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Abstract: To explore the flotation feasibility and flotation law of iron minerals from amphibole-type
iron oxide ore with full-size minerals, a systematic study on the flotation behaviors of single minerals
hematite, quartz, and amphibole was carried out with the anionic reverse flotation system. The
effects of collectors, depressants, activators, and pH on the floatabilities of three single minerals
was investigated. The flotation separations of binary mixed minerals and ternary mixed ores were
carried out, respectively. The study results show that CaCl2 is adsorbed on the surfaces of quartz
and amphibole, which can activate them. The hydroxyl groups of the starch molecular chain were
adsorbed on the surfaces of the hematite and amphibole in the form of hydrogen bonds, but were
hardly adsorbed on surface of the quartz. Therefore, both hematite and amphibole were depressed,
resulting in a poor separation effect of the three single minerals in the anionic flotation system.

Keywords: reverse anionic flotation; amphibole; hematite

1. Introduction

Iron ore is an extremely important mineral and the fundamental raw material for the
steel industry, and plays a prominent role in the development of the national economy [1].
China has a diverse range of iron ore types, with complex ore-forming conditions. Many
iron ores are low-grade and contain associated components lead to complex beneficiation
and smelt conditions. With the development of the economy and the worsening of en-
vironmental pollution, the efficient extraction and utilization of iron ore face enormous
challenges. At the same time, improving the efficiency of iron ore beneficiation has attracted
increasing attention from domestic and foreign scholars.

Researchers have conducted extensive studies on the beneficiation of iron ore. Ge
Yingyong et al. [2] conducted cationic flotation experiments on Dong Anshan iron ore using
the collector RN-665, obtaining an iron concentrate grade of 64.02% and a recovery rate of
76.23%. Ren et al. [3] investigated the influence of CS series collectors and dodecyl amine on
iron ore flotation and found that the combined collectors exhibited a comparable collecting
capability to dodecyl amine and showed better selectivity. Xu [4] used coconut amine for
differentiating brown iron ore in the mine pit, and under the optimal test conditions, an iron
concentrate with a grade of 57.05% and a recovery rate greater than 60% could be obtained.
Wang Chunmei et al. [5] conducted cationic reverse flotation experiments on hematite
using GE-609 as the collector and starch as the depressant, achieving an iron concentrate
grade of 67.12% and a recovery rate of 83.55%. Zhang Zhaoyuan et al. [6] conducted
anionic reverse flotation experiments on hematite using a novel anionic collector LYK,
obtaining an iron concentrate grade of 65.72%, a tailing grade of 14.54%, and a recovery
rate of 88.39%. Liu Jing et al. [7] found that a mixed collector of sodium oleate (NaOL) and
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cetyltrimethylammonium bromide (CTAB) exhibited better selectivity in the flotation of
magnetite and the amphiboles, at pH 5.5 and a molar ratio of 2:1 for CTAB to NaOL; the
presence of NaOL in the mixed collector partially inhibited the adsorption of the CTAB
on the surface of the magnetite but did not affect its adsorption on the surfaces of the
amphibole minerals. Wang Ye et al. [8] studied the adsorptions of different types of starch
on the surface of iron oxide ore, noting that the different contents of straight-chain starch
and branched-chain starch may result in different adsorption effects. S. Pavlovic et al. [9]
studied the inhibitory effects of corn starch, its polysaccharide components (straight-chain
starch and branched-chain starch), monomeric glucose, and dimeric polymer maltose on
hematite. Bhagyalaxmi Kar et al. [10] conducted reverse flotation inhibition experiments
on hematite using four different types of starch, soluble starch, corn starch, potato starch,
and rice starch, with dodecyl amine as the collector. The maximum adsorptions of the four
starches on the surface of the hematite occurred at pH values between 5 and 9. However,
there is currently no suitable beneficiation method to treat fine-grained amphibole-type
iron oxide ore; therefore, it cannot be effectively utilized and is stored as “waste rock”.

