Combining α-Al2O3 Packing Material and a ZnO Nanocatalyst in an Ozonized Bubble Column Reactor to Increase the Phenol Degradation from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reaction Apparatus
2.3. Operating Procedure
3. Results and Discussion
3.1. Flow Behavior in the BCR
3.2. Characterization of the ZnO Nanocatalyst
3.3. Phenol Degradation Using Ozone Gas
3.4. Phenol Degradation Using Ozone Gas and a ZnO Nanocatalyst
3.5. Phenol Degradation Using Ozone and α-Al2O3 as a Packing Material in a BCR
3.6. Phenol Degradation When Using Ozone, α-Al2O3 packing, and a ZnO Nanocatalyst
3.7. Reaction Kinetics of the Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of organic compounds in water and wastewater: A critical review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Quan, X.; Li, R.; Wu, J.; Zhao, Q. Ozonation of phenol-containing wastewater using O3/Ca (OH)2 system in a microbubble gas-liquid reactor. Ozone Sci. Eng. 2018, 40, 173–182. [Google Scholar] [CrossRef]
- Miao, F.; Zhang, S.; Sun, X.; Li, Y.; Shang, R.; Wu, W.; Jiao, W.; Liu, Y. Degradation of phenol with Mn-CoOX/γ-Al2O3 catalytic ozonation enhanced by high gravity technology. Chem. Eng. Sci. 2023, 280, 119036. [Google Scholar] [CrossRef]
- Derco, J.; Gotvajn, A.Ž.; Čižmárová, O.; Dudáš, J.; Sumegová, L.; Šimovičová, K. Removal of micropollutants by ozone-based processes. Processes 2021, 9, 1013. [Google Scholar] [CrossRef]
- Mohamadi, L.; Bazrafshan, E.; Rahdar, A.; Labuto, G.; Kamali, A.R. Nanostructured MgO-enhanced catalytic ozonation of petrochemical wastewater. Bol. Soc. Esp. Cerám. Vidr. 2021, 60, 391–400. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, C.; Hu, Y.; Wu, H. Zinc ferrite catalysts for ozonation of aqueous organic contaminants: Phenol and bio-treated coking wastewater. Sep. Purif. Technol. 2015, 156, 625–635. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; Chen, F.; Zhao, S.; Zhu, J.; Yin, C. Application of heterogeneous catalytic ozonation in wastewater treatment: An overview. Catalysts 2023, 13, 342. [Google Scholar] [CrossRef]
- Lima, V.N.; Rodrigues, C.S.; Sampaio, E.F.; Madeira, L.M. Insights into real industrial wastewater treatment by Fenton’s oxidation in gas-bubbling reactors. J. Environ. Manag. 2020, 265, 110501. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, H.; Liu, Z.; Liu, T.; Jiang, P.; Arowo, M.; Shao, L. Amaranth wastewater treatment by intensified ozonation in a rotating zigzag bed. J. Water Process Eng. 2022, 49, 102984. [Google Scholar] [CrossRef]
- Van Aken, P.; Van den Broeck, R.; Degrève, J.; Dewil, R. A pilot-scale coupling of ozonation and biodegradation of 2, 4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. J. Clean. Prod. 2017, 161, 1432–1441. [Google Scholar] [CrossRef]
- Ratman, I.; Kusworo, T.D.; Utomo, D.P.; Azizah, D.A.; Ayodyasena, W.A. Petroleum refinery wastewater treatment using three steps modified nanohybrid membrane coupled with ozonation as integrated pre-treatment. J. Environ. Chem. Eng. 2020, 8, 103978. [Google Scholar] [CrossRef]
- Mousa, N.E.; Mohammed, S.S.; Shnain, Z.Y.; Abid, M.F.; Alwasiti, A.A.; Sukkar, K.A. Catalytic photodegradation of cyclic sulfur compounds in a model fuel using a bench-scale falling-film reactor irradiated by a visible light. Bull. Chem. React. Eng. Catal. 2022, 17, 755–767. [Google Scholar] [CrossRef]
