Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs
Abstract
:1. Introduction
2. CO2 Huff-n-Puff Experiments
2.1. Experimental Materials and Equipment
2.2. Experimental Procedures
2.3. Experimental Results and Discussion
2.3.1. Oil Composition Variation during CO2 Huff-n-Puff
2.3.2. CO2 Extraction Efficiency of Oil
3. Influencing Factors of Oil Composition and Property Variation
3.1. Reservoir Numerical Simulation Model
3.2. Effect of Production Time
3.3. Effect of Reservoir Pressure
3.4. Effect of Reservoir Temperature
4. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, J.; Yu, J.; Xu, L.; Niu, X.; Feng, S.; Wang, X.; You, Y.; Li, T. New Progress in Exploration and Development of Tight Oil in Ordos Basin and Main Controlling Factors of Large-scale Enrichment and Exploitable Capacity. China Pet. Explor. 2015, 20, 9–19. [Google Scholar]
- Jia, Z.; Cheng, L.; Zhou, J.; Cao, R.; Pu, B.; Jia, P.; Chen, M. Upscaling simulation method of fluid flow for fracturing-shut in-flowback-production process in tight oil reservoirs: Hysteresis effects of capillary pressure and relative permeability. Geoenergy Sci. Eng. 2023, 226, 211792. [Google Scholar]
- Syed, F.I.; Dahaghi, A.K.; Muther, T. Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Pet. Sci. 2022, 19, 2131–2149. [Google Scholar] [CrossRef]
- Mohamedy, T.; Yang, F.; Mbarak, S.S.; Gu, J. Investigation on the performance between water alternating gas and water huff n puff techniques in the tight oil reservoir by three-dimensional model simulation: A case study of Jilin tight oil field. J. King Saud Univ.-Eng. Sci. 2022, 34, 359–367. [Google Scholar]
- Syed, F.I.; Muther, T.; Van, V.P.; Dahaghi, A.K.; Negahban, S. Numerical Trend Analysis for Factors Affecting EOR Performance and CO2 Storage in Tight Oil Reservoirs. Fuel 2022, 316, 123307. [Google Scholar] [CrossRef]
- Cao, A.; Li, Z.; Zheng, L.; Bai, H.; Zhu, D.; Li, B. Nuclear magnetic resonance study of CO2 flooding in tight oil reservoirs: Effects of matrix permeability and fracture. Geoenergy Sci. Eng. 2023, 225, 211692. [Google Scholar]
- Gao, H.; Cao, J.; Wang, C.; He, M.; Dou, L.; Huang, X.; Li, T. Comprehensive characterization of pore and throat system for tight sandstone reservoirs and associated permeability determination method using SEM, rate-controlled mercury and high pressure mercury. J. Pet. Sci. Eng. 2019, 174, 514–524. [Google Scholar] [CrossRef]
- Wang, W.; Su, Y.; Mu, L.; Tang, M.R.; Gao, L. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs. J. China Univ. Pet. (Ed. Nat. Sci.) 2013, 37, 93–97. [Google Scholar]
- Kang, Y.; Tian, J.; Luo, P.; You, L.; Liu, X. Technical bottlenecks and development strategies of enhancing recovery for tight oil reservoirs. Acta Pet. Sin. 2020, 41, 467–477. [Google Scholar]
- Han, B.; Cui, G.; Wang, Y.; Zhang, J.; Zhai, Z.; Shi, Y.; Yan, F.; Li, W. Effect of fracture network on water injection huff-puff for volume stimulation horizontal wells in tight oil reservoir: Field test and numerical simulation study. J. Pet. Sci. Eng. 2021, 207, 109106. [Google Scholar]
- Akbarabadi, M.; Alizadeh, A.; Piri, M.; Nagarajan, N. Experimental evaluation of enhanced oil recovery in unconventional reservoirs using cyclic hydrocarbon gas injection. Fuel 2023, 331, 125676. [Google Scholar] [CrossRef]
- Huang, X.; Gao, H.; Dou, L.B. Micro pore structure and water-flooding characteristics on tight sandstone reservoir. J. China Univ. Pet. (Ed. Nat. Sci.) 2020, 44, 80–88. [Google Scholar]
- Tang, X.; Li, Y.; Han, X.; Zhou, Y.; Zhan, J.; Xu, M.; Zhou, R.; Cui, K.; Chen, X.; Wang, L. Dynamic characteristics and influencing factors of CO2 huff and puff in tight oil reservoirs. Pet. Explor. Dev. 2021, 48, 817–824. [Google Scholar] [CrossRef]
- Pu, C.; Kang, S.; Pu, J.; Gu, Y.; Gao, Z.; Wang, Y.; Wang, K. Progress and development trend of water huff-n-puff technology for horizontal wells in tight oil reservoirs in China. Acta Pet. Sin. 2023, 44, 188–206. [Google Scholar]
- Wu, Z.; Zeng, Q.; Li, J.; Wang, L. New effective energy-supplement development method of waterflood huff and puff for the oil reservoir with stimulated reservoir volume fracturing. Pet. Geol. Recovery Effic. 2017, 24, 78–83+92. [Google Scholar]