In order to rationalize the utilization of fine-grained amphibole-type oxide ore and
improve its recovery efficiency, we propose a method of reverse flotation of single minerals
in the anionic system for amphibole-type iron ore. Through the study of the flotation
effects of hematite, quartz, and amphibole in NaOL and the investigation of the effects of
solution pH, collector dosage, and metal ion content on the floatabilities of the minerals, the
anionic reverse flotation characteristics of amphibole-type iron oxide ore were determined.
Meanwhile, the trend of mineral surface potential is an important indicator to determine
whether minerals can be separated or not; thus, this paper also analyzes changes in mineral
surface electric potential, providing a theoretical basis for the practical flotation of this ore.

2. Methods of Preparation and Study of the Test Sample
2.1. Collection and Preparation of Single Minerals

For the preparation of the single hematite mineral, a rich ore block of hematite came
from the Lilou iron mine in Huoqiu, Anhui Province. After crushing and grinding, the
hematite was separated by shaking the table separation many times. A small amount
of magnetite in it was removed with repeated weak magnetic separation, and a small
amount of nonmagnetic minerals in it was removed with strong magnetic separation. The
hematite was ground to −0.074 mm with a ceramic ball mill, and qualified single hematite
minerals of the sizes of 0.074–0.025 mm [11] were obtained through sieving. The 0.075 mm
grade is suspected to be large and coarse, with a low monomer dissociation, difficulty in
carrying gas, difficulty in flotation, and a poor sorting effect. If the particle size is less than
0.025 mm, this is due to the particle fineness, the large specific surface area of the ore, the
low kinetic energy of particle movement, the low efficiencies of collision and binding with
the reagent, increased reagent consumption, and serious phenomena of mud and flotation
entrainment, making flotation relatively difficult. Through increasing of the intermediate
particle size during the grinding process, the generation of coarse and fine particle sizes is
reduced, which can effectively improve the sorting effect [12]. The particles were cleaned
with distilled water many times and dried at low temperatures.

For the preparation of single amphibole minerals, the amphibole schist came from
the Yuanjiacun iron ore mine. Its preparation method was the same as that of the single
hematite minerals.

For the preparation of single quartz minerals, the minerals were selected from rich
quartz ore in Donghai, Jiangsu Province. They were crushed with Jaw Crusher and ground
with a porcelain ball mill. The ground quartz was cleaned many times by shaking the
table and strong magnetic separation, then was ground to −0.074 mm. The qualified
particles in the size of 0.074−0.025 mm were obtained by sieving and soaked in dilute
hydrochloric acid 3 times. Each time period was 24 h. Then, the samples were cleaned to
neutrality with distilled water 3 times, for 24 h each time; finally, the samples were dried at
low temperatures.
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2.2. Research Methods

The single minerals flotation tests were carried out in an XFG flotation machine, each
time using a 2.5 g sample. Before flotation, the single minerals were washed with 20 mL of
distilled water by an ultrasonic cleaner for 5 min. Then, it stood still and was transferred
into a flotation tank, 25 mL distilled water was added too. Through HCl and NaOH
solution for slurry solution pH value was adjusted to 7.0 for 2 min. Then, regulators,
collectors, and foaming agents were added and stirred for 2 min. Its flotation time was
3 min. The foam and the tailing in the flotation tank were dried and weighed, respectively.
Recovery of the foam was calculated. The flotation machine was in operation and the
speed of the flotation machine was 1500 r/min. In froth flotation, the injection of air and its
dispersion into bubbles in the slurry are essential considerations in affecting hydrodynamic
conditions. [13] The aeration rate was 3 L/min.

3. Study on Flotation Performance of Single Minerals
3.1. Effects of Different Conditions on Floatabilities of Single Minerals in the Sodium
Oleate System
3.1.1. Effect of Sodium Oleate Dosage on the Floatabilities of Hematite, Amphibole
and Quartz

The floatabilities of three single pure minerals of hematite, quartz, and amphibole in
the presence of sodium oleate were studied by adjusting the pH to 7.0 in distilled water
with HCl and NaOH solution. Test results are shown in Figure 1.
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Figure 1. Effects of sodium oleate dosage on the recovery of single pure minerals of hematite,
amphibole, and quartz (pH = 7.0).