- Muddemann, T.; Neuber, R.; Haupt, D.; Graßl, T.; Issa, M.; Bienen, F.; Enstrup, M.; Möller, J.; Matthée, T.; Sievers, M.; et al. Improving the treatment efficiency and lowering the operating costs of electrochemical advanced oxidation processes. Processes 2021, 9, 1482. [Google Scholar] [CrossRef]
- Sharma, S.; Chokshi, N.; Ruparelia, J.P. Effect of operating parameters on O3, O3/UV, O3/UV/PS process using bubble column reactor for degradation of reactive dyes. J. Inst. Eng. (India) Series A 2023, 104, 565–578. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iimura, K.; Satone, H.; Itoh, K.; Maeda, K. Ozonation of aqueous phenol using high-silica zeolite in an aerated mixing vessel. Asia-Pac. J. Chem. Eng. 2018, 13, e2175. [Google Scholar] [CrossRef]
- Shanian, Z.Y.; Abid, M.F.; Sukkar, K.A. Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor. Desalination Water Treat. 2021, 210, 22–30. [Google Scholar] [CrossRef]
- Nedeltchev, S. Unified approach for prediction of the volumetric mass transfer coefficients in a homogeneous and heterogeneous bubble column based on the non-corrected penetration theory: Case studies. Processes 2022, 10, 1828. [Google Scholar] [CrossRef]
- Flagiello, D.; Tammaro, D.; Erto, A.; Maffettone, P.L.; Lancia, A.; Di Natale, F. Foamed structured packing for mass-transfer equipment produced by an innovative 3D printing technology. Chem. Eng. Sci. 2022, 260, 117853. [Google Scholar] [CrossRef]
- Guo, H.; Li, X.; Li, G.; Liu, Y.; Rao, P. Preparation of SnOx-MnOx@ Al2O3 for catalytic ozonation of phenol in hypersaline wastewater. Ozone Sci. Eng. 2023, 45, 262–275. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Sukkar, K.A.; Shnain, Z.Y. Effect of graphene and multiwalled carbon nanotube additives on the properties of nano-reinforced rubber. Chem. Pap. 2021, 75, 3265–3272. [Google Scholar] [CrossRef]
- Van Aken, P.; Van den Broeck, R.; Degrève, J.; Dewil, R. The effect of ozonation on the toxicity and biodegradability of 2, 4-dichlorophenol-containing wastewater. Chem. Eng. J. 2015, 280, 728–736. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, L.; Li, Z.; Esmailpour, A.A.; Li, K.; Wang, S.; Liu, R.; Li, X.; Yun, J. Efficient treatment of phenol wastewater by catalytic ozonation over micron-sized hollow MgO rods. ACS Omega 2021, 6, 25506–25517. [Google Scholar] [CrossRef] [PubMed]
- Pokkiladathu, H.; Farissi, S.; Muthukumar, A.; Muthuchamy, M. Removal of a contaminant of emerging concern by heterogeneous catalytic ozonation process with a novel nano bimetallic catalyst embedded on activated carbon. Ozone Sci. Eng. 2022, 45, 361–373. [Google Scholar] [CrossRef]
- Almukhtar, R.; Hammoodi, S.I.; Majdi, H.S.; Sukkar, K.A. Managing transport processes in thermal cracking to produce high-quality fuel from extra-heavy waste crude oil using a semi-batch reactor. Processes 2022, 10, 2077. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A.; Lan, B.Y.; Puma, G.L. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor. Water Res. 2009, 43, 1523–1532. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Ma, L.; Wang, H.; Fan, J. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst. Chemosphere 2018, 195, 336–343. [Google Scholar] [CrossRef]
- Jasim, M.A.; AlJaberi, F.Y. Removal of COD from real oily wastewater by electrocoagulation using a new configuration of electrodes. Environ. Monitor. Assess. 2023, 195, 1–17. [Google Scholar] [CrossRef]
