Sequential Processing Using Supercritical Carbon Dioxide and High-Intensity Ultrasound in Sunflower Protein Flour Production: Nutritional Value, Microstructure, and Technological Functionality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Sunflower Meal Degreasing Followed by Phenolic Content Extraction
2.3. Chemical Composition
2.4. Total Amino Acid Profile
2.5. Carbohydrate Identification and Quantification
2.6. Structure Characterization and Thermal Analysis
2.6.1. Particle Size Distribution
2.6.2. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis
2.6.3. Differential Scanning Calorimetry (DSC)
2.7. Technological Functionality
2.7.1. Solubility
2.7.2. Emulsion Formation and Emulsion Stability
2.7.3. Light Microscopy
2.8. Cell Viability Evaluation
2.8.1. Viability of Caco-2 Cells Subjected to Oxidative Stress
2.8.2. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Reduction Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.1.1. Amino Acid Profile
3.1.2. Carbohydrate Composition Profile
3.2. Structural Characterization
3.2.1. Particle Size Distribution
3.2.2. Electrophoresis
3.2.3. Differential Scanning Calorimetry
3.3. Functionality
3.3.1. Solubility
3.3.2. Emulsion Characterization
Backscattering Profile
Droplet Size Distribution
3.4. Cell Viability
3.5. Impact of Green Technologies on Food Process Chain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, M.F.; Vieira, O.V. Sunflower Oil Extraction Using Mini Press; Embrapa Soja: Londrina, Brazil, 2004. [Google Scholar]
- Li, S.-T.; Duan, Y.; Guo, T.-W.; Zhang, P.-L.; He, P.; Majumdar, K. Sunflower response to potassium fertilization and nutrient requirement estimation. J. Integr. Agric. 2018, 17, 2802–2812. [Google Scholar]
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef] [PubMed]
- Mengue, P. 14% of Brazilians Declare Themselves Vegetarian, Shows Ibope Survey; Estadão, Caderno: São Paulo, Brasil, 2018; Available online: https://www.svb.org.br/vegetarianismo1/mercado-vegetariano (accessed on 10 March 2019).
- Turbiani, R. Consumers Change Eating Habits and Heat Up the Plant-Based Market in Brazil. Época Negócios, São Paulo. 2020. Available online: https://epocanegocios.globo.com/Sustentabilidade/noticia/2020/12/consumidor-muda-habitos-alimentares-e-aquece-mercado-plant-based-no-brasil.html (accessed on 10 March 2021).
- Seixas, M.; Contini, E. India: Outlook for pulse and grain markets. Brasília, DF: Embrapa. Secretariat of Intelligence and Strategic Relations. Strategic Dialogues-Observatories Series. Technical Note, 5). 2017.
- Seixas, M.; Contini, E. India: Pulses: Markets and opportunities for Brazil and Embrapa. Brasília, DF: Embrapa (Embrapa. Secretariat of Intelligence and Strategic Relations. Strategic Dialogues-Observatories Series. Technical note, 9). 2018.
- Ministry of Agriculture, Livestock and Supply. National Plan for the Development of the Bean and Pulse Chain; Ministry of Agriculture, Livestock and Supply: Brasília, Brazil, 2018.