- Li, Z.; Qu, X.; Liu, W.; Lei, Q.; Sun, H.; He, Y. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 217–221. [Google Scholar]
- Qu, X.; Lei, Q.; Gao, W.; Zhang, L.; He, Y.; Wang, B. Experimental study on imbibition of Chang7 tight oil cores in Erdos Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2018, 42, 102–109. [Google Scholar]
- Sheng, J.J. What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Pet. Sci. Eng. 2017, 159, 635–643. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Gao, X.; Wang, M.; Yu, J. Experimental study on liquid production law, oil recovery mechanism, and influencing factors of water huff-n-puff in the tight sedimentary tuff oil reservoir. J. Pet. Sci. Eng. 2022, 208, 109721. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yu, X.; Wang, C.; Yao, B.; Wang, S.; Winterfeld, P.H.; Wang, X.; Yang, Z.; Wang, Y.; et al. Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 2017, 210, 425–445. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, J. EOR mechanisms of CO2 huff and puff process for heavy oil recovery. J. China Univ. Pet. (Ed. Nat. Sci.) 2021, 45, 102–111. [Google Scholar]
- Sun, L.; Li, Z.; Dou, H. Laboratory Evaluation and Parameter Optimization of CO2 Huff-n-puff in Ultra-low Permeability Reservoirs. Oilfield Chem. 2018, 35, 268–272. [Google Scholar]
- Ren, B.; Male, F.; Duncan, I.J. Economic analysis of CCUS: Accelerated development for CO2 EOR and storage in residual oil zones under the context of 45Q tax credit. Appl. Energy 2022, 321, 119393. [Google Scholar]
- Ren, B.; Duncan, I.J. Maximizing oil production from water alternating gas (CO2) injection into residual oil zones: The impact of oil saturation and heterogeneity. Energy 2022, 222, 119915. [Google Scholar]
- Sun, R.; Yu, W.; Xu, F.; Pu, H.; Miao, J. Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures. Fuel 2019, 236, 1446–1457. [Google Scholar] [CrossRef]
- Wang, T.; Wang, L.; Meng, X.; Chen, Y.; Song, W.; Yuan, C. Key parameters and dominant EOR mechanism of CO2 miscible flooding applied in low-permeability oil reservoirs. Geoenergy Sci. Eng. 2023, 225, 211724. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Wang, R.; Zhang, X.; Ma, S.; Su, Y.; Wang, C.; Luo, W.; Sun, H. Microscopic experiment study on mechanisms of oil-gas interaction and CO2-surfactant flooding with different temperatures and pressures. J. CO2 Util. 2023, 69, 102389. [Google Scholar] [CrossRef]
- Xiaodong, S.; Linghui, S.; Jianfei, Z.; Binhui, L.; Xue, H.; Huimin, L.; Chenggang, J. Carbon dioxide huff-puff technology and application in tight oil horizontal wells in the northern Songliao Basin. Acta Pet. Sin. 2022, 43, 998–1006. [Google Scholar]
- Fan, X.; Pu, W.; Shan, J.; Du, D.; Qin, J.; Gao, Y. Feasibility of enhanced oil recovery by CO2 huff-n-puff in tight conglomerate reservoir. Pet. Reserv. Eval. Dev. 2021, 11, 831–836. [Google Scholar]
- Wei, B.; Zhong, M.; Gao, K.; Li, X.; Zhang, X.; Cao, J.; Lu, J. Oil recovery and compositional change of CO2 huff-n-puff and continuous injection modes in a variety of dual-permeability tight matrix-fracture models. Fuel 2020, 276, 117939. [Google Scholar] [CrossRef]
- Afari, S.; Ling, K.; Sennaoui, B.; Maxey, D.; Oguntade, T.; Porlles, J. Optimization of CO2 huff-n-puff EOR in the Bakken Formation using numerical simulation and response surface methodology. J. Pet. Sci. Eng. 2022, 215, 110552. [Google Scholar]
- Fakher, S.; Imqam, A. Application of carbon dioxide injection in shale oil reservoirs for increasing oil recovery and carbon dioxide storage. Fuel 2020, 265, 116944. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, M.S.; Lee, K.S. Comprehensive modeling of CO2 Huff-n-Puff in asphaltene-damaged shale reservoir with aqueous solubility and nano-confinement. J. Ind. Eng. Chem. 2020, 90, 232–243. [Google Scholar] [CrossRef]
- Du, D.J.; Pu, W.F.; Jin, F.Y.; Liu, R. Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale. Chem. Eng. Res. Des. 2020, 156, 425–432. [Google Scholar] [CrossRef]
- Du, D.; Li, C.; Song, X.; Liu, Q.; Ma, N.; Wang, X.; Shen, Y.; Li, Y. Experimental study on residue oil distribution after the supercritical CO2 huff-n-puff process in low permeability cores with Nuclear Magnetic Resonance (NMR). Arab. J. Chem. 2021, 14, 103355. [Google Scholar] [CrossRef]