According to Figure 1, the recovery of single pure minerals of hematite and amphibole
rises with the increase in sodium oleate dosage. However, the recovery of hematite is
higher than that of amphibole. When the sodium oleate dosage is 250 mg/L, the recovery
of hematite is 83.36%, and the recovery of amphibole is 36.12%. Moreover, the recovery of
quartz is small with the increase in sodium oleate dosage, which indicates that the pure
quartz is not floated basically. When the sodium oleate dosage is 350 mg/L, the recovery of
hematite is 95.38%, and the recovery of amphibole is 50.12%. But, the recovery of quartz is
only 1.83%. Therefore, when the sodium oleate dosage is 350 mg/L, the difference between
the recovery of hematite and that of amphibole is 45.26%, and the difference between the
recovery of hematite and that of quartz is 93.55%.
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3.1.2. Effect of pH on the Floatabilities of Hematite, Amphibole and Quartz in Sodium
Oleate System

The existence of sodium oleate in solution is influenced by pH greatly, which is related
to molecule, molecule-ion, and its association. The effect of pH on the floatabilities of
hematite, amphibole, and quartz were presented in this section, and the pH of the pulp
was adjusted by HCl and NaOH solution in distilled water under fixed sodium oleate of
250 mg/L. The research results are shown in Figure 2.
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Figure 2. Effect of pH on the floatabilities of single pure minerals of the hematite, amphibole and
quartz (sodium oleate dosage = 250 mg/L).

It can be seen from Figure 2 that the recovery of hematite increases with going up of
pH. When the pH increases to 7, the recovery of hematite reaches 83.36%. However, the
recovery of hematite rises slowly at pH > 7. The flotation law of amphibole is similar to
hematite, but their recovery is different. The maximum difference in their recovery occurs
at pH 6~7, but the difference decreases with the increase in pH further. At almost any pH,
the floatability of quartz was poor, which indicates that the quartz is difficult to float with
sodium oleate.

3.1.3. Influence of pH on the Floatabilities of Hematite, Amphibole and Quartz under the
Presence of Ca2+ in the Sodium Oleate System

The existence of multivalent cations in pulp has a great influence on the separation
between silicate minerals and hematite when this separation uses anions. Because the
existence of multivalent cations seriously weakens the differences in floatability between
silicate minerals and the hematite. Metal cations can activate silicate minerals, reducing
flotation’s selectivity. The hydrophilicity of mineral surfaces reflects their floatabilities and
the floatabilities of mineral surfaces are related to their wetting properties. Floatabilities
improve as wetting decreases and the floatabilities of minerals improve as the contact angle
increases. Therefore, when pH was at 11, sodium hydroxide solution and calcium oxide
solution were uniformly applied to the hematite, amphibole, and quartz, respectively. After
drying, the contact angles were measured using a contact angle measurement device. After
the measurements, the sample surfaces were rinsed to remove adsorbed reagents and then
re-immersed in sodium hydroxide solution and calcium oxide solution. At the same time,
a collector was applied, and the samples were dried for subsequent measurements. The
contact angles of the three minerals without the adsorbed collectors and with different
concentrations of adsorbed collectors were measured. The concentrations of sodium oleate
were 50 mg/L and 100 mg/L, and the measurement results are shown in Table 1.
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Table 1. Contact angle measurements on the surfaces of the three minerals at pH 11.

