Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analysis
2.3. Thermal Analysis
2.4. X-ray Fluorescence (XRF)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Metabolic Engineering and Enzyme-Mediated Processing: A Biotechnological Venture towards Biofuel Production–A Review. Renew. Sustain. Energy Rev. 2018, 82, 436–447. [Google Scholar] [CrossRef]
- Quayson, E.; Amoah, J.; Rachmadona, N.; Hama, S.; Yoshida, A.; Kondo, A.; Ogino, C. Biodiesel-Mediated Biodiesel Production: A Recombinant Fusarium Heterosporum Lipase-Catalyzed Transesterification of Crude Plant Oils. Fuel Process. Technol. 2020, 199, 106278. [Google Scholar] [CrossRef]
- Robles-Medina, A.; González-Moreno, P.A.; Esteban-Cerdán, L.; Molina-Grima, E. Biocatalysis: Towards Ever Greener Biodiesel Production. Biotechnol. Adv. 2009, 27, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.K.; Gupta, R. Biodiesel Production by Transesterification Using Immobilized Lipase. Biotechnol. Lett. 2013, 35, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Eder, L.V.; Provornaya, I.V.; Filimonova, I.V.; Kozhevin, V.D.; Komarova, A.V. World Energy Market in the Conditions of Low Oil Prices, the Role of Renewable Energy Sources. Energy Proc. 2018, 153, 112–117. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z.; Birch, J. Lipases for Biofuel Production. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 150–157. [Google Scholar]
- Narisetty, V.R.R.; Tarafdar, A.; Bachan, N.; Madhavan, A.; Tiwari, A.; Chaturvedi, P.; Varjani, S.; Sirohi, R.; Kumar, V.; Awasthi, M.K.; et al. An Overview of Cellulase Immobilization Strategies for Biofuel Production. Bioenergy Res. 2022, 16, 4–15. [Google Scholar] [CrossRef]
- Hossain, N.; Bhuiyan, M.A.; Pramanik, B.K.; Nizamuddin, S.; Griffin, G. Waste Materials for Wastewater Treatment and Waste Adsorbents for Biofuel and Cement Supplement Applications: A Critical Review. J. Clean Prod. 2020, 255, 120261. [Google Scholar] [CrossRef]
- Beltrami, F.; Fontini, F.; Grossi, L. The Value of Carbon Emission Reduction Induced by Renewable Energy Sources in the Italian Power Market. Ecol. Econ. 2021, 189, 107149. [Google Scholar] [CrossRef]
- Chu, R.; Li, S.; Zhu, L.; Yin, Z.; Hu, D.; Liu, C.; Mo, F. A Review on Co-Cultivation of Microalgae with Filamentous Fungi: Efficient Harvesting, Wastewater Treatment and Biofuel Production. Renew. Sustain. Energy Rev. 2021, 139, 110689. [Google Scholar] [CrossRef]
- Hussain, F.; Shah, S.Z.; Ahmad, H.; Abubshait, S.A.; Abubshait, H.A.; Laref, A.; Manikandan, A.; Kusuma, H.S.; Iqbal, M. Microalgae an Ecofriendly and Sustainable Wastewater Treatment Option: Biomass Application in Biofuel and Bio-Fertilizer Production. A Review. Renew. Sustain. Energy Rev. 2021, 137, 110603. [Google Scholar] [CrossRef]
- Merlin, A.Z.; Marcel, O.A.; Louis Max, A.O.; Salem, C.; Jean, G. Development and Experimental Investigation of a Biodiesel from a Nonedible Woody Plant: The Neem. Renew. Sustain. Energy Rev. 2015, 52, 201–208. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Srinivasan, V.; Syed Mohamed Qadir, G.; Srithar, K. An Investigation on the Performance of Sawdust Briquette Blending with Neem Powder. Alex. Eng. J. 2016, 55, 2833–2838. [Google Scholar] [CrossRef]
- Takase, M.; Zhao, T.; Zhang, M.; Chen, Y.; Liu, H.; Yang, L.; Wu, X. An Expatiate Review of Neem, Jatropha, Rubber and Karanja as Multipurpose Non-Edible Biodiesel Resources and Comparison of Their Fuel, Engine and Emission Properties. Renew. Sustain. Energy Rev. 2015, 43, 495–520. [Google Scholar] [CrossRef]
- Venzon, M.; Togni, P.H.B.; Perez, A.L.; Oliveira, J.M. Control of Two-Spotted Spider Mites with Neem-Based Products on a Leafy Vegetable. Crop. Prot. 2020, 128, 105006. [Google Scholar] [CrossRef]
- Abbah, E.C.; Nwandikom, G.I.; Egwuonwu, C.C.; Nwakuba, N.R. Effect of Reaction Temperature on the Yield of Biodiesel from Neem Seed Oil. Am. J. Energy Sci. 2016, 3, 16–20. [Google Scholar]
- Parckert, E.E.D.T.; Finzer, J.R.D. Extração de óleo de Nim por prensagem mecânica. Anais do Congresso Brasileiro de Engenharia Química. Volume 1. 2016. Available online: https://proceedings.science/cobeq/cobeq-2016/trabalhos/extracao-de-oleo-de-nim-por-prensagem-mecanica?lang=pt-br (accessed on 8 April 2023).
