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Abstract: The ozonation reaction in a bubble column reactor (BCR) has been widely used in the removal
of phenol from wastewater, but the phenol removal efficiency in this type of reactor is limited because
of low ozone solubility and reactivity in the system. In the present study, the phenol degradation in
the BCR was enhanced by using α-Al2O3 as a packing material and a ZnO nanocatalyst. The reactor
diameter and height were 8 cm and 180 cm, respectively. The gas distributor was designed to include
52 holes of a 0.5 mm diameter. Also, the gas holdup, pressure drop, and bubble size were measured
as a function of the superficial gas velocity (i.e., 0.5, 1, 1.5, 2, 2.5, and 3 cm/s). The evaluation of the
hydrodynamic parameters provided a deeper understanding of the ozonation process through which
to select the optimal operating parameters in the reactor. It was found that the best superficial gas
velocity was 2.5 cm/s. A complete (100%) phenol removal was achieved for phenol concentrations of
15, 20, and 25 ppm at reaction times of 80, 90, and 100 min, respectively; this was achieved by using
α-Al2O3 packing material and a ZnO nanocatalyst in the BCR. Additionally, a reaction kinetics study
was conducted to describe the ozonation reaction in BCR. The first-order reaction assumption clearly
describes the reaction kinetics with an R2 = 0.991. Finally, the applied treatment method can be used
to efficiently remove phenol from wastewater at a low cost, with a small consumption of energy and
a simple operation.

Keywords: phenol removal; multiphase reactor; ozone gas; removal efficiency; reaction mechanism

1. Introduction

The production of high-quality water is one of the primary targets of environmental
sustainability. This can be achieved using an efficient treatment process for industrial
wastewater to provide a healthy ecosystem [1–3]. All industrial wastewater treatment
processes focus on reducing waste-producing pollutants. Managing the treatment processes
of wastewater and effluent is the key factor in providing a high-performance treatment
process. Most petroleum refineries and petrochemical plants produce a high range of
hydrocarbons in wastewater [4–7]. All of these materials cause fatal problems for humans
and the environment. Phenol is one of these dangerous chemicals that is produced within
effluent wastewater, and it requires efficient treatment techniques to be removed [8–10].
The hydrocarbon materials can be removed from wastewater using various industrial
reactors, such as membrane reactors, fluidized bed reactors, trickle bed reactors, and bubble
column reactors (BCRs). BCRs are one of the most applied gas–liquid and gas–liquid–solid
multiphase reactors in industrial processes. They are characterized by many benefits such
as easy operation, efficient mixing, high heat and mass-transfer rates, low maintenance
costs, and low energy consumption [11–15].

In a BCR, the movement of bubbles inside the reactor induces liquid mixing (i.e.,
effective hydrodynamic performance) so that high mass transfer and heat transfer can
be achieved. Additionally, the evaluation of the hydrodynamic behaviors of the bubble
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column reactor will determine the extent of a chemical reaction, as well as the reactor’s
performance [16]. The main hydrodynamic parameters in a BCR are the reactor height-
to-diameter ratio, superficial gas velocity, gas holdup, bubble size, gas–liquid interfacial
area, flow patterns, and gas distributor design [17–21]. The use of bubble columns in
wastewater treatment is highly dependent on the mass-transfer mechanism between the
gas and liquid phases. Thus, understanding the operational parameters of the diffusion
process will provide a clear picture, delineating an effective process for the removal of
hydrocarbons in a BCR [4,22]. The degradation of various hydrocarbon contaminants
from the effluent streams of wastewater that employ BCRs must provide effective contact
between the reaction mixtures. The degradation process of hydrocarbons occurs in the
liquid phase, and gas bubbles encourage an efficient mass transfer with the pollutant
materials included in the system before the oxidation reaction [23–26].

The addition of packing materials inside a BCR will enhance the reaction mechanism
due to the increased contact surface area between the gas and liquid phases [8,27]. Therefore,
a high chemical reaction rate will be achieved with a short residence time. The packing
material supports the formation of a thin film over the packing surfaces. This thin film
is characterized by a low resistance to mass transfer such that a high chemical reaction
rate can be attained. Moreover, the ozonation reaction kinetics indicate that the chemical
reaction usually produces hydroxyl radicals [21,26]. These free radicals are highly volatile
in the reaction media in converting organic material (e.g., phenol) into simple compounds
(e.g., water and carbon dioxide) [28–33]. Furthermore, the flow regime inside the BCR plays
a critical role in determining the reactor’s performance. Due to the difficulty of predicting
the flow behavior in a BCR, evaluation of the superficial gas velocity can contribute to the
determination of the flow patterns, as well as the exact hydrodynamic behavior. Therefore,
more extensive work is needed to reveal the relationship between the gas–liquid–solids in
a BCR in terms of removing phenol from wastewater [34–41].

