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Abstract: Over time, distribution systems have progressed from small-scale systems to complex
networks, requiring modernization to adapt to these increasing levels of active loads and devices. It is
essential to manage the capacity of distribution networks to support all these new technologies. This
work, therefore, presents a method for evaluating the impact of optimal allocation and sizing of DGs
and load shedding for response demand programs on distribution networks to improve the reliability
and financial performance of electric power systems. The proposed optimization tool uses the Greedy
Randomized Adaptive Search Procedure and Tabu Search algorithms. The combined optimization
of DG allocation simultaneously with load shedding, reliability indices, load transference, and the
possibility of islanded operation significantly improves the quality of the planning proposals obtained
by the developed method. The results demonstrate the efficiency and robustness of the proposed
method, improving the voltage profile by up to 2.02%, relieving the network capacity, and increasing
the load restoration capability and reliability. Statistical analysis is also carried out to highlight the
performance of the proposed methodology.

Keywords: distribution network; capacity management; GRASP; Tabu Search; distributed generator;
load shedding

1. Introduction

The distribution networks must supply the load demand that varies daily and season-
ally. Since the demand is largely unpredictable, and making programmable interruptions
is not a good option because of its very high cost, the generation system capacity must
be capable of supplying the maximum demand or peak demand [1]. The management of
these resources becomes increasingly important due to distributed energy resources (DERs)
integration into the grid. The active and reactive power injected by DERs into the grid not
only affects the local voltage but can also influence charging conditions and power flow on
the network [1]. Distribution networks can experience a significant increase in peak loads,
which, in the absence of smart functionality to reduce them, may result in a substantial
investment increase in network infrastructure [2]. An adequate management mechanism
is thus necessary to optimize the use of the network’s capacity, ensuring sustainable and
more efficient distribution systems [2].

The installation of a distributed energy resource management system (DERMS) can
aid network operations performed using the advanced distribution management system
(ADMS) [3]. This strategy can significantly reduce the uncertainties caused by dispersed
DERs that may not follow a unified or coordinated pattern of operation. The integration of
DERMS and ADMS provides, additionally, the operability of programs for demand-side
management (DSM).

The concept of demand-side management emerged in the 1980s as a response to the
unpredictable growth in demand for electricity in that period. The development of a broad
market based on real-time demand and supply data was a result of this situation. Future
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consumer demand used to be handled traditionally. However, with the introduction of this
concept, fluctuations and variations in energy demand began to be better accommodated
to deal with future uncertainties [4].

The implementation of demand-side management increases the complexity of power
systems since the adequate performance of demand-side management requires monitoring
the loads and generators of the system [5]. With this, additional expenses are generated
with the incentive to participate in demand-side management programs. The benefits
of demand-side management far outweigh its disadvantages [6]. The DSM has become
essential in implementing smart grids, especially in the residential sector, as it significantly
contributes to reducing the peak of electricity demand.

Some studies have been carried out on this subject in recent years, such as [7], which
applies the Optimal Power Flow (OPF) technique in distribution networks to maximize
system benefits by considering the capacity of loads, by assessing the optimal allocation
of demand-side resources, and by providing ancillary services like an operational reserve.
The authors of [8] developed a procedure to determine the best buses for demand response
based on distribution factors, power transfer, available transfer capacity, and optimal
power flow. The results help reduce line congestion, increase benefits for customers and the
independent system operator, and avoid line interruptions and blackouts, thus increasing
system reliability.

The DSM has been strategically used by aggregators and power utilities to manage
energy consumption through incentives. Such incentives include reducing electricity tariffs
when aggregated demand is below average. The goal is to encourage the final consumer to
move flexible loads for such periods [9].

Demand-side management takes three different approaches: strategic load growth,
energy efficiency, and demand response [4,6]. In this work, the demand response is
applied, which, according to [10], refers to changes in the electricity consumption patterns
of end-users in response to changes in electricity prices over time or incentives offered
to reduce electricity use during periods of high wholesale market prices or compromised
system reliability.

Several recent kinds of research have been carried out regarding the demand re-
sponse [11–13] to minimize the load curve, considering the presence of DGs. The authors
of [11] considered both demand-side management and network reconfiguration simultane-
ously. The mathematical model’s objective function seeks to minimize the total cost over
the planning horizon, encompassing DG’s investment, operation, fuel, and demand-side
management costs. The model is converted into a three-tier programming model, and
optimal DG planning results are achieved by using a hybrid solution strategy.

To deal with the problem of photovoltaic and wind energy consumption and minimize
the total cost of energy purchase, an optimal real-time dispatch model is established in [12],
considering the grid security constraints and supply and demand constraints to ensure
safe network operation. The authors of [13] addressed a priority-based load shifting to
bridge the gap between demand and supply. The power consumer can then cooperate with
the utility by managing its demand, that is, by scheduling flexible appliances based on
consumption priority.