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar]
- Linhares, G.; Roias, M.L. Ultrasound-Assisted Extraction of Natural Pigments from Food Processing By-Products: A Review. Front. Nutr. 2022, 9, 891462. [Google Scholar]
- Zabot, G.L.; Viganó, J.; Silva, E.K. Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds. Molecules 2021, 26, 5117. [Google Scholar] [CrossRef]
- Silva, E.K.; Martelli-Tosi, M.; Vardanega, R.; Nogueira, G.C.; Zabot, G.L.; Meireles, M.A.A. Technological characterization of biomass obtained from the turmeric and annatto processing by using green technologies. J. Clean. Prod. 2018, 189, 231–239. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morales, D.; Soler-Rivas, C.; Ruiz-Rodriguez, A.; Sanz, M.A.; Garcia, A.M.; Marco, P. Supercritical CO2 extraction method of aromatic compounds from truffles. LWT 2021, 150, 111954. [Google Scholar] [CrossRef]
- Friolli, M.P.S.; Silva, E.K.; Napoli, D.C.S.; Sanches, V.L.; Rostagno, M.A.; Pacheco, M.T.B. High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content. Ultrason. Sonochemistry 2023, 97, 106449. [Google Scholar] [CrossRef]
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Firestone, D. (Ed.) Official Methods and Recommended Practices of the AOCS, 6th ed.; AOCS: Urbana, IL, USA, 2013. [Google Scholar]
- Hagen, S.R.; Frost, B.; Augustin, J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of aminoacids in food. J. AOAC 1989, 72, 912–916. [Google Scholar] [CrossRef]
- White, J.A.; Fry, J.C.; Hart, R.J. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Autom. Chem. 1986, 8, 170–177. [Google Scholar]
- Peterson, G.L. A simplification of the protein assay method of lowry wich is more generally applicable. Anal. Biochem. 1977, 83, 346–356. [Google Scholar] [CrossRef]
- Lawal, O.S.; Adebowale, K.O.; Adebowale, Y.A. Functional properties of native and chemically modified protein concentrates from bambarra groundnut. Int. Food Res. J. 2007, 40, 1003–1011. [Google Scholar] [CrossRef]
- Dabbour, M.; He, R.; Ma, H.; Musa, A. Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J. Food Process. Eng. 2018, 41, e12799. [Google Scholar] [CrossRef]
- Mekala, S.; Silva, E.K.; Saldaña, M.D.A. Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: A non-dairy alternative in food systems. Eur. Food Res. Technol. 2022, 248, 185–196. [Google Scholar]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P. Sunflower Protein Concentrates and Isolates Prepared from Oil Cakes Have High Water Solubility and Antioxidant Capacity. J. Am. Oil Chem. Soc. 2011, 88, 351–360. [Google Scholar] [CrossRef]
- Alexandrino, T.D.; Ferrari, R.A.; Oliveira, L.M.; Ormenese, R.C.S.C.; Pacheco, M.T.B. Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT 2017, 84, 426–432. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef]
- Oseyko, M.; Romanovska, T.; Shevchyk, V. Justification of the amino acid composition of sunflower proteins for dietary and functional products. Ukr. Food J. 2020, 9, 394–403. [Google Scholar] [CrossRef]
- WHO. Report of a joint FAO/WHO/UNU expert consultation. In Protein and Amino Acid Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Stephen, A.M.; Phillips, G.O.; Williams, P.A. (Eds.) Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006; Chapter 6. [Google Scholar]
- Edwards, M.; Bulpin, P.V.; Dea, I.C.M.; Reid, J.S.G. Biosynthesis of legume-seed galactomannans in vitro. Planta 1989, 178, 41–51. [Google Scholar] [CrossRef]