Ghaisani et al. [42] applied a semicontinuous, multi-injection BCR in the degradation
of phenolic compounds when in the presence of ozone gas. They achieved the highest
removal efficiency of 99.48 and 99.83% via ozonation and catalytic ozonation methods,
respectively, which were conducted at an operating time of 60 min. Also, they indicated
that the degradation process was highly influenced by the activity of hydroxyl radicals in
the reactor. Wei et al. [43] used a rotating packed bed reactor in the presence of a Fe–Mn–
Cu/γ–Al2O3 catalyst to enhance phenol removal from wastewater, and this was 96.42%
effective at 30 min. Al-Ezzi [44] employed a pulsed BCR and loop reactor to treat phenol by
using activated carbon as an adsorbent media in the reactor, and they found that around
a 90% phenol removal efficiency was achieved. Honarmandrad et al. [45] investigated
the reaction of phenol in wastewater in the presence of CaO2 and ozone as the gas phase.
They noted that the chemical reaction was endothermic with the highest reaction yield
being 97.8% for a synthetic sample of wastewater at 90 min. Jothinathan et al. [46] treated
petrochemical wastewater via an ozonation process in the presence of an Fe/GAC catalyst
in micro-bubble and macro-bubble operations. They noted that the highest chemical oxygen
demand (COD) removal efficiency was 88%, which was 18 and 43% greater than the micro-
bubble and macro-bubble ozonation reactions, respectively. Alattar et al. [47] studied the
removal of phenol from wastewater using an ozonized packed BCR, finding a removal
efficiency of 100% of phenol after 30 min. This study showed that the packing material
was a key factor in increasing the contact surface area between the gas and liquid phases,
which also affected the phenol degradation rate. Bhosale et al. [48] evaluated the scale-up
requirements of ozonation reactors to remove the phenolic compounds from wastewater.
From the results of the reaction kinetics analysis, the authors noted that the reaction rates
of the phenolic compounds were highly influenced by the mass-transfer mechanism and
ozonation reaction.

The literature demonstrates that it is still difficult to understand how the hydrody-
namic parameters influence the mass-transfer mechanism in a BCR when using ozone gas
in the presence of packing materials. Also, the ozonation reaction usually exhibits poor
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solubility and a fast decomposition of the ozone molecules [14,30]. All of these factors
provide limited mass transfer in the liquid-phase reaction inside a BCR. Hence, it is nec-
essary to identify the various superficial ozone gas velocities and evaluate their effect on
the reactor’s performance [47–54]. Therefore, the main objective of the present work is to
enhance the ozonation reaction to attain a high phenol removal from the wastewater when
using an ozonized packed BCR, as well as to evaluate the influence of the hydrodynamic
behavior and packing material on the reactor’s performance.

2. Materials and Methods
2.1. Materials

Many chemicals were utilized in the experiential runs, including the phenol compound
(C6H5OH, 99.8% purity), which was purchased from (Thomas Baker Co. Ltd., Mumbai,
India), as well as sodium thiosulfate (99.86% purity), potassium iodide (99.42% purity),
and sulfuric acid (99.55% purity), which were obtained from (BDH Co. Ltd., London,
UK). Moreover, α-Al2O3 was used as a packing material and ZnO NPs were used as the
nanocatalyst, and both were purchased from (Sigma-Aldrich Co. Ltd., St. Louis, MO, USA).