- Paes, J.B.; Souza, A.D.D.; Lima, C.R. De Rendimento e Características Físicas Dos Óleos de Nim (Azadirachta Indica) e Mamona (Ricinus Communis). Floresta E Ambiente 2016, 22, 134–139. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bag, S.; Biswal, D.; Sarkar Paria, D.; Bandyopadhyay, R.; Sarkar, B.; Mandal, A.; Dangar, T.K. Neem-Based Products as Potential Eco-Friendly Mosquito Control Agents over Conventional Eco-Toxic Chemical Pesticides–A Review. Acta Trop. 2023, 240, 106858. [Google Scholar] [CrossRef]
- Benelli, G. Plant-Mediated Synthesis of Nanoparticles: A Newer and Safer Tool against Mosquito-Borne Diseases? Asian Pac. J. Trop. Biomed. 2016, 6, 353–354. [Google Scholar] [CrossRef]
- Benelli, G. Research in Mosquito Control: Current Challenges for a Brighter Future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef]
- Benelli, G.; Bedini, S.; Cosci, F.; Toniolo, C.; Conti, B.; Nicoletti, M. Larvicidal and Ovideterrent Properties of Neem Oil and Fractions against the Filariasis Vector Aedes Albopictus (Diptera: Culicidae): A Bioactivity Survey across Production Sites. Parasitol. Res. 2015, 114, 227–236. [Google Scholar] [CrossRef]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta Indica): Towards the Ideal Insecticide? Nat. Prod. Res. 2017, 31, 369–386. [Google Scholar] [CrossRef]
- Saleem, S.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. A Comprehensive Review of Phytochemical Profile, Bioactives for Pharmaceuticals, and Pharmacological Attributes of Azadirachta Indica. Phytother. Res. 2018, 32, 1241–1272. [Google Scholar] [CrossRef]
- Dua, V.K.; Pandey, A.C.; Raghavendra, K.; Gupta, A.; Sharma, T.; Dash, A.P. Larvicidal Activity of Neem Oil (Azadirachta Indica) Formulation against Mosquitoes. Malar. J. 2009, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.T.; Watts, R.G.; Isman, M.B.; Strub, R. Evaluation of the Acute Toxicity to Juvenile Pacific Northwest Salmon of Azadirachtin, Neem Extract, and Neem-Based Products. Bull. Envion. Contam. Toxicol. 1996, 56, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M. Focus on Photochemicals Pesticides; Volume I: The Neem Tree; Jacobson, M., Ed.; CRC Press, Inc.: Boca Raton, MI, USA, 1988. [Google Scholar]
- Anjali, C.; Sharma, Y.; Mukherjee, A.; Chandrasekaran, N. Neem Oil (Azadirachta Indica) Nanoemulsion–A Potent Larvicidal Agent against Culex Quinquefasciatus. Pest. Manag. Sci. 2012, 68, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Das, B.; Mohanty, A.; Mohapatra, S. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Leaf Extract and Its Antimicrobial Study. Appl. Nanosci. 2017, 7, 843–850. [Google Scholar] [CrossRef]
- Iqbal, N.; Agrawal, A.; Kumar, J. Development of Effervescent Tablet Formulation for Rapid Control of Mosquito Problem in Early Stages from Different Breeding Sites. Arab. J. Chem. 2021, 14, 103082. [Google Scholar] [CrossRef]
- Bhaskara Rao, T.S.S.; Murugan, S. Experimental Investigation of Drying Neem (Azadirachta Indica) in an Evacuated Tube Solar Dryer: Performance, Drying Kinetics and Characterization. Sol. Energy 2023, 253, 270–284. [Google Scholar] [CrossRef]
- Singh, P.; Vyas, S.; Yadav, A. Experimental Comparison of Open Sun Drying and Solar Drying Based on Evacuated Tube Collector. Int. J. Sustain. Energy 2019, 38, 348–367. [Google Scholar] [CrossRef]
- Subapriya, R.; Nagini, S. Medicinal Properties of Neem Leaves: A Review. Curr. Med. Chem. Anti Cancer Agents 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Kumar, S.; MuthuDineshkumar, R.; Angkayarkan Vinayakaselvi, M.; Ramanathan, A. Enhancing Environmental Sustainability through Waste to Energy Conversion of Neem Leaves. Mater. Today Proc. 2021, 46, 10060–10064. [Google Scholar] [CrossRef]