- Cunha, P.L.; Paula, R.C.; Feitosa, J.P.A. Polysaccharides from Brazilian biodiversity: An opportunity to transform knowledge into economic value. Química Nova 2009, 32, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Sosulski, F.; Fleming, F. Chemical, Sunflower Functional, and Nutritional Protein Products Properties; Department of Crop Science, University of Saskatchewan: Saskatoon, SK, Canada, 1970. [Google Scholar]
- Bishop, C.T. Carbohydrates of sunflower heads. Can. J. Chem. 1955, 33, 1521–1529. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Prado, J.M. Natural product extraction: Principles and applications. R. Soc. Chem. 2013, 21, 516. [Google Scholar]
- Ávila, N.S.; Capote, F.P.; Castro, M.L. Ultrasound-assisted extraction and silylation prior to gas chromatography-mass spectrometry for the characterization of the triterpenic fraction in olive leaves. J. Chromatogr. A 2007, 1165, 158–165. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Tu, Z.C.; Xiao, H.; Wang, H.; Huang, X.Q.; Liu, G.X.; Liu, C.M.; Yan, S.; Fan, L.L.; Lin, D.R. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod. Process. 2014, 92, 30–37. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochem. 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Gonzalez-Pérez, S.; Vereijken, J.M. Review Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007, 87, 2173–2191. [Google Scholar] [CrossRef]
- Sullivan, J.O.; Park, M.; Beevers, J. The effect of ultrasound upon the physicochemical and emulsifying properties of wheat and soy protein isolates. J. Cereal Sci. 2016, 69, 77–84. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, Y.; Zhang, C.; Wan, J.; Shah, B.R.; Pei, Y.; Zhou, B.; Li, J.; Li, B. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrason. Sonochem. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Sullivan, J.O.; Murray, B.; Flynn, C.; Norton, I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll. 2016, 53, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, D.J.; Romero, J.; Rodriguez-Garcia, R.; Sanchez, J.L.A. Characterization of Proteins from Sunflower Leaves and Seeds: Relationship of Biomass and Seed Yield. In Trends in New Crops and New Uses; ASHS Press: Alexandria, VA, USA, 2002. [Google Scholar]
- González-Pérez, S.; Vereijken, J.M.; Merck, K.B.; Koningsveld, G.A.; Gruppen, H.; Voragen, A.G. Conformational states of sunflower (Helianthus annuus L.) helianthinin: Effect of heat and pH. J. Agric. Food Chem. 2004, 52, 6770–6778. [Google Scholar] [CrossRef]
- Ivanova, P.; Chalova, V.; Koleva, L.; Pishtiyski, I. Amino acid composition and solubility of proteins isolated from sunflower meal produced in Bulgaria. Int. Food Res. J. 2013, 20, 2995–3000. [Google Scholar]
- González- Pérez, S. Physico-Chemical and Functional Properties of Sunflower Proteins. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2003. Chapters 3–4. [Google Scholar]
- Pena Franca, P.A.; Duque-Estrada, P.; Sa, B.F.F.; Goot, A.J.; Pierucci, A.P.T.R. Meat substitutes—Past, present, and future of products available in Brazil: Changes in the nutritional profile. Future Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Grasso, S.; Pintado, T.; Pérez-Jiménez, J.; Ruiz-Capillas, C.; Herrero, A.M. Potential of a sunflower seed byproduct as animal fat replacer in healthier Frankfurters. Foods 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sripad, G.; Narasinga Rao, M.S. Effect of methods to remove polyphenols from sunflower meal on the physicochemical properties of the proteins. J. Agric. Food Chem. 1987, 35, 962–967. [Google Scholar] [CrossRef]