Mineral Name No Collector Adsorbed Sodium Oleate
Concentration 50 mg/L

Sodium Oleate
Concentration 100 mg/L

Hematite Contact Angle/◦ 36.50 ± 1.22 64.22 ± 2.34 90.64 ± 2.65
Amphibole Contact Angle/◦ 28.21 ± 0.53 52.23 ± 0.75 82.31 ± 1.21

Quartz Contact Angle/◦ 16.24 ± 0.82 90.26 ± 1.05 102.05 ± 1.20

After activation with calcium oxide, the contact angles of hematite, amphibole, and
quartz without adsorbed collectors were 36.50◦, 28.21◦, and 16.24◦, respectively. When ad-
sorbed a collector with a sodium oleate concentration of 50 mg/L, the contact angles of the
three minerals increased to 64.22◦, 52.23◦, and 90.26◦, respectively. When the concentration
of sodium oleate continued to increase to 100 mg/L, the contact angles of the three minerals
increased to 90.64◦, 82.31◦, and 102.05◦, respectively. The measurement results indicate
that the adsorbed sodium oleate complexes on the mineral surfaces impart hydrophobicity.
As the concentration of sodium oleate increases, the contact angles of the pure minerals
gradually increase.

To research the effect of the presence of Ca2+ in pulp of different pH on the floatabilities
of hematite, amphibole, and quartz, the floatabilities of hematite, amphibole, and quartz
under the presence of Ca2+ in pulp were investigated under the condition of 150 mg/L
CaCl2 and distilled water, by adjusting the pH of pulp with HCl and NaOH solution. The
research results are shown in Figure 3.
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Figure 3. Effect of the pH on the flowabilities of hemitate, amphibole, and quartz under the existence
of Ca2+ (CaCl2 = 150 mg/L).

It can be seen from Figure 3 that the floatability of hematite in the Ca2+ system are
the same as those in distilled water, which indicates that the existence of Ca2+ has little
influence on the floatability of hematite. However, the floatabilities of amphibole and
quartz are greatly affected by Ca2+. When the pH increases at 2~4, the floatabilities of
amphibole and quartz are not much different from that in distilled water. However, the pH
increases to 6 or higher, and the recovery of amphibole and quartz increases very rapidly. It
shows that the amphibole and quartz are easily activated by Ca2+ in alkaline pulp, and their
activation efficiencies increase with the rise in pH. It can be concluded that the selectivity
in acid flotation is the higher than that in alkaline flotation under the process of hematite
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using anion-positive flotation, due to the existence of high valence metal cations in pulp is
inevitable under industrial production.

3.1.4. Effect of Starch on the Floatabilities of Hematite, Amphibole and Quartz in the
Sodium Oleate System

Starch is a high polymer linked by α-glucose molecules through a 1,4-position gly-
coside bond or 1,6-position glycoside bond. Depending on its source and composition, it
has a large molecular weight from the thousand to the million, starch is widely used in
industry and mineral processing industry as the main depressant, flocculant, and disper-
sant for some minerals. In the anion reverse flotation system of iron ore, the function of
starch mainly depresses the floatation of iron ore. It is generally held that the adsorption
mechanism of starch and the mineral surface is “hydrogen bond adsorption”, “electrostatic
adsorption”, and “chemical adsorption”. Starch has a huge macromolecule with a formula
of (C6H10O5)n, with many hydrophilic-O-groups and OH-groups. It selectively adsorps
iron minerals through the hydrogen bond force and Van Der Waals force, and the bridge
action is formed to restrain the floatation of iron minerals [14]. Another standpoint thinks
that starch adsorbs on the surfaces of hematite and forms an iron complex with iron ions on
the surfaces of hematite, which makes the hematite hydrophilic and realizes the inhibition
of hematite [15]. In recent years, corn starch has been widely used as a depressant for iron
minerals in iron ore flotation in our country, which shows features of strong adaptability
and high selectivity. Corn starch was selected as a depressant for ion minerals in this paper.

Sodium oleate dosage is 250 mg/L, pH at 10.5, and CaCl2 is 150 mg/L were used to
study the effect of corn starch on the floatabilities of hematite, amphibole, and quartz in
distilled water. The study result is shown in Figure 4.
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= 250 mg/L, pH = 10.5 and CaCl2 = 150 mg/L).