- Espuelas, S.; Marcelino, S.; Echeverría, A.M.; del Castillo, J.M.; Seco, A. Low Energy Spent Coffee Grounds Briquetting with Organic Binders for Biomass Fuel Manufacturing. Fuel 2020, 278, 118310. [Google Scholar] [CrossRef]
- Han, K.; Gao, J.; Qi, J. The Study of Sulphur Retention Characteristics of Biomass Briquettes during Combustion. Energy 2019, 186, 115788. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Yuan, Y.; Yang, H.; Zhou, Y.; Duan, R. Design and Key Heating Power Parameters of a Newly-Developed Household Biomass Briquette Heating Boiler. Renew. Energy 2020, 147, 1371–1379. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, J.; Zhang, Y.; Wang, F.; Guo, Y.; Chen, K.; Liu, H. Characteristics of Biomass Charcoal Briquettes and Pollutant Emission Reduction for Sulfur and Nitrogen during Combustion. Fuel 2020, 272, 117632. [Google Scholar] [CrossRef]
- Nagarajan, J.; Prakash, L. Preparation and Characterization of Biomass Briquettes Using Sugarcane Bagasse, Corncob and Rice Husk. Mater. Today Proc. 2021, 47, 4194–4198. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Odusote, J.K.; Ikubanni, P.P.; Agboola, O.O.; Balogun, A.O.; Lasode, O.A. Tumbling Strength and Reactivity Characteristics of Hybrid Fuel Briquette of Coal and Biomass Wastes Blends. Alex. Eng. J. 2021, 60, 4619–4625. [Google Scholar] [CrossRef]
- Braz, C.E.M. Caracterização de Biomassa Lignocelulósica para uso em Processos Térmicos de Geração de Energia. Master’s Thesis, Universidade Estadual Paulista, São Paulo, Brazil, 2014. [Google Scholar]
- Carvalho, N.; Barros, J.; Silva, D.; Nakashima, G.; Yamaji, F. Caracterização Física e Química da Biomassa Usada Como Combustível Sólido em Uma Caldeira. Quim Nova 2020, 44, 35–40. [Google Scholar] [CrossRef]
- Carvalho, P.R.; Medeiros, S.L.S.; Paixão, R.L.; Figueredo, I.M.; Mattos, A.L.A.; Rios, M.A.S. Thermogravimetric Pyrolysis of Residual Biomasses Obtained Post-Extraction of Carnauba Wax: Determination of Kinetic Parameters Using Friedman’s Isoconversional Method. Renew Energy 2023, 207, 703–713. [Google Scholar] [CrossRef]
- Silva, C.; Sousa, B.; Nunes, J.; Malveira, J.; Marques, R.; Damasceno, L.; Braga, E.; Lessa, T.; Bertini, L.; Maciel, M.; et al. Evaluation of Babassu Cake Generated in the Extraction of the Oil as Feedstock for Biofuel Production. Processes 2023, 11, 585. [Google Scholar] [CrossRef]
- de Luna, Y.M.; Marcelo Rodrigues, P.; Antônia Mabrysa Torres, G.; Antônio Eufrázio, d.C.J.; Jackson Queiroz, M.; Selma Elaine, M.; de Sousa, M.A.R. A Thermogravimetric Analysis of Biomass Wastes from the Northeast Region of Brazil as Fuels for Energy Recovery. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1557–1572. [Google Scholar] [CrossRef]
- Torres Gadelha, A.M.; Lima Almeida, F.D.; Silva, R.A.; Malveira, J.Q.; Sanders Lopes, A.A.; De Sousa Rios, M.A. Cashew Nut Husk and Babassu Coconut Husk Residues: Evaluation of Their Energetic Properties. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 5, 2146–2156. [Google Scholar] [CrossRef]
- Saikia, N.; Bardalai, M. Thermal Analysis and Kinetic Parameters Determination of Biomass Using Differential Thermal Gravimetric Analysis in N 2 Atmosphere. Mater. Today Proc. 2018, 5, 2146–2156. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J. Biomol. Tech. 2010, 21, 167–193. [Google Scholar] [PubMed]