- Bau, H.M.; Mohtadi-Nia, D.J.; Mejean, L.; Debry, G. Preparation of colorless sunflower protein products: Effect of processing on physicochemical and nutritional properties. J. Am. Oil Chem. Soc. 1983, 60, 1141–1148. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.; Pilosof, A. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Karefyllakis, D.; Octaviana, H.; van der Goot, A.J.; Nikiforidis, C.V. The emulsifying performance of mildly derived mixtures from sunflower seeds. Food Hydrocoll. 2019, 88, 75–85. [Google Scholar] [CrossRef]
- Tahmasebi, M.; Labbafi, M.; Emam-Djomeh, Z.; Yarmand, M.S. Manufacturing the novel sausages with reduced amount of meat and fat: The product development, formulation optimization, emulsion stability and textural characterization. LWT—Food Sci. Technol. 2016, 68, 76–84. [Google Scholar]
- Adebowale, K.O.; Lawal, O.S. Comparative study of the functional properties of bambarra groundnut (Voandzeia subterranean), jack bean (Canavaliaensiformis) and mucuna bean (Mucuna pruriens) flours. Food Res. Int. 2004, 37, 355–365. [Google Scholar] [CrossRef]
- Silva, E.K.; Gomes, M.T.M.S.; Hubinger, M.D.; Cunha, R.L.; Meireles, M.A.A. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocoll. 2015, 47, 1–13. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Jom, K.N. Review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Central J. 2017, 11, 1–10. [Google Scholar]
- Barsby, J.P.; Cowley, J.M.; Leemaqz, S.Y.; Grieger, J.A.; McKeating, D.R.; Perkins, A.V.; Bastian, S.E.P.; Burton, R.A.; Bianco-Miotto, T. Nutritional properties of selected superfood extracts and their potential health benefits. PeerJ 2021, 9, e12525. [Google Scholar] [CrossRef] [PubMed]
- Alvim, J.C.; Alvim, F.A.L.S.; Sales, V.H.G.; Oliveira, E.M.; Sales, P.V.G.; Costa, A.C.R. Biorefineries: Concepts, classification, raw materials and products. J. Bioenergy Food Sci. 2014, 1, 61–77. [Google Scholar]
- Oliveira, F.R.; França, S.L.B.; Rangel, L.A.D. Principles of Circular Economy for the Development of Products in Industrial Clusters; INTERACTIONS: Campo Grande, Brazil, 2019; Volume 20, pp. 1179–1193. [Google Scholar]
- Skrbic, B.D.; Filipčev, B. Nutritional and sensory evaluation of wheat breads supplemented with oleic-rich sunflower seed. Food Chem. 2008, 108, 119–129. [Google Scholar] [CrossRef]
- Puraikalan, Y.; Sabitha, N. Development and objective evaluation of sunflower seed fortified cookies. Int. J. Curr. Res. 2015, 7, 19927–19930. [Google Scholar]
- Zorzi, C.Z.; Garske, R.P.; Flores, S.H.; Thys, R.C.S. Sunflower protein concentrate: A possible and beneficial ingredient for gluten-free bread. Innov. Food Sci. Emerg. Technol. 2020, 66, 102539. [Google Scholar]
- Salem, E.M.; Hamed, N.A.; Awlya, O.F. Implementation of the sunflower seeds in enhancing the nutritional values of cake. J. Appl. Sci. Res. 2012, 8, 2626–2631. [Google Scholar]
- Kuru, C.; Tontul, I. Optimisation of Plant-based Milk Formulation using Hazelnut, Sunflower Seed and Pumpkin Seed by Mixture Design. Food Sci. Technol. 2020, 8, 2441–2448. [Google Scholar] [CrossRef]
Amino Acids (mg/g of Protein) | SM | DSM | SF |
---|---|---|---|
Aspartic acid | 106.7 ± 0.1 | 102.8 ± 0.1 | 97.6 ± 0.2 |
Glutamic acid | 222.3 ± 0.2 | 222.2 ± 0.1 | 215.5 ± 0.5 |
Serine | 46.2 ± 0.2 | 47.2 ± 0.0 | 48.4 ± 0.1 |
Glycine | 57.9 ± 0.1 | 65.0 ± 0.2 | 63.9 ± 0.2 |
Histidine | 27.1 ± 0.0 | 28.8 ± 0.0 | 30.9 ± 0.1 |
Arginine | 90.8 ± 0.2 | 99.6 ± 0.1 | 92.2 ± 0.2 |
Threonine | 35.9 ± 0.1 | 39.3 ± 0.0 | 42.8 ± 0.1 |