It can be seen from Figure 4 that the recovery of hematite decreases gradually with the
increase in corn starch amounts. When the corn starch dosage increases to 20 mg/L, the
recovery of hematite decreases to 3.65%, which indicates that the hematite is completely
depressed with the increase in the amount of corn starch [16]. However, the recovery of
quartz did not clearly change, also keeping recovery levels high. It indicates that the corn
starch could not inhibit the quartz which was activated by Ca2+. The recovery of amphibole
goes down with the increase in corn starch dosage, which shows that the inhibition of
amphibole increases [17]. When the dosage of corn starch is 20 mg/L, the recovery of
amphibole is 20.54%, which indicates that the corn starch can inhibit the amphibole, even



Processes 2023, 11, 2388 7 of 13

having Ca2+ in the pulp. Amphibole belongs to an iron-bearing silicate mineral. Thus,
there are some structural iron ions on the surfaces of the mineral. The presence of iron ions
can form an iron complex with corn starch, forging a hydrophilic surface to depress the
amphibole. Figure 4 indicates that the amphibole and the hematite have similar properties,
but the inhibition of corn starch on the amphibole is weaker. When the dosage of corn
starch is 20 mg/L, the recovery of hematite is 3.65%, while the recovery of amphibole
is 20.54%. The difference between them is only 16.89%. It indicates that separating the
hematite and the amphibole in an anion reverse flotation system is difficult.

3.1.5. Effect of CaCl2 Dosage on the Floatabilities of Hematite, Quartz and Amphibole in
the Sodium Oleate System

Pure quartz cannot be floated by sodium oleate. In the system of anion reverse flotation
of iron ore, a substance that contains the Ca2+ and Mg2+ ions is added [18]. Silica minerals
such as quartz can adsorb Ca2+ and Mg2+, and they will be floated. Because the Ca2+ and
Mg2+ ions reveal adsorption activity to fatty acid collectors. The purpose of this section is
to investigate the effect of CaCl2 dosage on the floatabilities of hematite, amphibole, and
quartz in the sodium oleate system [19]. Sodium oleate remains at 250 mg/L, corn starch is
20 mg/L and pH at 10.5. The effect of CaCl2 on the floatabilities of hematite, quartz, and
amphibole are studied in distilled water under different dosages of CaCl2. The research
result is shown in Figure 5.
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Figure 5. Effect of CaCl2 on the floatabilities of hematite, quartz, and amphibole (sodium
oleate = 250 mg/L, pH = 10.5 and starch = 20 mg/L).

It can be seen from Figure 5, the recovery of hematite changes little with an increase in
the CaCl2 dosage, which indicates that the Ca2+ ion has little effect on the floatability of
hematite. However, the recovery of quartz increases rapidly with an increase in the CaCl2
dosage, which shows that the Ca2+ ion is gradually adsorbed on the surfaces of quartz
and activates it. When the CaCl2 dosage is more than 150 mg/L, the recovery of quartz
increases no longer, indicating that the quartz is fully activated at this Ca2+ concentration.
The recovery of amphibole increases slightly with an increase in the CaCl2 dosage, which
indicates that Ca2+ ions can activate amphibole to some degree. The presence of Ca2+ ions
enhances the harvesting capacity of amphibole by sodium oleate. The recovery of hematite,
quartz, and amphibole is 3.65%, 95.30%, and 20.54%, respectively, under the CaCl2 dosage
for 150 mg/L. The distinction of floatabilities for these three minerals is quartz > amphibole
> hematite [20], and the difference in recovery is 91.65% between the hematite and quartz,
but the difference in recovery is 16.89% between the hematite and amphibole. It reveals
that the separation of quartz and hematite is easier than separating the amphibole in an
anion reverse flotation system [21].
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3.2. Study on Flotation Separation of Artificially Mixed Minerals
3.2.1. Study on Flotation Separation of Binary Mixture with Hematite-Quartz

Binary minerals of hematite and quartz are mixed in a ratio of 1:1, and the same
flotation process is adopted as single minerals. The effect of sodium oleate dosage on the
flotation index was investigated under an anion reverse flotation system with pH at 10.5,
corn starch is 20 mg/L, and CaCl2 is 150 mg/L. Test results are shown in Figure 6.
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Figure 6. Effect of sodium oleate on the separation index of binary mixed minerals (hematite and
quartz, pH = 10.5, starch = 20 mg/L, and CaCl2 = 150 mg/L).

