 1.9 ± 0.2 bc | 1.1 ± 0.1 b | 0.1 ± 0.00 a | −257.9 | −300.0 | −380 |
9.94 | Indene | C9H8 | 2.5 ± 0.7 b | 1.1 ± 0.7 ab | 0.8 ± 0.02 a | − | −127.3 | −154.5 | −201 |
10.81 | Styrene | C8H8 | 10.6 ± 0.1 d | 2.0 ± 0.1 c | 1.1 ± 0.9 b | 0.1 ± 0.01 a | −430.0 | −475.0 | −550 |
14.04 | 2-benzylbuta-1,3-diene | C12H17 | 4.9 ± 0.1 b | 1.3 ± 0.3 ab | 0.8 ± 0.07 a | − | −276.9 | −315.4 | −360 |
14.44 | 4-phenyl cyclohexane | C12H14 | 5.1 ± 0.5 c | 1.5 ± 0.8 bc | 1.1 ± 0.6 b | 0.2 ± 0.0 a | −240.0 | −266.7 | −289 |
15.57 | Biphenyl | C12H10 | 2.7 ± 0.8 b | 0.9 ± 0.01 ab | 0.5 ± 0.01 a | − | −200.0 | −244.4 | −292 |
15.89 | n-octane | C8H18 | 2.3 ± 0.2 b | 0.9 ± 0.05 ab | 0.2 ± 0.08 a | − | −155.6 | −233.3 | −270 |
16.75 | Tetratetracontane | C44H90 | 1.2 ± 0.1 b | 0.2 ± 0.01 a | − | − | −500.0 | −600.0 | −680 |
16.96 | 2-methyl-decane | C11H24 | 1.5 ± 0.8 b | 0.7 ± 0.08 ab | 0.1 ± 0.05 a | − | −114.3 | −200.0 | −260 |
17.07 | Heneicosane | C21H44 | 1.1 ± 0.2 b | 0.5 ± 0.06 a | − | − | −120.0 | −220.0 | −290 |
17.83 | Pentacosane | C25H52 | 2.6 ± 0.9 b | 1.0 ± 0.3 ab | 0.6 ± 0.04 a | − | −160.0 | −200.0 | −240 |
17.94 | Hexatricontane | C36H74 | 1.0 ± 0.3 a | − | − | − | − | − | − |
18.19 | Nonacosane | C29H60 | 2.5 ± 0.7 b | 0.9 ± 0.04 fab | 0.1 ± 0.09 a | − | −177.8 | −266.7 | −320 |
18.21 | Tetra-hydroxy cyclopentadienone | C15H22 | 1.0 ± 0.1 a | − | − | − | − | − | − |
Oxygenated compounds | |||||||||
3.58 | Pentanal | C5H10O | 0.1 ± 0.0 a | 2.9 ± 0.1 b | 4.5 ± 0.5 c | 5.2 ± 0.1 d | 96.7 | 148.2 | 180.3 |
3.69 | Methyl butanoate | C5H10O | 0.2 ± 0.01 a | 2.5 ± 0.2 b | 4.2 ± 0.6 c | 5.0 ± 0.3 d | 92.0 | 160.0 | 242.5 |
4.15 | 2-methyl-2-propionic acid | C10H12O3 | − | 1.8 ± 0.9 a | 2.5 ± 0.8 b | 3.6 ± 0.4 c | 100.0 | 138.9 | 169.2 |
7.58 | b-damascenone | C13H18O | 0.1 ± 0.04 a | 3.1 ± 0.8 b | 5.3 ± 0.4 b | 6.4 ± 0.6 c | 96.8 | 167.7 | 250.6 |
9.39 | Methyl hexanoate | C7H14O | − | 1.2 ± 0.0 a | 2.7 ± 0.2 b | 3.9 ± 0.8 c | 100.0 | 225.0 | 290.9 |
10.89 | 1-pentanol | C5H12O | − | 3.0 ± 0.9 a | 5.1 ± 0.4 b | 6.2 ± 0.7 c | 100.0 | 170.0 | 250.3 |
11.45 | Ethenol | C2H4O | − | 5.7 ± 0.5 a | 6.9 ± 0.9 b | 8.2 ± 0.9 c | 100.0 | 121.1 | 150.2 |
12.72 | 1,3-dioxolane | C3H6O2 | 0.1 ± 0.05 a | 1.9 ± 0.1 b | 2.1 ± 0.1 bc | 3.2 ± 0.2 c | 94.7 | 105.3 | 162.4 |
14.42 | Acetic acid | C2H4O2 | − | 0.9 ± 0.4 a | 8.0 ± 0.3 b | 10.5 ± 0.1 c | 100.0 | 200.0 | 275.3 |
14.76 | Dodecanol | C12H26O | 0.2 ± 0.01 a | 2.3 ± 0.2 b | 3.7 ± 0.1 c | 4.9 ± 0.2 d | 91.3 | 152.2 | 198.2 |