Alanine | 44.5 ± 0.1 | 46.9 ± 0.0 | 44.8 ± 0.1 |
Proline | 38.3 ± 0.0 | 47.6 ± 0.0 | 47.8 ± 0.2 |
Tyrosine | 28.0 ± 0.0 | 28.1 ± 0.0 | 29.8 ± 0.1 |
Valine | 58.2 ± 0.1 | 55.5 ± 0.1 | 52.0 ± 0.1 |
Methionine | 22.2 ± 0.1 | 21.8 ± 0.1 | 23.1 ± 0.1 |
Cystine | 15.9 ± 0.0 | 21.0 ± 0.0 | 11.9 ± 0.0 |
Isoleucine | 45.6 ± 0.1 | 42.5 ± 0.1 | 42.4 ± 0.3 |
Leucine | 64.2 ± 0.2 | 66.9 ± 0.0 | 66.9 ± 0.3 |
Phenylalanine | 47.4 ± 0.1 | 47.4 ± 0.1 | 49.8 ± 0.3 |
Lysine | 38.8 ± 0.1 | 36.4 ± 0.2 | 40.0 ± 0.2 |
Hydrophobic | 327.0 | 328.6 | 326.8 |
Hydrophilic | 485.7 | 489.8 | 476.2 |
Neuter | 183.9 | 181.7 | 196.8 |
mg/g of Protein | ||||
---|---|---|---|---|
Total Amino Acids | FAO/ RDC 54, 2007 | SM | DSM | SF |
Histidine | 15 | 27.1 | 28.8 | 30.9 |
Isoleucine | 30 | 45.6 | 42.5 | 42.4 |
Leucine | 59 | 64.2 | 66.9 | 66.9 |
Lysine | 45 | 38.8 | 36.4 | 40.0 |
Methionine + Cystine | 22 | 38.1 | 42.8 | 35.0 |
Cystine + Tyrosine | 43.9 | 49.1 | 65.91 | 41.7 |
Threonine | 23 | 35.9 | 39.3 | 42.8 |
Tryptophan | 6 | 10.1 | 10.3 | 11.1 |
Valine | 39 | 58.2 | 55.5 | 52.0 |
Carbohydrate | SM | SF |
---|---|---|
Glucans: | 3.66 ± 0.02 | 5.19 ± 0.01 |
Glucose (%) | 1.89 ± 0.01 | 1.86 ± 0.01 |
Cellobiose (%) | 1.77 ± 0.01 | 3.33 ± 0.00 |
Xylan (%) | 6.9 ± 0.03 | 9.76 ± 0.05 |
Stachyose (%) | 1.63 ± 0.02 | 1.86 ± 0.02 |
D4,3 (µm) | d10 (µm) | d50 (µm) | d90 (µm) | |
---|---|---|---|---|
SM | 764 | 34.4 | 551 | 1860 |
DSM | 260 | 12.1 | 174 | 655 |
SF | 231 | 10.3 | 159 | 571 |
Treatment | D3,2 (µm) | d10 (µm) | d50 (µm) | d90 (µm) |
---|---|---|---|---|
SM at pH of 7 | 15 ± 1 | 8 ± 2 | 35 ± 2 | 498 ± 24 |
DSM at pH of 7 | 15 ± 3 | 8 ± 2 | 44 ± 6 | 638 ± 11 |
SF at pH of 4 | 16.9 ± 0.3 | 7.5 ± 0.3 | 42.5 ± 0.4 | 458 ± 2 |
SF at pH of 5 | 24.8 ± 0.4 | 13.9 ± 0.5 | 62 ± 1 | 500 ± 12 |
SF at pH of 6 | 33 ± 3 | 18 ± 2 | 88 ± 6 | 549 ± 36 |
SF at pH of 7 | 13 ± 1 | 5.4 ± 0.6 | 40 ± 3 | 425 ± 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Friolli, M.P.; Silva, E.K.; Chaves, J.; da Silva, M.F.; Goldbeck, R.; Galland, F.A.B.; Pacheco, M.T.B. Sequential Processing Using Supercritical Carbon Dioxide and High-Intensity Ultrasound in Sunflower Protein Flour Production: Nutritional Value, Microstructure, and Technological Functionality. Processes 2023, 11, 2407. https://doi.org/10.3390/pr11082407
dos Santos Friolli MP, Silva EK, Chaves J, da Silva MF, Goldbeck R, Galland FAB, Pacheco MTB. Sequential Processing Using Supercritical Carbon Dioxide and High-Intensity Ultrasound in Sunflower Protein Flour Production: Nutritional Value, Microstructure, and Technological Functionality. Processes. 2023; 11(8):2407. https://doi.org/10.3390/pr11082407
Chicago/Turabian Styledos Santos Friolli, Mariana Pacífico, Eric Keven Silva, Janaíne Chaves, Marcos Fellipe da Silva, Rosana Goldbeck, Fabiana Andrea Barrera Galland, and Maria Teresa Bertoldo Pacheco. 2023. "Sequential Processing Using Supercritical Carbon Dioxide and High-Intensity Ultrasound in Sunflower Protein Flour Production: Nutritional Value, Microstructure, and Technological Functionality" Processes 11, no. 8: 2407. https://doi.org/10.3390/pr11082407
APA Styledos Santos Friolli, M. P., Silva, E. K., Chaves, J., da Silva, M. F., Goldbeck, R., Galland, F. A. B., & Pacheco, M. T. B. (2023). Sequential Processing Using Supercritical Carbon Dioxide and High-Intensity Ultrasound in Sunflower Protein Flour Production: Nutritional Value, Microstructure, and Technological Functionality. Processes, 11(8), 2407. https://doi.org/10.3390/pr11082407