Network reconfiguration can include the possibility of islanded operation to increase
network reliability. During a fault event, the closest protection device to the fault trips, iso-
lating the downstream sections to minimize the number of customers de-energized [14]. DG
integration allows the restoration of downstream feeder sections, with part of distribution
network loads, by forming microgrids. Such a strategy reduces the number of customers
de-energized and increases restoration capacity and reliability indexes and the profit of
distribution companies. The authors of [14] performed demand-side management through
the hosting capacity of a meshed distribution network using the Repeating Particle Swarm
metaheuristic under a 123-bus network with the integration of multiple and large-scale
photovoltaic systems.
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Recent works in the literature have focused on the demand response strategy to reduce
the load flows through the distribution lines by avoiding network congestion and, thus,
improving the system’s reliability [15–18]. In [15], the frequency-based load shedding
using the polynomial regression method and mixed integer linear programming (MILP) is
applied as a demand response. The MILP is used for the ideal location of non-vital loads,
discarding them to ensure the functionality of critical loads.

The authors of [16] reviewed load-shedding schemes in distribution networks consid-
ering DGs. This paper reports that the conventional technique is a trial-and-error procedure
used to develop the number and size of load reduction steps. An adaptive technique is
proposed to improve the power imbalance estimation and determine the optimal location
of the load to be eliminated. The computational intelligence techniques are based on Artifi-
cial Neural Networks, metaheuristics, and Fuzzy Logic using the under-frequency load
shedding scheme (UFLS) and the voltage shedding scheme. In [17], the UFLS technique
based on the combination of Particle Swarm Optimization (PSO) and Bacterial Foraging
(BF) metaheuristics was proposed to reduce the amount of disconnected load and increase
the lowest possible oscillation frequency.

The authors of [18] identify DG’s optimal size and location with a minimum cost as
demand response through the simulated annealing (SA) metaheuristic to a microgrid to
achieve the stipulated reliability criteria. In [19], a mixed integer nonlinear programming
(MINLP) is proposed, minimizing the system’s annual energy losses, while [20] proposes a
mixed-integer quadratically constrained programming problem, solving using a genetic
algorithm (GA).

However, none of these works considered the optimal allocation of DGs simultane-
ously with load shedding for power loss minimization and, consequently, the total cost of
the distribution network, improving reliability through capacity management. In contrast
to works that manage the demand side through the hosting capacity or just cut the load
on the network without considering the optimal allocation of a distributed generator, this
work presents the following contributions:

• The study and problem definitions of the operation and management of DGs, simulta-
neously with load shedding, to manage the capacity of distribution networks;

• Use of metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP) with
Tabu Search (TS) to solve the proposed problem of distribution network capacity
management;

• Statistical analysis to validate the proposed formulation and solution technique, pro-
moting the proper integration of DERs into the electrical grids and, thus, maximizing
their benefits and maintaining the quality of supply and the reliability of the electrical
distribution system.

This paper is set out as follows. Section 2 describes the mathematical modeling of the
problem. Section 3 presents the solution techniques using GRASP and TS metaheuristics.
Section 4 presents the numerical results, and Section 5 presents the conclusions.

2. Materials and Methods

Power losses are intrinsic conditions of power energy systems and directly impact
their performance. Nevertheless, there are several techniques to reduce them, increasing
the voltage profile and energy quality. Optimal DG allocation and sizing have the potential
to improve the power system performance, providing decentralization of energy sources,
power loss reduction, and postponement in reinforcement investments. The integration
of DGs in the distribution system also enables the islanded operation. Thus, during a
fault event, the network reconfiguration allows DGs to remain in operation as a microgrid,
improving the energy quality by reducing the power outage. Figure 1a highlights such a
strategy, where DG1 and DG2 can supply loads nearby.

The DSM also improves power system performance by using load shedding. This
scheme gives customers the option of a low-cost service, where the load shedding is a
condition of their contract type. The DSM relieves capacity and increases load restoration.
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In this way, during a fault event, the load shedding can also be advantageous by increasing
the chance of islanded operation and load transference to neighboring feeders, as shown in
Figure 1b.

The management of the network capacity, sizing and locating of DGs, and load
shedding were carried out using the solution of an optimization model. Figure 2 shows
an abstract of the proposed methodology, highlighting some advantages of optimal DG
planning and demand-side management.

Processes 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

condition of their contract type. The DSM relieves capacity and increases load restoration. 
In this way, during a fault event, the load shedding can also be advantageous by increas-
ing the chance of islanded operation and load transference to neighboring feeders, as 
shown in Figure 1b. 

The management of the network capacity, sizing and locating of DGs, and load shed-
ding were carried out using the solution of an optimization model. Figure 2 shows an 
abstract of the proposed methodology, highlighting some advantages of optimal DG plan-
ning and demand-side management. 

  
(a) (b) 

Figure 1. Benefits of applying several strategies for improving energy quality and hosting capacity: 
(a) using only the islaned operation and (b) combining islanded operation with load shedding and 
load transference to neighbor feeders. 

 
Figure 2. Graphical abstract highlighting the whole process using the proposed method. 