2.2. Reaction Apparatus

The reaction apparatus consisted of a packed bubble column reactor (BCR). The
reactor operated in fed-batch mode, in which the liquid phase (i.e., polluted wastewater)
was stationary, while the gas phase (i.e., ozone gas) entered the reactor continuously in
the upward flow direction. All of the treatment experiments were achieved at a constant
operating temperature of 25 ◦C. The interaction between the gas phase and the liquid
phase produced gas bubbles depending on the applied superficial gas velocity and other
hydrodynamic parameters. These ozone bubbles were highly dispersed in the wastewater
inside the reactor. Figure 1 illustrates the schematic diagram of the reaction apparatus of
a BCR. The system contained a cylindrical column with an inner diameter of 8 cm and a
height of 180 cm. The air and ozone gas were supplied from an air compressor and ozone
generator systems, respectively. Sensitive gas-flow meters were employed in the apparatus
to measure the gas-flow rate into the BCR. The bottom section of the BCR contained a gas
distributor manufactured from stainless steel (i.e., perforated plate), with 52 holes that were
0.5 mm in size and were distributed in cycles in all of the plate areas.
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Moreover, the photographs of the ozone gas bubbles were taken with a high-resolution
and sensitive camera (Canon RF-S18), which was supplied with a professional video
recorder. All images were taken in a specified zone at a height of 100 cm from the column
bottom. The bubble images were processed and improved by utilizing Image Processing
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MATLAB 9.10 Software (R2021a), which provides clear bubble sizes and bubble boundaries.
Then, the size of the ozone gas bubbles was determined from image analysis. Furthermore,
the uncertainty analysis measurement showed a standard error of deviation of ±1.3 mm
for the bubble size measurements.

2.3. Operating Procedure

In the present investigation, the ozonation reaction for phenol removal was achieved
through using four treatment approaches in the BCR. The first approach was carried out in
the BCR in the presence of ozone gas only. The second approach of phenol removal was
achieved using alumina balls (α-Al2O3 of approximately zero surface area with no porosity)
in the reactor with ozone gas, as shown in Figure 2. The diameter of each packing material
was 20 mm, and they were supported in the BCR to a height of 0.7 m from the reactor
bottom. Then, the void fraction between the packing materials inside the reactor was
estimated to be 38%. The third treatment included the use of ZnO NPs as a nanocatalyst
in the BCR with a dose of 0.05 g in the presence of ozone gas, while the fourth combined
the packing material and ZnO nanocatalyst with ozone gas. Figure 3 summarizes the
four operating approaches conducted in the BCR. Different concentrations of phenol in
wastewater were used (i.e., 10, 15, 20, and 25 ppm). Dry air was fed to an ozone generator
apparatus to produce high-purity ozone gas at a constant rate. The applied treatment time
for the phenol material in the reactor was 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 min. The
operating temperature and operating pressure were kept constant in the bubble column
reactor at 25 ◦C and 1 bar, respectively, for all experiments. At the top of BCR, the output
ozone gas was accumulated in a vertical collection vessel that was 1.5 L in size. This
vessel contained a solution of potassium iodide (KI) with a concentration of 2%. The main
purpose of this solution was to convert the unreacted ozone gas into oxygen according to
the requirements of human safety and the environment.
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Moreover, during each experiment, a sample from the reaction mixture was drawn
from the sampling valve. The phenol concentration was measured using a total organic
carbon (TOC) analyzer (E200, Shimadzu Co. Ltd., Kyoto, Japan). Further, many charac-
terization devices were used to measure the main specifications of the ZnO nanocatalyst.
The structural features were measured using a XRD-6000 Shimadzu, the morphology of
nanoparticles was achieved using a FE-SEM (INSPECT F50-FEI, Philips, Eindhoven, The
Netherlands), and the functional groups were evaluated using a FTIR device (IRTracer-100,
Shimadzu, Kyoto, Japan). Also, the dispersion of the ZnO NPs was evaluated using a
Zeta potential measuring device (Zeta Potential Analyzer, Zetasizer-ZEN3600, Malvern
Panalytical Ltd., Malvern, UK).

3. Results and Discussion
3.1. Flow Behavior in the BCR

The hydrodynamic characterization of the BCR has an impact on its performance. It is
well known from the literature that the flow regimes in the BCR are highly dependent on
the gas velocity, pressure drop, gas holdup, and physical properties of the mixture [8,43,47].
Figure 4 shows the relationship between the superficial gas velocity and the gas holdup in
the presence of ozone gas alone, as well as in the presence of ozone plus a ZnO nanocatalyst
in the BCR. The majority of the flow at the applied gas velocity (less than 0.05 cm/s) was
a homogeneous bubbly flow. Also, the bubble-size distribution was uniform, with a low
bubble-rise velocity. The ozone gas superficial velocity was able to positively affect the
BCR’s performance. Additionally, it was found that the superficial gas velocity had a sig-
nificant impact on the performance of the BCR due to its direct effect on the hydrodynamic
parameters, such as gas holdup, bubble size, and rising velocity. Figure 4 shows that there
was a slight variation in the gas holdup results in the BCR when using ozone with a ZnO
nanocatalyst in comparison with using ozone gas alone. This variation was attributed to
the change in the hydrodynamic behavior due to the presence of the ZnO nanocatalyst.
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ozone alone and ozone gas in the presence of a ZnO nanocatalyst.