- Morgan, T.J.; George, A.; Boulamanti, A.K.; Álvarez, P.; Adanouj, I.; Dean, C.; Vassilev, S.V.; Baxter, D.; Andersen, L.K. Quantitative X-ray Fluorescence Analysis of Biomass (Switchgrass, Corn Stover, Eucalyptus, Beech, and Pine Wood) with a Typical Commercial Multi-Element Method on a WD-XRF Spectrometer. Energy Fuels 2015, 29, 1669–1685. [Google Scholar] [CrossRef]
- Araújo, D.M. Estudo do Comportamento da Co-Combustão da Borra de Café e do Bagaço de Cana-de-Açúcar; Universidade Federal da Paraíba: João Pessoa, Brazil, 2021. [Google Scholar]
- ABNT NBR 16550; Bagaço de Cana–Caracterização Química. ABNT: Brasília, Brazil, 2018.
- ASTM D3175-20; ASTM International Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2020; pp. 1–14.
- ASTM D3172-89; ASTM International Standard Practice for Proximate Analysis of Coal and Coke. ASTM: West Conshohocken, PA, USA, 2021; pp. 1–2.
- Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A Correlation for Calculating HHV from Proximate Analysis of Solid Fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Özyuğuran, A.; Yaman, S. Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse Crop Residues: Energy Potential and Models for the Prediction of Their Higher Heating Value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar] [CrossRef]
- Yin, C.-Y. Prediction of Higher Heating Values of Biomass from Proximate and Ultimate Analyses. Fuel 2011, 90, 1128–1132. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of Higher Heating Values of Biomass Fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Phichai, K.; Pragrobpondee, P.; Khumpart, T.; Hirunpraditkoon, S. Prediction Heating Values of Lignocellulosics from Biomass Characteristics. Int. J. Chem. Mol. Eng. 2013, 7, 532–535. [Google Scholar] [CrossRef]
- Fernandes, L.A.A. Reuse of Waste from Azadirachta Indica Pruning for the Production of Briquettes; Federal University of Campina Grande: Campina Grande, Brazil, 2018; pp. 1–37. [Google Scholar]
- Santana, R.N. Energy Characterization of Charcoal from Azadirachta Indica Juss (Neem), South of Tocantins. In Proceedings of the International Biomass Congress, Nashville, TN, USA, 3–5 February 2020; pp. 1–7. [Google Scholar]
- Alves, M.B.F.; Candeia, R.A.; Leite, J.C.A.; Dos Santos, A.F. Produção e Caracterização de Biocombustível Sólido a Partir de Resíduos Orgânicos Sem Tratamento Térmico/Production and Characterization of Solid Biofuel from Organic Waste without Thermal Treatment. Braz. J. Dev. 2022, 8, 8925–8945. [Google Scholar] [CrossRef]
- Costa, L.A.A.C.; Eufrade, H., Jr.; Spadim, E.R.; Da Silva, J.M.S.; Guerra, S.P.S. Caracterização Física, Química e Mêcanica de Pellets de Bagaço de Cana-de-Açúcar. Energ. Na Agric. 2020, 35, 38–45. [Google Scholar] [CrossRef]
- Barbosa, B.M.; Siqueira, H.F.; Cabral, C.P.T.; Cândido, W.L.; Silva, C.M.S.; de Carneiro, A.C.O.; Aguiar, A.R. Qualidade de Briquetes Produzidos a Partir do Mix de Resíduo Agroindustrial com Eucalipto. In Recursos Naturais: Energia de Biomassa Florestal; Editora Científica Digital: São Paulo, Brazil, 2021; pp. 185–196. [Google Scholar]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhala, S. A Review on Biomass as a Fuel for Boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- da Silva, D.A. Interdependência Linear do Poder Calorífico Superior em Função da Análise Imediata em Materiais Lignocelulósicos. Master’s Thesis, Universidade Federal de São Carlos, São Carlos, Brazil, 2019. [Google Scholar]
- Marafon, A.C.; Santiago, A.D.; Amaral, A.F.C.; Bierhals, A.N.; Paiva, H.L.; Guimaraes, V.S. Uso da Biomassa Para a Geração de Energia–Portal Embrapa. Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1063559/uso-da-biomassa-para-a-geracao-de-energia (accessed on 8 April 2023).