2.1. Objective Function 
Comprising three elements, the objective function in (1) is composed as follows: cost 

of losses 𝐶ைௌௌ, cost of load shedding 𝐶ௌுா, and cost of energy not supplied 𝐶ாேௌ. 𝑂𝐹 = 𝐶ைௌௌ + 𝐶ௌுா + 𝐶ாேௌ  (1)

The distribution network losses are determined as given by (2), assuming the cost of 
losses for a horizon of one year [21], where 𝑘 is the cost of losses, 𝐼,,௬ is the current 
flow, and 𝑅, is the resistance of the j-th distribution line at the p-th phase to a distribu-
tion network with 𝑛𝑙 lines. Each year of the planning horizon is represented by 𝑦 from 
the set 𝝋. The cost of load shedding is represented by (3), where 𝑋,,,௬ is the percentage 
of load shedding; 𝑃,,,௬ெ  is the maximum cuttable power in i-th bus and p-th phase to a 
distribution network with 𝑛𝑏 buses; and 𝐶ௌுா is the cost of load shedding to the k-th 
type of customer, which can be residential, R, commercial, C, or industrial, I. 

Figure 1. Benefits of applying several strategies for improving energy quality and hosting capacity:
(a) using only the islaned operation and (b) combining islanded operation with load shedding and
load transference to neighbor feeders.

Processes 2023, 11, x FOR PEER REVIEW 4 of 17 
 

 

condition of their contract type. The DSM relieves capacity and increases load restoration. 
In this way, during a fault event, the load shedding can also be advantageous by increas-
ing the chance of islanded operation and load transference to neighboring feeders, as 
shown in Figure 1b. 

The management of the network capacity, sizing and locating of DGs, and load shed-
ding were carried out using the solution of an optimization model. Figure 2 shows an 
abstract of the proposed methodology, highlighting some advantages of optimal DG plan-
ning and demand-side management. 

  
(a) (b) 

Figure 1. Benefits of applying several strategies for improving energy quality and hosting capacity: 
(a) using only the islaned operation and (b) combining islanded operation with load shedding and 
load transference to neighbor feeders. 

 
Figure 2. Graphical abstract highlighting the whole process using the proposed method. 

2.1. Objective Function 
Comprising three elements, the objective function in (1) is composed as follows: cost 

of losses 𝐶ைௌௌ, cost of load shedding 𝐶ௌுா, and cost of energy not supplied 𝐶ாேௌ. 𝑂𝐹 = 𝐶ைௌௌ + 𝐶ௌுா + 𝐶ாேௌ  (1)

The distribution network losses are determined as given by (2), assuming the cost of 
losses for a horizon of one year [21], where 𝑘 is the cost of losses, 𝐼,,௬ is the current 
flow, and 𝑅, is the resistance of the j-th distribution line at the p-th phase to a distribu-
tion network with 𝑛𝑙 lines. Each year of the planning horizon is represented by 𝑦 from 
the set 𝝋. The cost of load shedding is represented by (3), where 𝑋,,,௬ is the percentage 
of load shedding; 𝑃,,,௬ெ  is the maximum cuttable power in i-th bus and p-th phase to a 
distribution network with 𝑛𝑏 buses; and 𝐶ௌுா is the cost of load shedding to the k-th 
type of customer, which can be residential, R, commercial, C, or industrial, I. 

Figure 2. Graphical abstract highlighting the whole process using the proposed method.

2.1. Objective Function

Comprising three elements, the objective function in (1) is composed as follows: cost
of losses CLOSS, cost of load shedding CSHED, and cost of energy not supplied CENS.

OF = CLOSS + CSHED + CENS (1)

The distribution network losses are determined as given by (2), assuming the cost
of losses for a horizon of one year [21], where ke is the cost of losses, Ij,p,y is the current
flow, and Rj,p is the resistance of the j-th distribution line at the p-th phase to a distribution
network with nl lines. Each year of the planning horizon is represented by y from the set
ϕ. The cost of load shedding is represented by (3), where Xi,p,k,y is the percentage of load
shedding; PMAX

i,p,k,y is the maximum cuttable power in i-th bus and p-th phase to a distribution

network with nb buses; and CSHED
k is the cost of load shedding to the k-th type of customer,

which can be residential, R, commercial, C, or industrial, I.

CLOSS = ke ∑
y∈ϕ

nl

∑
j=1

∑
p∈{a,b,c}

∣∣Ij,p,y
∣∣2Rj,p (2)
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CSHED = ∑
y∈ϕ

nb

∑
i=1

∑
p∈{a,b,c}

∑
k∈{R,C,I}

(
Xi,p,k,yPMAX

i,p,k,y CSHED
k

)
(3)

The cost of energy not supplied considering the indices of permanent faults is given
by (4). We assume that a section is defined as a set of branches and buses belonging to a
device’s protective zone. More details can be found in [22].

CENS = ∑
k∈{R,C,I}

CENERGY
k ∑

y∈ϕ

PENS
y

(1 + IRR)y (4)

In (4), CENERGY
k is the energy price according to the type of customer, PENS

y is the
energy not supplied during permanent faults for each year y of the planning horizon ϕ, and
IRR is the internal rate of return. In (5), the estimation of interrupted energy PENS

y depends
on the failure rate λ

p
h for permanent faults and the length of each branch h belonging to

the set of branches from section i, πi. The total loads in section i and downstream are
represented by Pp

i,y, during year y. The set β includes all sections defined by the protection
and control devices.