- Li, L.; Su, Y.; Hao, Y.; Zhan, S.; Lv, Y.; Zhao, Q.; Wang, H. A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production. J. Pet. Sci. Eng. 2019, 181, 106174. [Google Scholar] [CrossRef]
- Xue, W.; Wang, Y.; Chen, Z.; Liu, H. An integrated model with stable numerical methods for fractured underground gas storage. J. Clean. Prod. 2023, 393, 136268. [Google Scholar] [CrossRef]
- Zhu, C.F.; Guo, W.; Wang, Y.P.; Li, Y.J.; Gong, H.J.; Xu, L.; Dong, M.Z. Experimental study of enhanced oil recovery by CO2 huf-n-puff in shales and tight sandstones with fractures. Pet. Sci. 2021, 18, 852–869. [Google Scholar]
- Chen, H.; Liu, X.L.; Jia, N.H.; Zhang, K.; Yang, R.; Yang, S. Prospects and key scientific issues of CO2 near-miscible flooding. Pet. Sci. Bull. 2020, 3, 392–401. [Google Scholar]
- Ma, Q.; Yang, S.; Chen, H.; Wang, L.; Qian, K.; Meng, Z.; Hao, L.; Wang, Z. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir—Taking the Lucaogou formation in the Xinjiang Jimsar sag as an example. Pet. Sci. Bull. 2018, 4, 434–445. [Google Scholar]
- Jia, Z.H.; Cao, R.Y.; Wang, B.Y.; Cheng, L.S.; Zhou, J.C.; Pu, B.B.; Yin, F.G.; Ma, M. Effects of CH4/CO2 multi-component gas on components and properties of tight oil during CO2 utilization and storage: Physical experiment and composition numerical simulation. Pet. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Seyyedi, M.; Mahzari, P.; Sohrabi, M. A comparative study of oil compositional variations during CO2 and carbonated water injection scenarios for EOR. J. Pet. Sci. Eng. 2018, 164, 685–695. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Su, Y.; Da, Q.; Fu, J.; Wang, R.; Chen, F. Microfluidic investigation on asphaltene interfaces attempts to carbon sequestration and leakage: Oil-CO2 phase interaction characteristics at ultrahigh temperature and pressure. Appl. Energy 2023, 348, 121518. [Google Scholar]
- Peng, D.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Li, R.; Liao, X.; Zou, J.; Gao, C.; Zhao, D.; Zhang, Y.; Zhou, X. Asphaltene Deposition during CO2 Flooding in Ultralow Permeability Reservoirs: A Case Study from Changqing Oil Field. Geofluids 2021, 2021, 6626114. [Google Scholar]
- Cao, M.; Gu, Y. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes. Fuel 2013, 109, 157–166. [Google Scholar] [CrossRef]
- Zanganeh, P.; Ayatollahi, S.; Alamdari, A.; Zolghadr, A.; Dashti, H.; Kord, S. Asphaltene Deposition during CO2 Injection and Pressure Depletion:A Visual Study. Energy Fuels 2012, 26, 1412–1419. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
Radius/m | 30 × 10 | Horizontal permeability/10−3 µm2 | 0.1 |
Thickness/m | 5 × 3 | Vertical permeability/10−3 µm2 | 0.01 |
Depth/m | 2500 | Gas injection rate/sm3/d | 50,000 |
Pressure/MPa | 18.0 | Gas injection time/day | 60 |
Temperature/°C | 108 | Soaking time/day | 60 |
Oil saturation/% | 50 | Production time/day | 120 |
Porosity/% | 10 | Bottom hole pressure/MPa | 13.0 |
Parameters | Actual Values | Fitting Values | Relative Error |
---|---|---|---|
Oil density (50 °C, 0.1 MPa) kg/m3 | 855 | 858 | 0.35% |
Oil viscosity (50 °C, 0.1 MPa) mPa·s | 23 | 24 | 4.35% |
Saturation pressure MPa | 4.97 | 5.15 | 3.62% |
Gas oil ratio sm3/m3 | 19.5 | 20.0 | 2.56% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Gao, H.; Zhai, Z.; Wen, X.; Zhang, N.; Wang, C.; Cheng, Z.; Li, T.; Wang, D. Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs. Processes 2023, 11, 2415. https://doi.org/10.3390/pr11082415
Han B, Gao H, Zhai Z, Wen X, Zhang N, Wang C, Cheng Z, Li T, Wang D. Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs. Processes. 2023; 11(8):2415. https://doi.org/10.3390/pr11082415
Chicago/Turabian StyleHan, Bo, Hui Gao, Zhiwei Zhai, Xiaoyong Wen, Nan Zhang, Chen Wang, Zhilin Cheng, Teng Li, and Deqiang Wang. 2023. "Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs" Processes 11, no. 8: 2415. https://doi.org/10.3390/pr11082415
APA StyleHan, B., Gao, H., Zhai, Z., Wen, X., Zhang, N., Wang, C., Cheng, Z., Li, T., & Wang, D. (2023). Study on Oil Composition Variation and Its Influencing Factors during CO2 Huff-n-Puff in Tight Oil Reservoirs. Processes, 11(8), 2415. https://doi.org/10.3390/pr11082415