Figures 5 and 6 show the shapes of the gas bubbles in the BCR at various gas velocities
when employing ozone gas alone and ozone gas with a ZnO nanocatalyst, respectively.
Both figures demonstrate that, as the gas velocity rose, the bubble size increased as the
small bubbles aggregated into large ones. Also, the general shape of the bubbles was
spherical, with uniform distribution in the reactor at low gas velocities. Accordingly, at
higher gas velocities (i.e., 3 cm/s), the bubble size grew and changed, forming ellipsoidal
or slug shapes. This behavior can be explained by bubbles congregating and growing into
larger bubbles. Numerous authors, including Sharma et al. [14], Barlak et al. [29], and
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Alattar et al. [31], indicate that the gas velocity has a significant impact on the bubble size
and shape in a BCR. A distinct increase in the gas holdup value in the reactor produces an
increase in the effective interfacial area, which influences the mass-transfer process inside
the reactor with the gas velocity.
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average bubble diameter was 0.44, 0.49, 0.55, 0.62, 0.68, and 0.72 cm at superficial gas
velocities of 0.05, 1, 1.5, 2, 2.5, and 3 cm/s, respectively. Moreover, when using ozone with
a ZnO nanocatalyst, the bubble size measured 0.48, 0.54, 0.58, 0.73, and 0.76 cm at the same
aforementioned velocities, respectively. However, Figure 6 shows that the diameter of
the bubbles increased more with the superficial gas velocity in the presence of the ZnO
nanocatalyst in comparison with the case of the ozone gas alone. It was observed that the
agglomeration processes caused the bubble diameter to grow along with the surface gas
velocity, as also indicated by Lucas et al. [25]. The gas-bubble-formation mechanism in the
BCR and their rising velocities mainly relate to the buoyancy phenomena that effectively
influence the final hydrodynamic behavior in this type of reactor [8,31]. Usually, the rise
of a bubble in the two-phase system in the dispersion appears due to coalescence and
dispersion. Then, the bubbles can undergo a clear disengagement in the reactor. Malik
et al. [36] and Jothinathan [46] pointed to the importance of bubble formation and bubble
size in determining the effective reaction time between the gas and liquid phases. This
phenomenon is the chief factor in determining the interfacial mixing in multiphase systems.
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Therefore, in the present investigation, it was decided to use a superficial ozone gas velocity
of 2.5 cm/s in all experiments due to their appropriate hydrodynamic characteristics for
the reaction system in a BCR.

3.2. Characterization of the ZnO Nanocatalyst

The specifications of the ZnO nanocatalyst were characterized using various testing
devices. The structural features of the nanocatalyst was characterized by an X-ray diffrac-
tometer to identify the main phases of the material structure. Figure 7 displays the X-ray
diffraction pattern of the ZnO NPs. This figure clearly shows the presence of a number of
peaks at 2θ, such as at 31.74, 34.42, 36.26, 47.57, 56.63, 62.89, 66.43, 67.95, 69.07, 72.69, and
76.86◦, which corresponded to the Miller indices of the (100), (002), (101), (102), (110), (103),
(200), (112), (201), (202), and (004) planes, respectively. Accordingly, it was found from the
XRD results that a high crystalline structure of nano ZnO appeared with high purity.
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Additionally, the morphological features of the ZnO nanocatalyst were measured
using field emission scanning electron microscopy (FE-SEM). Figure 8 illustrates the FE-
SEM results of the ZnO nanocatalyst at low and high magnifications, respectively. The
general shape of the nanocatalyst was spherical, with a particle size of 28 nm. Such a
small size is beneficial in dispersing the two-phase mixture in the BCR so as to provide an
efficient distribution of the nanocatalyst within a sonication time of 15 min. Also, the FE-
SEM results revealed that the ZnO NPs accumulated as clusters. To solve this problem, the
ZnO nanocatalyst mixture was subjected to sonication in order to induce a high dispersion
inside the BCR. Moreover, the Zeta potential measurements of the ZnO NPs had a Zeta
potential value of −11.3 mV, which indicated a high stability and dispersion in the mixture
for a long operating time in the reactor.
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The functional groups associated with the ZnO nanocatalyst were identified using
Fourier-transform infrared (FTIR) spectroscopy. Figure 9 shows the main vibrational
bands of the ZnO nanocatalyst. The results indicated the presence of absorption bands at
3427.48, 2898.12, 1630.06, 1411.86, 1009.36, 907.63, and 663.61 cm−1, which represent the
main features of the ZnO. A summary of these bands and their positions follows. A clear
absorption band was noted at 663.61 cm−1, which is related to the metal–oxygen vibration
(ZnO–stretching), while the band at 907.63 cm−1 corresponds to the vibration of the C–N or
C–O bonds. Moreover, the bands at 1009.36 and 1411.86 cm−1 were related to the oxygen
primary and secondary alcohol in-plane vibrations. The peak at 1630.06 cm−1 was ascribed
to the aromatic nitro compounds and to alkyl vibration. In contrast, the bands at 2898.12
and 3427.48 cm−1 were ascribed to the stretching vibration of the hydroxyl compound.
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3.3. Phenol Degradation Using Ozone Gas