PENS
y = ∑

i∈β
∑

h∈πi

(
λ

p
h Lh

)[(
Pp

i,y − PMG
i,y − PTS

i,y

)
tp
R + PTS

i,y tSW

]
(5)

PMG
i,y = ∑

m∈M
PMG

i,y,m (6)

PMG
i,y,m = 0, f = h ∀ h ∈ σm (7)

PTS
i,y = ∑

w∈W
PTS

i,y,w (8)

PTS
i,y,w = 0, f = h ∀ h ∈ τw (9)

During a fault event, the islanded operation can occur, depending on the power
balance available between loads and DGs in each section. PMG

i,y is the microgrids’ loading

that can be restored, as given in (6). This expression is the sum of loads PMG
i,y,m within the

microgrid m from the set M. For a fault inside the microgrid, that is, a fault in a branch
h ∈ σm, or when the microgrids’ loading is bigger than DG capacity, the islanded operation
cannot be performed, and DGs must be disconnected, as given in (7).

The same occurs for load transference to neighbor feeders. PTS
i,y represents the sum

of transferred loads downstream automatic tie switches in section i. Such estimation is
based on the sum of all loads that can be restored by using each automatic tie switch from
the set W (8). For a fault within τw or when the sum of transferred loads is bigger than
the neighbor feeder capacity, the load transference cannot be performed, as given in (9).
The duration of power outages caused by permanent faults is denoted as tp

R, while tSW
is the time of power outage necessary for the system operator to restore the loads using
automatic switches.

2.2. Constraints Set

The active and reactive power balance equations for each bus of radial networks are,
respectively, represented by equality constraints (10) and (11). The voltage magnitude
limits of the i-th bus are represented by constraint (12), while the current flow limits for
each phase, Ip,i,y, are represented by (13), with an upper limit of Ip. Active and reactive
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power of DGs must not exceed upper and lower boundaries as, respectively, given by
constraints (14) and (15).

Pp,i,y(V, θ)− PDG
p,i,y + PD

p,i,y = 0, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (10)

Qp,i,y(V, θ)−QDG
p,i,y + QD

p,i,y = 0, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (11)

Vp ≤ Vp,i,y ≤ Vp, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (12)

0 ≤ Ip,i,y ≤ Ip, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (13)

PDG ≤ PDG
p,i,y ≤ PDG, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (14)

QDG ≤ QDG
p,i,y ≤ QDG, ∀i ∈ nb, y ∈ ϕ, p = a, b, c (15)

3. Solution Technique

The proposed optimization model, a mixed integer nonlinear programming model,
is solved using the GRASP metaheuristic with TS in the local search phase. It combines
the advantages of two widely known techniques, speeding up the search process with the
greedy stage of GRASP and reducing the chances of becoming stuck in local minima due to
the flexibility provided by the tabu list of prohibited solutions.

The GRASP metaheuristic consists of two phases: constructive and local search,
performed sequentially and iteratively [23]. In the first phase, different initial greedy and
random solutions are generated. This step directs the method to regions more likely to
obtain local optima, accelerating the exploration process. Then, the found solutions are
refined in the local search phase using the TS algorithm [24], improving them even more.

The tabu list restricts the choice of solutions that have been visited recently. Then, the
optimization process allows the TS to select worse-quality solutions for local exploration.
Such an aspect allows for extensive exploration, obtaining local optimal solutions from
different regions of the search space. From left to right, Figure 3 shows the basic flowchart
of GRASP and TS.
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In this work, the convergence criterion is based on the iteration number. The algorithm
repeats up to a limit of iterations, or if the sequence of iterations without improvement
reaches a certain limit, both previously defined by the user.

3.1. Codification

In coding the individuals for the generators, a set of real numbers is used, in which the
integer part characterizes the active power PDG

j,y of the DG, and the decimal part represents
the power factor p f j,y of the generator, which must be equal to or higher than p f . If an i-th

bus has allocated the j-th DG, PDG
i,y = PDG

j,y and QDG
i,y = PDG

j,y

(
1− p f 2

j,y

)1/2
/p f j,y. In (16)

and (17), αj,y and β j,y are integer random numbers that vary from 0 to α and β, respectively.
Increments in active power and power factor are ∆PDG and ∆p f . As for the load shedding,
in (18), integer values represented by the variable γj,y from 0 to γ are used to characterize
the percentage of load shedding Xj,y.

PDG
j,y = αj∆PDG, αj,y = 0, 1, . . . , α (16)

p f j,y = p f + β j,y∆p f , β j,y = 0, 1, . . . , β (17)

Xj,y = γj∆X, γj,y = 0, 1, . . . , γ (18)

Figure 4 presents the coding of a candidate solution as a vector where each element is
associated with the position of the buses DGn and LSn for generator allocation and load
shedding, respectively, where n represents the number limit of each one. Figures 5 and 6
display detailed flowcharts of the whole proposed method.
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3.2. Constructive

During the constructive phase, as depicted in Figure 5, the pre-processing stage is
initiated, which involves running a three-phase power flow analysis. This analysis provides
the voltage profile for every phase at all buses, current flows through branches, and the sum
of losses concerning the feeder under study. The power flow analysis ensures the active
and reactive power balance, as specified by constraints (10) and (11). A set of candidate
buses with the lowest voltages and highest demand is chosen after power flow estimation
for DG allocation and load shedding.