It can be seen from Figure 6. that when the sodium oleate dosage is 250 mg/L, the
grade of iron concentrate is 65.12% with a recovery of 84.26%. When the sodium oleate
dosage is 300 mg/L, the grade of iron concentrate is 66.09% with a recovery of 82.34%.

3.2.2. Study on Flotation Separation of Ternary Mixture with Hematite–Quartz–Amphibole

Ternary minerals of hematite, amphibole, and quartz were mixed in a ratio of 5:2:3,
and the same flotation process was adopted as single minerals. The influence of sodium
oleate dosage on the flotation index was studied under an anion reverse flotation system
with pH levels of 10.5, starch dosage of 20 mg/L, and CaCl2 dosage of 150 mg/L. The study
result is shown in Figure 7.
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It can be seen from Figure 7, that when the sodium oleate dosage is 250 mg/L, the
grade of iron concentrate is 58.24% with a recovery of 88.04%. When the sodium oleate
dosage is 300 mg/L, the grade of iron concentrate reaches 59.32% with a recovery of
87.52%. Therefore, in hematite–amphibole–quartz ternary mixed minerals, the amphibole
is depressed by starch, which makes it difficult to be captured by the anionic collector in
an anionic reverse flotation system, resulting in a low grade of iron concentrate [22]. The
study result of flotation separation in the artificial mixture is in good agreement with that
in the single minerals flotation test.

3.3. The Effect of Anionic Collectors on the Surface Potential of Minerals

The surface electrical properties of minerals are directly related to their floatabilities.
Zeta potential is an important parameter to indicate the electric charge and or minus on
the surfaces of minerals, and it is usually used as an important indicator to judge whether
minerals can be separated or not [23]. When two phases of minerals solution move relative
to each other under the action of external force, the equilibrium ions in the double layer
will move together with the minerals because of solid adsorption. While the diffusion layer
will move along with the “slip surface” outside the compact layer, where the potential
is called “electromotive force” or “Zeta potential”. When the Zeta potential is zero, the
negative logarithm of the activity of locating ions in the solution is called the isoelectric
point. The isoelectric point is equal to the zero electric point. Therefore, we can measure the
zero electric point of minerals using determining the Zeta potential [24]. The adsorption of
flotation reagents on the solid–liquid interface is usually affected by the surface electrical
properties of minerals. Thus, the mechanism of flotation reagents and the floatabilities of
minerals can be studied according to the change in their surface’s electrical properties.

It can be seen from Figure 8 that the law curves of the Zeta potential of hematite,
amphibole, and quartz by changing the pH in distilled water (adjusting the pH by the
hydrochloric acid and the sodium hydroxide, the same as below).
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It can be seen from Figure 8 that the zero-electric point of hematite, amphibole, and
quartz is 3.8, 3.2, and 2.1, respectively. The surface negativity of these three minerals
increases with rises with increasing pH, and the absolute value of Zeta potential rises. This
test result is consistent with the related kinds of literature.

Figure 9 shows the law curves of the Zeta potential of three minerals in sodium oleate
solution is 250 mg/L concerning pH.
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(sodium oleate = 250 mg/L).