The experiment was achieved using four phenol concentrations of 10, 15, 20, and 25 ppm.
For all experimental runs, the pH value was held constant at 7, and the ozone rate was 3 g/h.
The phenol degradation reaction was measured as a function of the treatment time in the
BCR. Figure 10 illustrates the relationship between the reaction time and the percentage of
phenol removal at various phenol concentrations. At phenol concentrations of 10, 15, 20,
and 25 ppm, at a total reaction time of 50 min, the phenol removal was 65.82, 57.67, 53, and
43.64%, respectively. It was noted that, at the three phenol concentrations of 10, 15, and
20 ppm, the best reaction times were measured to be 80, 90, and 100 min, respectively. In
addition, at an initial phenol concentration (low concentration) of 10 ppm, a reaction time of
100 min was necessary to provide an approximately 100% phenol removal. Additionally, as
the initial phenol concentration increased, the duration of the reaction time also increased.
As a result, the required reaction time was a function of the phenol concentration in the
reactor, with this parameter being the main factor that determined the BCR performance.
Lim et al. [1], Yamamoto et al. [15], and Zhou et al. [53] confirm the importance of the
reaction time in phenol degradation.
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3.4. Phenol Degradation Using Ozone Gas and a ZnO Nanocatalyst

According to the results of Cheng et al. [2] and Ratman et al. [11], the ozonation reaction
was slightly low due to a low mass-transfer operation. Therefore, more reaction time was
required to achieve efficient phenol degradation. As such, the use of heterogeneous catalysts
can activate the reaction mechanism of phenol degradation and enhance the ozonation
process in the BCR. Accordingly, ZnO NPs were used as the nanocatalyst in the reaction
system. Figure 11 illustrates the influence of the addition of 0.05 g of the ZnO nanocatalyst
in the BCR on the phenol removal in relation to the reaction time. The results showed
a clear enhancement in the phenol degradation reaction due to the presence of the ZnO
nanocatalyst in comparison with the results of using ozone gas alone (Figure 10). Moreover,
at a reaction time of 50 min, the phenol removal values were 73.63, 64.921, 56.697, and
49.7% at phenol concentrations of 10, 15, 20, and 25 ppm, respectively. It was found that the
ZnO nanocatalyst worked by initiating the ozonation process so as to degrade the phenol
from wastewater at a high rate. This process exhibited great potential in treating complex
hydrocarbons efficiently. The presence of a ZnO nanocatalyst positively affects three factors:
(1) the active removal of phenol, (2) lowering the amount of consumed treatment energy,
and (3) the economic cost [17,38,54].
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Furthermore, to achieve the complete degradation of phenol, Figure 10 shows that the
reaction times of 80, 90, and 100 min were required at phenol concentrations of 10, 15, and
20 ppm, respectively. However, when using ozone alone without the ZnO nanocatalyst,
the required reaction times were longer for the complete removal of phenol. In that case, a
reaction time of 100 min was required to remove 10 ppm of phenol. The use of the ZnO
nanocatalyst provided a high surface area and thus increased the reaction rate within a
short reaction time. The increase in the conversion of phenol during the catalyst’s ozonation
process was mostly due to the effect of the free radicals produced by the self-decomposition
of ozone on the active site of the ZnO nanocatalyst [31,42].