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Quirino, W.F.; Vale, A.D.; Andrade, A.D.; Abreu, V.L.S.; Azevedo, A.D.S. Poder Calorífico da Madeira e de Materiais Ligno-Celulósicos. Rev. Madeira 2005, 89, 100–106. [Google Scholar]
- Siebeneichler, E.A.; Costa, L.M.d.; Figueredo, N.A.; Tronto, J.; Rocha, P.A. Influência de Temperatura e Taxas de Aquecimento Na Resistência Mecânica, Densidade e Rendimento do Carvão da Madeira de Eucalyptus Cloeziana. Rev. Ciência Madeira RCM 2017, 8, 82–94. [Google Scholar] [CrossRef]
- Neiva, P.S.; Furtado, D.B.; Finzer, J.R.D. Capacidade Térmica E Poder Calorifico De Biomassa Eucalipto. II Encontro de Desenvolvimento de Processos Agroindustriais, Uniube. 2018. Available online: https://repositorio.uniube.br/bitstream/123456789/922/1/CAPACIDADE%20T%C3%89RMICA%20E%20PODER%20CALORIFICO%20DE%20BIOMASSA%20EUCALIPTO.pdf (accessed on 8 April 2023).
- Souza, L.M.d.; Bezerra, J.B.; de Queiroz, W.L.V.; Trugilho, P.F.; Protásio, T.D.P.; de Souza, T.M.; Bufalino, L. Comparação da Qualidade dos Tecidos do Pecíolo de Buriti (Mauritia Flexuosa L.f.) Para Combustão e Carbonização. Ciência Florest. 2020, 30, 516. [Google Scholar] [CrossRef]
- de Protásio, P.T.; Scatolino, M.V.; de Araújo, A.C.C.; de Oliveira, A.F.C.F.; de Figueiredo, I.C.R.; de Assis, M.R.; Trugilho, P.F. Assessing Proximate Composition, Extractive Concentration, and Lignin Quality to Determine Appropriate Parameters for Selection of Superior Eucalyptus Firewood. Bioenergy Res. 2019, 12, 626–641. [Google Scholar] [CrossRef]
- Motghare, K.A.; Rathod, A.P.; Wasewar, K.L.; Labhsetwar, N.K. Comparative Study of Different Waste Biomass for Energy Application. Waste Manag. 2016, 47, 40–45. [Google Scholar] [CrossRef]
- Nones, D.L.; Brand, M.A.; Da Cunha, A.B.; De Carvalho, A.F.; Weise, S.M.K. Determinação das Propriedades Energéticas da Madeira e do Carvão Vegetal Produzido A Partir de Eucalyptus Benthamii. Floresta 2014, 45, 57. [Google Scholar] [CrossRef]
- Lunguleasa, A.; Spirchez, C.; Zeleniuc, O.; Lunguleasa, A.; Spirchez, C.; Zeleniuc, O. Evaluation of the Calorific Values of Wastes from Some Tropical Wood Species. Maderas. Cienc. Y Tecnol. 2020, 22, 269–280. [Google Scholar] [CrossRef]
- Bhalerao, M.; Pangavhane, P.; Dhamangaonkar, P. Development of a Correlation for the Estimation of the Higher Calorific Value of Diesel, Based on Its Kinematic Viscosity and Density. Adv. Sci. Eng. Med. 2021, 12, 1040–1043. [Google Scholar] [CrossRef]
- Pawar, S.; Hole, J.; Bankar, M.; Khan, S.; Wankhade, S. Use of Fatty Acid Chemical Composition for Predicting Higher Calorific Value of Biodiesel. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Vallejo, F.; Díaz-Robles, L.A.; Vega, R.; Cubillos, F. A Novel Approach for Prediction of Mass Yield and Higher Calorific Value of Hydrothermal Carbonization by a Robust Multilinear Model and Regression Trees. J. Energy Inst. 2020, 93, 1755–1762. [Google Scholar] [CrossRef]