It can be seen from Figure 9 that the isoelectric point of hematite is 2.0 in sodium oleate
solution, but it turns left at 1.8 compared with that in distilled water. The absolute value of
the Zeta potential increases with the pH rise, and the increasing range in sodium oleate
solution is greater than that in distilled water, especially at pH > 4. The result agrees with
those in the single minerals flotation test [25]. It indicates that sodium oleate is adsorbed on
the hematite surfaces. The isoelectric point of amphibole in sodium oleate solution changes
a little compared with that in distilled water. However, when pH increases, the absolute
value of potential increases too, and its change rule is close to that of hematite, which shows
that sodium oleate is also adsorbed on the surfaces of amphibole. The isoelectric point of
quartz in sodium oleate solution changes little compared with that of instilled water, and
the absolute value of the potential changes little too [26]. It indicates that sodium oleate is
not adsorbed on the surface of the quartz.

Figure 10 shows law curves of the Zeta potential of three minerals in CaCl2 is 150 mg/L
with the pH changes. Under the action of Ca2+ ion, the Zeta potential of three minerals
changes relatively small at pH < 7. The absolute value of the Zeta potential of hematite still
increases at pH > 7, but that of quartz and amphibole decreases obviously, especially the
quartz [27]. It indicates the adsorption of Ca2+ on the surfaces of these two minerals. The
results above are consistent with that of single minerals flotation.
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To investigate the inhibitory mechanism of starch on three minerals, the hematite,
amphibole, and quartz, measurements were conducted under different pH conditions with
a corn starch concentration of 20 mg/L. The experimental results, shown in the figure,
illustrate the effect of starch on the Zeta potentials of hematite, amphibole, and quartz.

It can be seen from Figure 11 that the isoelectric point of quartz is around pH at
2.0. When the pH value of the solution is lower than 2.0, the quartz surfaces become
positively charged. As the pH value increases, the absolute value of the quartz Zeta
potential decreases. This indicates that starch has a weak inhibitory effect on the quartz, as
the main interaction between starch and the quartz is through electrostatic and hydrogen
bonding. There are multiple forces at play between starch the hematite and amphibole,
including chemical adsorption, hydrogen bonding, and electrostatic interactions. When
the pH value exceeds 9, starch primarily undergoes chelation reactions with iron in the
hematite and amphibole through the hydroxyl groups in starch, adsorbing onto the surfaces
of hematite and amphibole in the form of chemical adsorption. After starch adsorption, not
only does it make the surfaces of hematite and amphibole hydrophilic, but it also prevents
the adsorption of collectors on the surfaces of hematite and amphibole, thereby exerting
an inhibitory effect. The Zeta potential curves of hematite, amphibole, and quartz in the
starch solution match the results of single minerals flotation experiments.
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Figure 11. The variation of the Zeta potentials of three minerals with pH was studied at a corn starch
concentration of 25 mg/L.

4. Conclusions

(1) Monomineralic the hematite, amphibole, and quartz in the sodium oleate system
are influenced to varying degrees by factors such as the dosage of sodium oleate, solution of
pH, the presence of Ca2+ ions, and the addition of starch, indicating that these factors have
different impacts on the floatabilities of different minerals. Starch selectively suppresses
the hematite and, to some extent, suppresses the amphibole. This reduces the differential
floatabilities between the two minerals, making it difficult to separate the amphibole from
the hematite, while the separation of the quartz from the hematite is relatively easier.

(2) The flotation separation of the hematite-quartz binary mixture and the hematite–
amphibole–quartz ternary mixture in the sodium oleate system shows that the selective
indexes of the binary mixture are better than those of the ternary mixture. The main
reason for this is that starch suppresses the flotation of amphibole, making it difficult to be
captured by the anionic collector, resulting in a lower iron concentrate grade.

(3) Potentiodynamic analysis results show that CaCl2 can be adsorbed on the surfaces
of quartz and amphibole, thereby activating these minerals. The hydroxyl groups in
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starch molecules can adsorb on the surfaces of hematite and amphibole through hydrogen
bonds, but the adsorption on the quartz are minimals. Therefore, starch suppresses the
floatabilities of hematite and amphibole, leading to poor selectivity among these three
minerals in anionic flotation systems.
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