The initial candidate construction occurs by inserting elements one by one from the
solution of the search space (CL). The search space is narrowed down afterward based on
Equation (19), resulting in a list called the restricted candidate list (RCL), which includes
the top-performing candidates. An element is randomly selected in each iteration to be
included in the candidate solution under the building process.

g(c) ≤ g(c) ≤ g(c) + a
[

g(c)− g(c)
]

(19)

GRASP has a greedy function g(c) to assess candidate solutions c, providing the cost
concerning the addition of an element to the initial solution. Assuming a problem of
minimization, the solutions with the lowest and greatest cost among candidates in the CL
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are, respectively, represented as g(c) and g(c). A candidate c in the CL is placed in the RCL
if and only if (19).

3.3. Local Search Phase

The TS metaheuristic is employed in this stage to enhance the solution obtained from
the constructive process. As depicted in Figure 6, the search traverses the neighborhood of
the current configuration, locating the setup that enhances the objective function’s value.
The algorithm’s performance is dependent on the quality of these configurations.

After computing the objective function’s values throughout the neighborhood, the
configuration with the lowest objective function value is chosen. Solutions from the Tabu
list are compared with the chosen one. If it is, the algorithm assesses the aspiration
criterion, verifying if the solution meets such criteria. The main objective is to remove
the prohibition on the attribute of a high-quality neighboring solution that shares the
same configuration as a previously visited solution. If the objective function value of the
discovered neighboring solution is superior to that of the current solution, the restriction is
revoked, and the transition is executed. In contrast, if the aspiration criterion is not satisfied,
the configuration with the second-lowest objective function value is chosen.

4. Numerical Results and Discussion

The tests were performed on a real-world distribution feeder with 1806 buses [25],
providing power to 834 loads, 781 in the low-voltage network, 53 in the medium-voltage
network, and 47 distribution transformers. This test system has 11 automatic switches used
for service restoration.

Smart grid customers are classified into residential (R), commercial (C), and industrial
(I), where each type represents 50%, 30%, and 20% of distribution network loads. The cost of
losses is defined as ke = 0.04 USD/kWh [19]. Other optimization settings and parameters
are shown in Table 1. The maximum capacity for each DG installed is 3.6 MW. The objective
function proposed in (1) is penalized whenever constraints are violated during the solutions
assessment. In the constructive phase, there are limiting parameters ∆PDG, α, p f , ∆p f ,
and β, ∆X and γ, also shown in Table 1. ENS and load-shedding costs are based on [22]
and [11], respectively. This work considers a planning horizon of one year.

Table 1. Optimization settings and parameters.

Parameters Value Parameters Value Parameters Value

CSHED
R 0.04 USD/kWh CENS

R 1.5 USD/kWh α 5
CSHED

C 0.03 USD/kWh CENS
C 3.0 USD/kWh β 9

CSHED
I 0.02 USD/kWh CENS

I 4.64 USD/kWh γ 5
V 0.95 pu V 1.05 pu p f 0.90

∆X 4% ∆PDG 160 kW ∆p f 0.01

To our best knowledge, there is no similar work in the literature that includes all aspects
addressed in this paper. The proposed methodology’s performance is evaluated using
statistical analysis. Table 2 shows results from the statistical analysis, while Tables 3 and 4
highlight DG configuration and load shedding found by the worst solution, in that order.

Table 2. Statistical analysis.

a CVP OF (MUSD) TA (MUSD) SD (MUSD)

0.0 10.2 5.545 1.832 0.566
0.2 14 5.619 2.510 0.788
0.8 6 5.268 1.461 0.321
1.0 17 5.715 2.692 0.973
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Table 3. Worst solution: DG configuration.

DGn (bus) 13388 13446 13418 13392 13428 14120
αn 4 0 0 0 0 0

PG
n (kW) 640 0 0 0 0 0

Table 4. Worst solution: load shedding setup.

LSn (bus) 200800 201128 201131 200914 201134 202004
γn 4 0 0 0 0 0
Xn 16% 0 0 0 0 0

In the simulations performed in the constructive phase, the twelve candidate buses
are selected based on their position in a sequential manner. First, adjustments were made
to find the solution with the most adequate value for the initial solution. Thus, we obtained
Pearson’s coefficient of variation (CVP), the average of objective functions (OFµ), standard
deviation (SD), and total amplitude (TA).

When analyzing Table 2, we can see that the most homogeneous solution was the
one in which the algorithm is near random (a = 0.8), that is, with a variation of 6% in
its solutions. The worst solution was obtained when the constructive phase was purely
greedy (a = 0.0). In addition, if the solution is completely random (a = 1.0), the initial
solution may not be very good, causing the algorithm to stop at a local optimum in the
neighborhood search, which can generate more heterogeneous solutions. The algorithm
stops when one of two conditions is met: either the incumbent solution does not improve
for 300 generations, or it reaches the maximum number of 800 generations. In either case,
the incumbent solution is considered the best-found solution.