- Debdoubi, A.; El Amarti, A.; Colacio, E. Production of Fuel Briquettes from Esparto Partially Pyrolyzed. Energy Convers. Manag. 2005, 46, 1877–1884. [Google Scholar] [CrossRef]
- Kumar, J.A.; Kumar, K.V.; Petchimuthu, M.; Iyahraja, S.; Kumar, D.V. Comparative Analysis of Briquettes Obtained from Biomass and Charcoal. Mater. Today Proc. 2021, 45, 857–861. [Google Scholar] [CrossRef]
- Jowkar, A.; Sereshki, F.; Najafi, M. Numerical Simulation of UCG Process with the Aim of Increasing Calorific Value of Syngas. Int. J. Coal. Sci. Technol. 2020, 7, 196–207. [Google Scholar] [CrossRef]
- Smith, B.A.M.; Eudoxie, G.; Stein, R.; Ramnarine, R.; Raghavan, V. Effect of Neem Leaf Inclusion Rates on Compost Physico-Chemical, Thermal and Spectroscopic Stability. Waste Manag. 2020, 114, 136–147. [Google Scholar] [CrossRef]
- Ponte, M.R.; Gadelha, A.M.T.; Machado, Y.L.; Lopes, A.A.S.; Malveira, J.Q.; Mazzetto, S.E.; Lomonaco, D.; de Sousa Rios, M.A. Blendas de Bagaço de Cana-de-Açúcar, Podas de Mangueira e Cajueiro: Caracterização das Propriedades e Investigação de Seus Potenciais Energéticos. Matéria 2019, 24, e12372. [Google Scholar] [CrossRef]
- Wu, N.; Ji, T.; Huang, P.; Fu, T.; Zheng, X.; Xu, Q. Use of Sugar Cane Bagasse Ash in Ultra-High Performance Concrete (UHPC) as Cement Replacement. Constr. Build. Mater. 2022, 317, 125881. [Google Scholar] [CrossRef]
- El Naga, A.O.; El Saied, M.; Shaban, S.A.; El Kady, F.Y. Fast Removal of Diclofenac Sodium from Aqueous Solution Using Sugar Cane Bagasse-Derived Activated Carbon. J. Mol. Liq. 2019, 285, 9–19. [Google Scholar] [CrossRef]
- Dhanavath, K.N.; Bankupalli, S.; Sugali, C.S.; Perupogu, V.; Nandury, V.S.; Bhargava, S.; Parthasarathy, R. Optimization of Process Parameters for Slow Pyrolysis of Neem Press Seed Cake for Liquid and Char Production. J. Environ. Chem. Eng. 2019, 7, 102905. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Lv, D.; Wang, K.; Wang, Y. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles. Process Saf. Environ. Prot. 2021, 151, 39–50. [Google Scholar] [CrossRef]
- Kozlov, A.N.; Shamansky, V.A.; Donskoy, I.G.; Penzik, M.V.; Keiko, A.V. A DSC Signal for Studying Kinetics of Moisture Evaporation from Lignocellulosic Fuels. Thermochim. Acta 2021, 698, 178887. [Google Scholar] [CrossRef]
- Candelier, K.; Dibdiakova, J.; Volle, G.; Rousset, P. Study on Chemical Oxidation of Heat Treated Lignocellulosic Biomass under Oxygen Exposure by STA-DSC-FTIR Analysis. Thermochim. Acta 2016, 644, 33–42. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Baxter, D.; Andersen, L.K. A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal. 2. Potential Applications of the Classification Systems. Fuel 2009, 88, 246–254. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Braekman-Danheux, C.; Laurent, P.; Thiemann, T.; Fontana, A. Behaviour, Capture and Inertization of Some Trace Elements during Combustion of Refuse-Derived Char from Municipal Solid Waste. Fuel 1999, 78, 1131–1145. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Geochemistry of Coals, Coal Ashes and Combustion Wastes from Coal-Fired Power Stations. Fuel Process. Technol. 1997, 51, 19–45. [Google Scholar] [CrossRef]