- Ajeel, S.A.; Sukkar, K.A.; Zedin, N.K. New magnesia-thermal reduction technique to produce high-purity crystalline nano-silicon via semi-batch reactor. Mater. Today Proc. 2021, 42, 1966–1972. [Google Scholar] [CrossRef]
- Barlak, M.S.; Değermenci, N.; Cengiz, I.; Özel, H.U.; Yildiz, E. Comparison of phenol removal with ozonation in jet loop reactor and bubble column. J. Environ. Chem. Eng. 2020, 8, 104402. [Google Scholar] [CrossRef]
- Jin, X.; Wu, C.; Fu, L.; Tian, X.; Wang, P.; Zhou, Y.; Zuo, J. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J. Environ. Sci. 2023, 124, 330–349. [Google Scholar] [CrossRef]
- Alattar, S.A.; Sukkar, K.A.; Alsaffar, M.A. The role of TiO2 NPs catalyst and packing material in removal of phenol from wastewater using an ozonized bubble column reactor. Acta Innov. 2023, 46, 90–101. [Google Scholar] [CrossRef]
- Yan, P.; Ye, Y.; Wang, M. Catalytic ozonation of phenol by ZnFe2O4/ZnNCN: Performance and mechanism. Environ. Sci. Pollut. Res. 2022, 29, 88172–88181. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Sukkar, K.A.; Jaed, D.M. Development of an extremely efficient Iraqi nano-lubricating oil (Base-60) employing SiO2 and Al2O3 nanoparticles. AIP Conf. Proc. 2022, 2443, 1. [Google Scholar]
- Xiao, J.; Xie, Y.; Cao, H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 2015, 121, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, S.; Dai, X.; Dong, B. Application, mechanism, and prospects of Fe-based/Fe-biochar catalysts in heterogenous ozonation process: A review. Chemosphere 2023, 319, 138018. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Process Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Baqur, M.S.; Hamied, R.S.; Sukkar, K.A. An eco-friendly process to produce high-purity nano-γ-Al2O3 from aluminum scrap using a novel electrolysis technique for petroleum industry applications. Arabian J. Sci. Eng. 2023, 1–11. [Google Scholar] [CrossRef]
- Gao, K.; Shao, S.; Li, Z.; Jing, J.; Jiao, W.; Liu, Y. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation. Chin. J. Chem. Eng. 2023, 53, 317–323. [Google Scholar] [CrossRef]
- Saputera, W.H.; Putrie, A.S.; Esmailpour, A.A.; Sasongko, D.; Suendo, V.; Mukti, R.R. Technology advances in phenol removals: Current progress and future perspectives. Catalysts 2021, 11, 998. [Google Scholar] [CrossRef]
- Sable, S.S.; Shah, K.J.; Chiang, P.C.; Lo, S.L. Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs). J. Taiwan Inst. Chem. Eng. 2018, 91, 434–440. [Google Scholar] [CrossRef]
- Hamied, R.S.; Ali, A.N.M.; Sukkar, K.A. Enhancing heavy crude oil flow in pipelines through heating-induced viscosity reduction in the petroleum industry. Fluid Dyn. Mater. Process. 2023, 19. [Google Scholar] [CrossRef]
- Ghaisani, S.V.; Wahyudi, D.P.; Enjarlis, E.; Karamah, E.F.; Bismo, S. Performance of phenolic wastewater degradation with ozonation and catalytic ozonation technique in multi-injection bubble column reactor. AIP Conf. Proc. 2019, 2175, 1. [Google Scholar]
- Wei, X.; Shao, S.; Ding, X.; Jiao, W.; Liu, Y. Degradation of phenol with heterogeneous catalytic ozonation enhanced by high gravity technology. J. Clean. Prod. 2020, 248, 119179. [Google Scholar] [CrossRef]
- Rahman–Al Ezzi, A.A. Phenol removal using pulsation bubble column with inverse fluidization airlift loop reactor. Chem. Ind. Chem. Eng. Q. 2021, 27, 99–106. [Google Scholar] [CrossRef]