Fifty simulations were performed to evaluate the performance of the algorithm with
the results obtained during the tests, i.e., a = 0.8. Figures 7–9 are related to the statistical
analysis of results provided by the proposed method, where each one shows a probability
graph of objective functions, a box diagram with the scattering of objective functions, and
the objective function histogram, in that order.

Processes 2023, 11, x FOR PEER REVIEW 10 of 17 
 

 

Table 3. Worst solution: DG configuration. 

DGn (bus) 13388 13446 13418 13392 13428 14120 𝛼 4 0 0 0 0 0 𝑃ீ  (kW) 640 0 0 0 0 0 

Table 4. Worst solution: load shedding setup. 

LSn (bus) 200800 201128 201131 200914 201134 202004 𝛾 4 0 0 0 0 0 𝑋 16% 0 0 0 0 0 

In the simulations performed in the constructive phase, the twelve candidate buses 
are selected based on their position in a sequential manner. First, adjustments were made 
to find the solution with the most adequate value for the initial solution. Thus, we ob-
tained Pearson’s coefficient of variation (𝐶𝑉𝑃), the average of objective functions (𝑂𝐹ఓ), 
standard deviation (𝑆𝐷), and total amplitude (𝑇𝐴). 

When analyzing Table 2, we can see that the most homogeneous solution was the one 
in which the algorithm is near random (𝑎 = 0.8), that is, with a variation of 6% in its solu-
tions. The worst solution was obtained when the constructive phase was purely greedy 
(𝑎 = 0.0). In addition, if the solution is completely random (𝑎 = 1.0), the initial solution 
may not be very good, causing the algorithm to stop at a local optimum in the neighbor-
hood search, which can generate more heterogeneous solutions. The algorithm stops 
when one of two conditions is met: either the incumbent solution does not improve for 
300 generations, or it reaches the maximum number of 800 generations. In either case, the 
incumbent solution is considered the best-found solution. 

Fifty simulations were performed to evaluate the performance of the algorithm with 
the results obtained during the tests, i.e., 𝑎 = 0.8. Figures 7–9 are related to the statistical 
analysis of results provided by the proposed method, where each one shows a probability 
graph of objective functions, a box diagram with the scattering of objective functions, and 
the objective function histogram, in that order. 

 
Figure 7. Probability graph of objective functions. Figure 7. Probability graph of objective functions.



Processes 2023, 11, 2464 11 of 16Processes 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 8. Box diagram: scattering of objective functions. 

 
Figure 9. Objective function histogram. 

The graph in Figure 8 shows that most of the data are on the right side. The symbol 
in the center represents the average value of MUSD 5.268, and the line represents the mid-
dle value of MUSD 5.251. Finally, 75% of all values are below the third quartile of MUSD 
5.369. The graph shows two outliers (atypical value), which is because these solutions do 
not have any load shedding and have only installed a 640 kV generator, as shown in Ta-
bles 3 and 4. 

The data do not follow a normal distribution because two solutions presented the 
value of the objective function as very high, with a much greater amplitude than the oth-
ers, and the p-value is less than the significance level of 0.05, as shown in Figure 7. 

From the histogram of the objective functions in Figure 9, we can see that the data 
are multimodal and have outliers since two solutions have only one DG installed, and the 
load cut has not been performed. 

A diagram of the test system is shown in Figure 10, including DGs and the load-
shedding locations. Low-voltage loads have been omitted from the figure. The dashed 
grey area shows an example of the low-voltage loads downstream of a distribution trans-
former. The positions of the worst DG and load-shedding setup are highlighted in red, 
while the best DG and load-shedding setup are emphasized in green. 

Figure 8. Box diagram: scattering of objective functions.

Processes 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 8. Box diagram: scattering of objective functions. 

 
Figure 9. Objective function histogram. 

The graph in Figure 8 shows that most of the data are on the right side. The symbol 
in the center represents the average value of MUSD 5.268, and the line represents the mid-
dle value of MUSD 5.251. Finally, 75% of all values are below the third quartile of MUSD 
5.369. The graph shows two outliers (atypical value), which is because these solutions do 
not have any load shedding and have only installed a 640 kV generator, as shown in Ta-
bles 3 and 4. 

The data do not follow a normal distribution because two solutions presented the 
value of the objective function as very high, with a much greater amplitude than the oth-
ers, and the p-value is less than the significance level of 0.05, as shown in Figure 7. 

From the histogram of the objective functions in Figure 9, we can see that the data 
are multimodal and have outliers since two solutions have only one DG installed, and the 
load cut has not been performed. 

A diagram of the test system is shown in Figure 10, including DGs and the load-
shedding locations. Low-voltage loads have been omitted from the figure. The dashed 
grey area shows an example of the low-voltage loads downstream of a distribution trans-
former. The positions of the worst DG and load-shedding setup are highlighted in red, 
while the best DG and load-shedding setup are emphasized in green. 

Figure 9. Objective function histogram.

The graph in Figure 8 shows that most of the data are on the right side. The symbol in
the center represents the average value of MUSD 5.268, and the line represents the middle
value of MUSD 5.251. Finally, 75% of all values are below the third quartile of MUSD 5.369.
The graph shows two outliers (atypical value), which is because these solutions do not have
any load shedding and have only installed a 640 kV generator, as shown in Tables 3 and 4.