3.5. Phenol Degradation Using Ozone and α-Al2O3 as a Packing Material in a BCR

The low solubility of ozone gas in water remains one of the main challenges in the
ozonation reaction. Accordingly, a long reaction time is usually required to overcome
this problem. Thus, the use of high-surface-area packing material in the BCR can greatly
increase the mass-transfer and reaction rate. Figure 12 shows the relationship between
phenol removal and reaction time in the BCR when using ozone and α-Al2O3 as a packing
material. The degradation rate of phenol removal increased at a low applied phenol
concentration. For phenol concentrations of 10, 15, 20, and 25 ppm, the percentage of
phenol removal was 77.63, 71.4, 63.99, and 56.38%, respectively. Also, the use of a packing
material in the BCR provided a removal of 100% for the phenol concentrations of 10, 15,
and 20 ppm at reaction times of 80, 90, and 100 min, respectively. Such results contribute
to a clear picture of the influence of alumina balls as packing material on the ozonation
reaction in a BCR.
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On the other hand, the potassium iodide (KI) of the ozone-gas evaluation test demon-
strated that the packing had a positive impact on the mass-transfer coefficient and contact
time. The KI test showed a concentration of 3.5 ppm for the produced ozone without
packing, but only 0.20 ppm in the presence of packing. Figure 13 explains the change in
the appearance of the KI solution, which indicated a higher ozone concentration when
packing material was used. Also, this appearance of the KI solution signified the high
mass-transfer efficiency due to an available high total surface area for the ozonation reaction
with packing material.
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The presence of packing material provided a higher mass-transfer performance [18,40].
However, the pressure drops in the BCR that were expected to appear did not, and this
was due to the large particle size of the α-Al2O3 packing material, which showed a high
void fraction (45%) in the reactor. Accordingly, the expected beneficial influence of the
pressure drop on the reactor performance was limited. The use of commercial α-Al2O3
packing in the reactor increased the contact surface area between the gas and liquid phases.
Fortunately, the enhancement in the mass-transfer process made up for the small pres-
sure drop; therefore, the overall mechanism improved the ozonation reaction of phenol.
Additionally, a thin film usually formed over the surface of the packing material, and
this played a constant role in enhancing the mass-transfer mechanism by improving the
liquid distribution, wettability, and—ultimately—the reaction rate in the BCR. This as-
pect is critical in chemical reactions because of the limited reaction rate of the ozonation
process. The diffusion mechanism across the thin film provided a clear improvement in
the degradation of phenol in wastewater. Moreover, the BCR as a multiphase reactor is
usually characterized by efficient mass and heat transfer due to the high efficiency of the
hydrodynamic parameters [8,14]. As shown in Section 3.1, in the present experimental
study, the hydrodynamic parameters were evaluated and managed to provide an optimal
performance in the BCR.