15.01 | Isobutyric acid-2-D1 | C4H8O2 | − | 2.1 ± 0.1 a | 4.5 ± 0.2 b | 6.2 ± 0.8 c | 100.0 | 214.3 | 246.2 |
15.49 | Propanoic acid | C3H6O2 | − | 3.0 ± 0.8 da | 3.6 ± 0.6 ab | 4.2 ± 0.9 b | 100.0 | 120.0 | 160.0 |
15.86 | Isobutyric acid | C4H8O2 | − | 1.8 ± 0.5 fa | 3.3 ± 0.7 b | 4.8 ± 0.4 c | 100.0 | 183.3 | 210.3 |
16.25 | 2-(2-ethoxy ethoxy)-ethanol | C6H14O3 | − | 1.2 ± 0.1 fa | 2.3 ± 0.5 b | 3.5 ± 0.3 c | 100.0 | 191.7 | 250.6 |
16.57 | Butyric acid | C4H8O2 | − | 1.1 ± 0.0 fa | 2.9 ± 0.4 b | 3.6 ± 0.8 c | 100.0 | 263.6 | 326.2 |
17.05 | Isovaleric acid | C5H10O2 | − | 1.2 ± 0.0 fa | 1.9 ± 0.1 ab | 2.5 ± 0.2 b | 100.0 | 158.3 | 220.4 |
17.93 | Valeric acid | C5H10O2 | − | 1.5 ± 0.2 fa | 3.2 ± 0.9 b | 3.9 ± 0.1 b | 100.0 | 213.3 | 260.4 |
18.99 | Propanamide | C3H7O | − | 1.2 ± 0.5 fa | 1.9 ± 0.5 ab | 2.5 ± 0.4 b | 100.0 | 158.3 | 220.8 |
19.04 | Hexanoic acid | C6H12O2 | − | 2.1 ± 0.3 a | 3.5 ± 0.1 b | 4.5 ± 0.5 c | 100.0 | 166.7 | 210.6 |
19.05 | Decanoic acid | C10H20O2 | − | 1.8 ± 0.4 a | 2.9 ± 0.2 b | 3.2 ± 0.4 c | 100.0 | 161.1 | 215.9 |
20.15 | Heptanoic acid | C7H14O2 | − | 3.8 ± 0.7 a | 5.7 ± 0.9 b | 6.3 ± 0.1 c | 100.0 | 150.0 | 222.7 |
20.57 | Methyl palimtate | C17H34O | 0.2 ± 0.02 a | 2.1 ± 0.2 b | 3.5 ± 0.1 c | 4.2 ± 0.2 c | 90.5 | 157.1 | 250.4 |
22.55 | Methyl stearate | C19H38O | − | 1.9 ± 0.9 a | 3.2 ± 0.6 b | 4.9 ± 0.1 c | 100.0 | 168.4 | 211.6 |
Nitrogen compounds | |||||||||
9.28 | Aniline | C6H5NH2 | 0.2 ± 0.01 a | 5.2 ± 0.1 b | 7.1 ± 0.2 c | 9.0 ± 0.0 d | 96.2 | 132.7 | 189.3 |
9.90 | N-ethylformamide | C3H7NO | 0.6 ± 0.0 a | 3.5 ± 0.3 b | 5.8 ± 0.5 c | 6.5 ± 0.1 d | 82.9 | 148.6 | 213.5 |
12.15 | N, N-dimethyl formamide | C3H7NO | 0.1 ± 0.06 a | 2.5 ± 0.2 b | 3.2 ± 0.9 c | 4.3 ± 0.2 d | 96.0 | 124.0 | 160.3 |
15.70 | 2-(2-methylamino) benzimidazole | C8H9N3 | 0.1 ± 0.07 a | 2.8 ± 0.9 b | 3.2 ± 0.8 bc | 4.5 ± 0.8 d | 96.4 | 110.7 | 190.4 |
18.36 | N-glycyl-L-alanine | C5H10N2O | 0.7 ± 0.02 a | 1.1 ± 0.1 ab | 2.5 ± 0.6 c | 3.6 ± 0.6 d | 100.0 | 227.3 | 260.2 |
18.55 | 1-octadecanamine | C18H39N | 0.1 ± 0.03 a | 2.0 ± 0.9 b | 3.5 ± 0.5 c | 5.0 ± 0.2 d | 95.0 | 170.0 | 230.2 |
20.06 | N, N-dimethylacetoacetamide | C6H11NO2 | − | 2.8 ± 0.7 a | 4.2 ± 0.7 b | 6.1 ± 0.1 c | 100.0 | 150.0 | 210.3 |
20.19 | Glycylglycine ethyl ester | C6H12N2O | − | 0.8 ± 0.2 a | 2.0 ± 0.1 b | 3.0 ± 0.3 c | 100.0 | 250.0 | 298.2 |
20.40 | Tris(dimethylamino)methane | C7H19N3 | 0.1 ± 0.0 a | 1.5 ± 0.9 b | 3.2 ± 0.3 c | 4.9 ± 0.7 c | 93.3 | 206.7 | 241.6 |