The data do not follow a normal distribution because two solutions presented the
value of the objective function as very high, with a much greater amplitude than the others,
and the p-value is less than the significance level of 0.05, as shown in Figure 7.

From the histogram of the objective functions in Figure 9, we can see that the data are
multimodal and have outliers since two solutions have only one DG installed, and the load
cut has not been performed.

A diagram of the test system is shown in Figure 10, including DGs and the load-
shedding locations. Low-voltage loads have been omitted from the figure. The dashed grey
area shows an example of the low-voltage loads downstream of a distribution transformer.
The positions of the worst DG and load-shedding setup are highlighted in red, while the
best DG and load-shedding setup are emphasized in green.
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The best solution presented the value of the objective function of MUS 4.764, with an
injection of 2.24 MW in the network and cuts made in the buses, as shown in Tables 5 and 6.
In the worst solution, from the six candidate buses found in the constructive phase, only
one has load shedding within distribution transformer T11. On the other hand, the best
solution includes all six customers for load shedding, where three of them have 20%
shedding. Similarly, the worst solution for DGs has only one installed, while the best result
includes four DGs.

Table 5. Best solution: DG configuration.

DGn (bus) 13388 13446 13418 13392 13428 14120
αn 2 4 4 1 0 3

PG
n (kW) 320 640 640 160 0 480

Table 6. Best solution: load-shedding setup.

LSn (bus) 201127 201128 200913 200914 201146 201131
γn 5 5 3 3 2 5
Xn 20% 20% 12% 12% 8% 20%

The biggest difference between the worst and best solutions is the number of DG
allocations and load shedding, highlighting the importance of implementing such strategies.
Nevertheless, the worst and best solutions present very similar locations for load shedding
and identical locations for DG installation. Even the worst solution presents attractive
positions to install DGs or perform load shedding. Therefore, the difference is related to
the number of αn and γn.

As shown in Figure 10, all DG allocations provided by the solution technique are
in the medium-voltage network. Likewise, we assume that load shedding must occur
in low-voltage buses, which could have high-priority loads. Allowing load shedding in
medium-voltage loads could lead the metaheuristic to promote only load shedding in
such areas.

Most found solutions have allocated a DG close to the substation, except for a DG
at bus 14120. A DG installed far from the substation promotes a relevant increase in
the voltage profile, according to the DG’s capacity. On the other hand, the allocation of
DGs close to the substation provides a low increase in the voltage profile. The solution
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technique seeks to install more DGs close to the substation to minimize energy losses and,
simultaneously, to avoid overvoltage problems.

As indicated in Table 5, none of the generators has αn = α due to the impact on the
system’s voltage profile. The solution technique identified a more suitable setup when
using smaller-capacity generators to avoid overvoltage problems.

The loads downstream of transformers T17 and T26 are shown in Figure 11, highlight-
ing the main areas with load shedding. Three load sheddings were considered in the same
buses for both worst and best solutions. The worst case has γn = 0 for loads 200914, 201128,
and 201131, while the best case has γn = 3, 5, and 5, respectively. The constructive process
finds initial solutions, and the local search refines their quality, maintaining good quality of
load-shedding locations, even for the worst solution.

Processes 2023, 11, x FOR PEER REVIEW 13 of 17 
 

 

seeks to install more DGs close to the substation to minimize energy losses and, simulta-
neously, to avoid overvoltage problems. 

As indicated in Table 5, none of the generators has 𝛼 = 𝛼ത due to the impact on the 
system’s voltage profile. The solution technique identified a more suitable setup when 
using smaller-capacity generators to avoid overvoltage problems. 

The loads downstream of transformers T17 and T26 are shown in Figure 11, high-
lighting the main areas with load shedding. Three load sheddings were considered in the 
same buses for both worst and best solutions. The worst case has 𝛾 = 0 for loads 200914, 
201128, and 201131, while the best case has 𝛾 = 3, 5, and 5, respectively. The construc-
tive process finds initial solutions, and the local search refines their quality, maintaining 
good quality of load-shedding locations, even for the worst solution. 

  
(a) (b) 

Figure 11. Details from loads in (a) TR17 and (b) TR26. 

Figure 12 shows the voltage profile of the initial condition or base case (orange 
marks) and the best solution (blue marks). The voltage difference between phases is small. 
However, solving the problem of managing the capacity considering unbalanced smart 
grids may provide a more appropriate solution than works without such an important 
aspect. 

As shown in Figure 12, allocating DGs in the distribution network increases the volt-
age levels up to 2.02% at the bus 200800 within distribution transformer T11 due to the 
combined optimization of DG allocation simultaneously with load shedding, reliability 
indices, load transference, and the possibility of islanded operation. Such voltage im-
provement provides power loss reduction. Phase C in the base case presents the lower 
voltage levels. Nevertheless, DG allocation and load shedding in the best solution provide 
the best voltage improvement for the same phase. 

The proposed solution allocates the generators in regions where the generators can 
supply the loads and perform islanded operations during fault events. So, including reli-
ability optimization aspects in the objective function increases the overall benefits from 
optimal allocation and sizing of DGs and load shedding. 

Figure 11. Details from loads in (a) TR17 and (b) TR26.