3.6. Phenol Degradation When Using Ozone, α-Al2O3 packing, and a ZnO Nanocatalyst

The fourth experiment included phenol treatment with ozone gas by utilizing a ZnO
nanocatalyst in the presence of α-Al2O3 packing, as shown in Figure 14. For a phenol
concentration of 10 ppm, a conversion rate of 100% was achieved with respect to the
phenol elimination in the reactor at a reaction time of 70 min with a 0.05 g ZnO nanocat-
alyst. Accordingly, at phenol concentrations of 15, 20, and 25 ppm, the phenol removal
measurements showed values of 94, 89.213, and 80.85%, respectively. Also, the results
indicated that the phenol concentrations of 25, 20, and 15 ppm required reaction times of
100, 90, and 80 min, respectively, to achieve the complete (100%) degradation of phenol.
The development in phenol removal resulted from the hydrodynamic characteristics in the
BCR, including the increased interfacial area, low ozone bubble rising velocity, extended
gas stagnation time, increased reaction time, and a high mass-transfer process. All of these
parameters reflect the high efficiency of the phenol conversion rate. The presence of the
packing material and the ZnO nanocatalyst improved the mechanism of the ozonation
reaction so as to provide a high-performance effect in the BCR. These results agree with the
results of Li et al. [7], Gao et al. [38], and Wei et al. [43].
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Figure 15 illustrates the comparison between the four experimental approaches of
phenol removal when using ozone alone, ozone with a packing material, ozone with a
ZnO nano-catalyst, and ozone with packing material + a ZnO nanocatalyst (at 10 ppm of
phenol concentration). From this figure, it was noted that the phenol removal efficiency
recorded the highest value of 100% at 70 min of reaction time by employing the experi-
mental approach that used ozone gas in the presence of both α-Al2O3 packing and a ZnO
nanocatalyst. In actuality, in this combined approach, the ozonation reaction rate was
enhanced due to the high contact surface area between the gas and liquid phase. Then, a
clear chance was achieved in terms of low gas holdup and an effective interfacial area so as
to provide appropriate reaction conditions for a 100% phenol degradation with a shorter
reaction time. The same observation was noted by Guo et al. [19] and Alattar et al. [31].
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stant for the first-order (1/min). 
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g/L of the ZnO nanocatalyst in the presence of α-AL2O3 as the packing material. Figure 16 
shows the relationship between Ln[CA/CAo] and the reaction time. Then, the slope (k1) can 
be determined from this figure as the best-fit line. Figure 16A–D showed that the correla-
tion coefficient (R2) recorded high values of 0.897, 0.95, 0.988, and 0.991, respectively. Ac-
cordingly, the results of the theoretical and practical evaluation indicated that the reaction 
kinetics results of a first-order assumption was in high accordance with the real reaction 
behavior of the phenol degradation. Furthermore, from the results of Figure 16, it is clear 
that the experimental approach of an ozonized packed BCR with a ZnO nanocatalyst (case 
D) showed the highest value of an R2 of 0.991 with a reaction rate constant of k1 = 0.1683 
1/min. The determination of the reaction order is the key factor toward understanding the 
relationship between the rate of reaction and the concentrations of reactants inside the 
reactor. 

From a reaction kinetics point of view, the presence of nanocatalysts in the ozonation 
process promote the decomposition of ozone gas into hydroxyl radicals [17,34]. Sable et 
al. [40] and Honarmandrad et al. [45] have shown that the catalytic ozonation reaction is 
a modified oxidation process, which includes the formation of highly active free radicals 
that initiate the degradation of organic pollutants at a high rate. Therefore, the present 
investigation showed a high level of phenol degradation due to the combination of a α-

Figure 15. Comparison of the results of phenol degradation when using the four experimental modes
of ozone alone, ozone with packing material, ozone with a ZnO nanocatalyst, and ozone with packing
material + a ZnO nanocatalyst (at 10 ppm of phenol concentration).
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3.7. Reaction Kinetics of the Process

In order to provide a clear understanding of the phenol reaction in the ozonation
process in a BCR, a kinetics study was conducted. Accordingly, a first-order reaction
was assumed depending on the phenol concentrations and reaction time, as shown in
Figure 16. Moreover, the four experimental approaches of ozone alone (A), ozone with
a ZnO nanocatalyst (B), ozone with packing material (C), and ozone with both packing
material + a ZnO nanocatalyst (D) were evaluated. Therefore, the main mathematical
equation for the first-order assumption is shown in Equation (1):

Ln[CA/CAo] = −k1 t (1)

where CAo is the initial concentration of phenol in (mg/l) at a reaction time = 0, CA
represents the concentration of phenol in (mg/l) at any time (t), and k1 is the reaction rate
constant for the first-order (1/min).

Processes 2023, 11, x FOR PEER REVIEW 14 of 17 
 

 

Al2O3 packing material and a ZnO nano-catalyst in the reaction system. The addition of a 
ZnO nanocatalyst to wastewater containing phenol provided a clear increase in the gas 
holdup and reaction surface area, as well as a high dispersion of the nanocatalyst particles. 
All of these factors promoted the consumption of a high quantity of ozone in the reaction 
mixture, causing the phenol degradation process to improve significantly by forming wa-
ter and carbon dioxide. Accordingly, a shorter reaction time was required for phenol deg-
radation when applying this method, and this produced a high-performance removal in 
a BCR [4,24,50]. 

  
(A) (B) 

  
(C) (D) 

Figure 16. The results of the kinetics study in a first-order assumption for phenol degradation reac-
tion via an ozonation process conducted with four experimental approaches: (A) ozone alone, (B) 
ozone with a ZnO nanocatalyst, (C) ozone with packing material, and (D) ozone with both packing 
material + a ZnO nanocatalyst. 