Biomass | Moisture (%) | Ash (%) | VM (%) | FC (%) | References |
---|---|---|---|---|---|
Neem seed shell | 12.68 ± 0.16 | 3.80 ± 0.44 | 81.76 ± 1.30 | 14.44 ± 1.74 | This work |
Neem leaves | 10.4 | 7.41 | 92.59 | 24.82 | [60] |
Neem wood | 7.33 | 0.46 | 82.29 | 17.25 | [61] |
Coconut shell | 7.32 | 1.42 | 69.21 | 30.09 | [62] |
Sugarcane bagasse | 7.94 | 2.15 | 82.72 | 15.12 | [63] |
Eucalyptus wood | 9.03 | 0.54 | 86.73 | 12.73 | [64] |
Biomass | HHV, MJ/kg |
---|---|
Coconut shell | 19.864 |
Sugarcane bagasse | 19.156 |
Eucalyptus wood | 19.422 |
Synthetic Air | ||||
---|---|---|---|---|
Event | Tonset/°C | Tpeak/°C | Tendset/°C | Mass Change % |
1 | 57.8 | 97.3 | 135.2 | 12.35 |
2 | 243.2 | 282.2 | 357.3 | 47.20 |
3 | 414.3 | 329.1 | 733.6 | 36.17 |
Nitrogen | ||||
Event | Tonset/°C | Tpeak/°C | Tendset/°C | Mass Change % |
1 | 54.9 | 95.0 | 137.2 | 12.67 |
2 | 241.8 | 332.5 | 355.1 | 50.03 |
Synthetic Air | ||||
---|---|---|---|---|
Event | Tonset/°C | Tpeak/°C | Tendset/°C | ΔH, J/g |
1 | 67.1 | 102.7 | 142.5 | 291.5 (endo) |
2 | 244.8 | 338.1 | 377.1 | 7636 (exo) |
3 | 424.0 | 704.3 | 723.7 | |
Nitrogen | ||||
Event | Tonset/°C | Tpeak/°C | Tendset/°C | ΔH, J/g |
1 | 64.5 | 100.4 | 143.3 | 318.6 (endo) |
2 | 250.0 | 339.1 | 358.6 | 554.4 (exo) |
Element | Result | cps/uA |
---|---|---|
Ca | 44.263% | 72.2786 |
K | 39.801% | 90.9664 |
S | 8.770% | 25.1407 |
P | 4.172% | 5.7994 |
Fe | 1.806% | 13.1290 |
Ti | 0.672% | 1.4425 |
Zn | 0.244% | 3.8564 |
Rb | 0.156% | 6.3434 |
Sr | 0.116% | 5.3164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neto, F.S.; Melo Neta, M.; Sousa, A.; Damasceno, L.; Sousa, B.; Medeiros, S.; Melo, R.; Lopes, A.; Santos, J.; Rios, M. Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica). Processes 2023, 11, 2442. https://doi.org/10.3390/pr11082442
Neto FS, Melo Neta M, Sousa A, Damasceno L, Sousa B, Medeiros S, Melo R, Lopes A, Santos J, Rios M. Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica). Processes. 2023; 11(8):2442. https://doi.org/10.3390/pr11082442
Chicago/Turabian StyleNeto, Francisco Simão, Maria Melo Neta, Ana Sousa, Luana Damasceno, Bruna Sousa, Samuel Medeiros, Rafael Melo, Ada Lopes, José Santos, and Maria Rios. 2023. "Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica)" Processes 11, no. 8: 2442. https://doi.org/10.3390/pr11082442
APA StyleNeto, F. S., Melo Neta, M., Sousa, A., Damasceno, L., Sousa, B., Medeiros, S., Melo, R., Lopes, A., Santos, J., & Rios, M. (2023). Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica). Processes, 11(8), 2442. https://doi.org/10.3390/pr11082442