21.05 | 1-imidazolidinecarboxaldehyde | C4H4N2O4 | 0.8 ± 0.01 a | 2.6 ± 0.4 b | 4.1 ± 0.1 c | 5.2 ± 0.9 c | 100.0 | 157.7 | 201.9 |
Sulfur-containing compounds | |||||||||
6.06 | Dimethyl disulfide | C2H6S2 | 0.1 ± 0.0 a | 2.2 ± 0.1 b | 3.1 ± 0.5 c | 3.5 ± 0.2 c | 95.5 | 136.4 | 160.9 |
9.53 | 2,3-dihydroindene | C9H7ClO3S | 0.8 ± 0.09 a | 2.1 ± 0.3 b | 3.5 ± 0.2 c | 4.2 ± 0.1 d | 61.9 | 128.6 | 156.5 |
12.89 | Dimethyl trisulfide | C2H6S3 | − | 1.8 ± 0.8 a | 3.4 ± 0.5 c | 4.9 ± 0.9 d | 100.0 | 188.9 | 250.6 |
13.82 | Benzothiazole | C7H5NS | 0.7 ± 0.01 a | 2.7 ± 0.5 b | 3.5 ± 0.9 c | 5.2 ± 0.2 d | 74.1 | 103.7 | 215.3 |
19.24 | Methylthiobenzothiazole | C8H7NS2 | 0.1 ± 0.0 a | 2.4 ± 0.6 b | 4.1 ± 0.4 c | 5.5 ± 0.1 d | 95.8 | 166.7 | 255.1 |
20.01 | Benzothiazole | C7H5NS | − | 0.9 ± 0.2 fa | 1.8 ± 0.8 b | 2.5 ± 0.4 c | 100.0 | 200.0 | 260.3 |
Total hydrocarbons | 121.6 | 40.3 | 26.1 | 8.4 | −66 | −78 | −93 | ||
MW of total hydrocarbons | 4201 Da | ||||||||
Total SON compounds | 5.3 | 87 | 145.6 | 189.3 | +15-fold | +27-fold | +35-fold | ||
MW of total SON compounds | 4642 Da |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL-Wafai, N.A.; Farrag, A.M.I.; Abdel-Basit, H.M.; Hegazy, M.I.; Al-Goul, S.T.; Ashkan, M.F.; Al-Quwaie, D.A.; Alqahtani, F.S.; Amin, S.A.; Ismail, M.N.; et al. Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber. Processes 2023, 11, 2350. https://doi.org/10.3390/pr11082350
EL-Wafai NA, Farrag AMI, Abdel-Basit HM, Hegazy MI, Al-Goul ST, Ashkan MF, Al-Quwaie DA, Alqahtani FS, Amin SA, Ismail MN, et al. Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber. Processes. 2023; 11(8):2350. https://doi.org/10.3390/pr11082350
Chicago/Turabian StyleEL-Wafai, Nahed A., Aya M. I. Farrag, Howaida M. Abdel-Basit, Mohamed I. Hegazy, Soha Talal Al-Goul, Mada F. Ashkan, Diana A. Al-Quwaie, Fatimah S. Alqahtani, Shimaa A. Amin, Mohamed N. Ismail, and et al. 2023. "Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber" Processes 11, no. 8: 2350. https://doi.org/10.3390/pr11082350
APA StyleEL-Wafai, N. A., Farrag, A. M. I., Abdel-Basit, H. M., Hegazy, M. I., Al-Goul, S. T., Ashkan, M. F., Al-Quwaie, D. A., Alqahtani, F. S., Amin, S. A., Ismail, M. N., Yehia, A. A., & El-Tarabily, K. A. (2023). Eco-Friendly Degradation of Natural Rubber Powder Waste Using Some Microorganisms with Focus on Antioxidant and Antibacterial Activities of Biodegraded Rubber. Processes, 11(8), 2350. https://doi.org/10.3390/pr11082350