- Honarmandrad, Z.; Javid, N.; Malakootian, M. Removal efficiency of phenol by ozonation process with calcium peroxide from aqueous solutions. Appl. Water Sci. 2021, 11, 14. [Google Scholar] [CrossRef]
- Jothinathan, L.; Cai, Q.Q.; Ong, S.L.; Hu, J.Y. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process. Chemosphere 2021, 263, 127980. [Google Scholar] [CrossRef]
- Alattar, S.A.; Sukkar, K.A.; Alsaffar, M.A. Enhancement of ozonation reaction for efficient removal of phenol from wastewater using a packed bubble column reactor. Indones. J. Chem. 2023, 23, 383–394. [Google Scholar] [CrossRef]
- Bhosale, G.S.; Vaidya, P.D.; Joshi, J.B.; Patil, R.N. Analysis of reaction kinetics of the ozonation of phenolic compounds and assessment of the role of mass transfer in the overall rate. Ind. Eng. Chem. Res. 2023, 62, 8181–8190. [Google Scholar] [CrossRef]
- Ferreiro, C.; de Luis, A.; Villota, N.; Lomas, J.M.; Lombraña, J.I.; Camarero, L.M. Application of a Combined Adsorption−Ozonation Process for Phenolic Wastewater Treatment in a Continuous Fixed-Bed Reactor. Catalysts 2021, 11, 1014. [Google Scholar] [CrossRef]
- Javed, S.; Mirza, C.R.; Khan, A.H.A.; Khalifa, W.; Achour, B.; Barros, R.; Yousaf, S.; Butt, T.A.; Iqbal, M. Limited phosphorous supply improved lipid content of Chlorella vulgaris that increased phenol and 2-chlorophenol adsorption from contaminated water with acid treatment. Processes 2022, 10, 2435. [Google Scholar] [CrossRef]
- Chen, C.; Yoza, B.A.; Wang, Y.; Wang, P.; Li, Q.X.; Guo, S.; Yan, G. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O3 catalyst. Environ. Sci. Pollut. Res. 2015, 22, 5552–5562. [Google Scholar] [CrossRef] [PubMed]
- Hamied, R.S.; Sukkar, K.A.; Majdi, H.S.; Shnain, Z.Y.; Graish, M.S.; Mahmood, L.H. Catalytic-level identification of prepared Pt/HY, Pt-Zn/HY, and Pt-Rh/HY nanocatalysts on the reforming reactions of n-Heptane. Processes 2023, 11, 270. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, S.; Li, Z.; Liang, X.; Zhang, Z.; Liu, R.; Yun, J. Efficient degradation of phenol in aqueous solution by catalytic ozonation over MgO/AC. J. Water Process Eng. 2020, 36, 101168. [Google Scholar] [CrossRef]
- Cao, Q.; Sang, L.; Tu, J.; Xiao, Y.; Liu, N.; Wu, L.; Zhang, J. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. Chemosphere 2021, 270, 128621. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majhool, A.K.; Sukkar, K.A.; Alsaffar, M.A. Combining α-Al2O3 Packing Material and a ZnO Nanocatalyst in an Ozonized Bubble Column Reactor to Increase the Phenol Degradation from Wastewater. Processes 2023, 11, 2416. https://doi.org/10.3390/pr11082416
Majhool AK, Sukkar KA, Alsaffar MA. Combining α-Al2O3 Packing Material and a ZnO Nanocatalyst in an Ozonized Bubble Column Reactor to Increase the Phenol Degradation from Wastewater. Processes. 2023; 11(8):2416. https://doi.org/10.3390/pr11082416
Chicago/Turabian StyleMajhool, Adnan K., Khalid A. Sukkar, and May A. Alsaffar. 2023. "Combining α-Al2O3 Packing Material and a ZnO Nanocatalyst in an Ozonized Bubble Column Reactor to Increase the Phenol Degradation from Wastewater" Processes 11, no. 8: 2416. https://doi.org/10.3390/pr11082416
APA StyleMajhool, A. K., Sukkar, K. A., & Alsaffar, M. A. (2023). Combining α-Al2O3 Packing Material and a ZnO Nanocatalyst in an Ozonized Bubble Column Reactor to Increase the Phenol Degradation from Wastewater. Processes, 11(8), 2416. https://doi.org/10.3390/pr11082416