4. Conclusions 
In this study, the problem of a limited ozonation reaction rate was solved in a bubble 

column reactor (BCR). The ozonation reaction of the phenol degradation was improved 
in a BCR by utilizing α-Al2O3 as a packing material and a ZnO nanocatalyst. The results 
indicated that the presence of packing is suitable for a high mass-transfer mechanism due 
to the high total contact surface area between the gas and liquid phases. Also, the high 
void fraction of the packing material (45%) maintained the pressure drop inside the reac-
tor within an acceptable limit without influencing the reaction rate. Moreover, it was 
found that the ZnO nanocatalyst improved the phenol degradation rate dramatically by 
enhancing the phenol degradation mechanism. The experimental results showed that as 
the phenol concentration increased in the reaction system, it required additional time for 
the ozonation reaction. Also, the presence of α-Al2O3 balls and the ZnO nanocatalyst 
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reaction via an ozonation process conducted with four experimental approaches: (A) ozone alone,
(B) ozone with a ZnO nanocatalyst, (C) ozone with packing material, and (D) ozone with both
packing material + a ZnO nanocatalyst.

The operating conditions were 3 g/h of ozone dosage, 10 mg/L of phenol, and
0.05 g/L of the ZnO nanocatalyst in the presence of α-AL2O3 as the packing material.
Figure 16 shows the relationship between Ln[CA/CAo] and the reaction time. Then, the
slope (k1) can be determined from this figure as the best-fit line. Figure 16A–D showed
that the correlation coefficient (R2) recorded high values of 0.897, 0.95, 0.988, and 0.991,
respectively. Accordingly, the results of the theoretical and practical evaluation indicated
that the reaction kinetics results of a first-order assumption was in high accordance with
the real reaction behavior of the phenol degradation. Furthermore, from the results of
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Figure 16, it is clear that the experimental approach of an ozonized packed BCR with a
ZnO nanocatalyst (case D) showed the highest value of an R2 of 0.991 with a reaction rate
constant of k1 = 0.1683 1/min. The determination of the reaction order is the key factor
toward understanding the relationship between the rate of reaction and the concentrations
of reactants inside the reactor.

From a reaction kinetics point of view, the presence of nanocatalysts in the ozona-
tion process promote the decomposition of ozone gas into hydroxyl radicals [17,34].
Sable et al. [40] and Honarmandrad et al. [45] have shown that the catalytic ozonation
reaction is a modified oxidation process, which includes the formation of highly active free
radicals that initiate the degradation of organic pollutants at a high rate. Therefore, the
present investigation showed a high level of phenol degradation due to the combination of
a α-Al2O3 packing material and a ZnO nano-catalyst in the reaction system. The addition
of a ZnO nanocatalyst to wastewater containing phenol provided a clear increase in the
gas holdup and reaction surface area, as well as a high dispersion of the nanocatalyst
particles. All of these factors promoted the consumption of a high quantity of ozone in
the reaction mixture, causing the phenol degradation process to improve significantly by
forming water and carbon dioxide. Accordingly, a shorter reaction time was required for
phenol degradation when applying this method, and this produced a high-performance
removal in a BCR [4,24,50].

4. Conclusions

In this study, the problem of a limited ozonation reaction rate was solved in a bubble
column reactor (BCR). The ozonation reaction of the phenol degradation was improved
in a BCR by utilizing α-Al2O3 as a packing material and a ZnO nanocatalyst. The results
indicated that the presence of packing is suitable for a high mass-transfer mechanism due
to the high total contact surface area between the gas and liquid phases. Also, the high
void fraction of the packing material (45%) maintained the pressure drop inside the reactor
within an acceptable limit without influencing the reaction rate. Moreover, it was found that
the ZnO nanocatalyst improved the phenol degradation rate dramatically by enhancing
the phenol degradation mechanism. The experimental results showed that as the phenol
concentration increased in the reaction system, it required additional time for the ozonation
reaction. Also, the presence of α-Al2O3 balls and the ZnO nanocatalyst showed the highest
phenol removal values. Further, it was observed that the hydrodynamic parameters of the
BCR played a major role in determining the BCR’s performance in the reaction process. A
phenol concentration of 25, 20, and 15 ppm required a reaction time of 100, 90, and 80 min,
respectively, to achieve the complete (100%) degradation of the phenol. Additionally, the
understanding of the ozonation reaction mechanisms achieved in this work was necessary
in order to apply this method in wastewater system treatment at industrial plants.
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