Figure 12 shows the voltage profile of the initial condition or base case (orange marks)
and the best solution (blue marks). The voltage difference between phases is small. How-
ever, solving the problem of managing the capacity considering unbalanced smart grids
may provide a more appropriate solution than works without such an important aspect.

As shown in Figure 12, allocating DGs in the distribution network increases the voltage
levels up to 2.02% at the bus 200800 within distribution transformer T11 due to the com-
bined optimization of DG allocation simultaneously with load shedding, reliability indices,
load transference, and the possibility of islanded operation. Such voltage improvement
provides power loss reduction. Phase C in the base case presents the lower voltage levels.
Nevertheless, DG allocation and load shedding in the best solution provide the best voltage
improvement for the same phase.

The proposed solution allocates the generators in regions where the generators can
supply the loads and perform islanded operations during fault events. So, including
reliability optimization aspects in the objective function increases the overall benefits from
optimal allocation and sizing of DGs and load shedding.

The results show that all parts of the objective function work cooperatively to increase
response demand and reliability. For instance, the islanded operation is improved when
load allocation and load shedding are considered simultaneously. The implementation of
generators allows islanding, while load shedding increases the chances of success of the
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islanded operation, reducing the demand in the region that will be islanded and increasing
reliability and customer satisfaction.
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5. Conclusions

This work applied a methodology based on the hybrid GRASP and TS algorithm to
evaluate the effects of the optimal allocation of DGs and load shedding in the smart grid
while also considering reliability aspects. The results show that the objective function
produces a higher value if load shedding is not carried out together with the optimal DG
allocation. Optimal benefits from DG and load shedding can be achieved by conducting
adequate planning to determine the most suitable bus for minimum shedding, as well as
the ideal size and location of DGs, which may vary depending on the system.

The results found highlight the advantages of performing demand-side management,
ensuring a better distribution of the load curve. The benefits include a better voltage profile
and network capacity relief. Load restoration is also increased by the islanded operation
and load transference to neighbor feeders. Load shedding benefits load restoration as
well. The combination of these techniques allows for enhancing reliability indices and,
consequently, energy quality to customers.

Most DGs installed by the proposed method are closer to the substation. Such an
aspect highlights the challenges of the massive integration of DGs into the distribution
network. Massive DG placement increases voltage levels and may surpass the voltage
upper limit imposed by regulatory agencies. Thus, the proposed method allocates the DGs
near the substation to ensure compliance with these limits. Furthermore, although there is
a slight voltage difference between phases, the previous conclusions highlight that solving
the problem of managing the capacity considering unbalanced smart grids may provide a
more appropriate solution than works without such an important aspect.

Distribution networks with degraded voltage profiles can benefit more from the
proposed methodology. In this scenario, the DG installation will be larger and better
distributed along the distribution network. Thus, the number of restored loads can increase,
benefiting reliability indices as well.

Further studies should consider the existence of critical loads into feeder sections,
enforcing different rewards to demand response programs and, consequently, improving
DSM. Tools for improving distribution network performance should be integrated into the
model, such as smart inverters of electronically coupled DGs that can already be installed
in the distribution network and belong to a private owner. Furthermore, integrating some
technologies, such as energy storage systems, may require future modifications in the
proposed method since such a device requires evaluating the energy balance to support the
islanded operation of microgrids.
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Nomenclature

CENS Cost of energy not supplied in monetary unit.
CLOSS Cost of power losses in monetary unit.
CSHED Cost of load shedding in monetary unit.
CENERGY

k Energy price according to the type of customer, USD/kWh.
CSHED

k Cost of load shedding to k-th type of customer, USD/kW, which can be residential, R, commercial, C, or industrial, I.
Ij,p,y Current flow through the j-th distribution line at p-th phase, A.
Ip,i,y Current injected in the i-th bus, phase p, A.
Lh Line length of the branch h, km.
PMAX

i,p,k,y Maximum cuttable power in i-th bus and p-th phase, kW.
PMG

i,y,m Loads belonging to the microgrid m in section i, year y that cna be restored, kW.
PMG

i,y Microgrids’ loads in section i, year y that can be restored, kW.
PTS

i,y The sum of transferred loads downstream automatic tie switches in section i, year y, kW.
Pp

i,y Total loads in the section i and down-stream, year y, kW.
Pp,i,y Active power injected in the i-th bus, phase p, kW.
PD

p,i,y Active power demand in the i-th bus, phase p, kW.
PDG

p,i,y Active power injected by the DG in the i-th bus, phase p, kW.
PENS

y Energy not supplied during permanent faults for each year y, kW.
Qp,i,y Reactive power injected in the i-th bus, phase p, kVAr.
QD

p,i,y Reactive power demand in the i-th bus, phase p, kVAr.
QDG

p,i,y Reactive power injected by the DG in the i-th bus, phase p, kVAr.
Rj,p Line resistance of the j-th distribution line, phased p, Ω.
TSW The time of power outage necessary to the system operator restores the loads by using automatic switches, s.
Vp,i,y Voltage magnitude of the i-th bus, phase p, pu.
Xi,p,k,y Percentage of load shedding in the bus i, phase p, costumer type k.
Xj,y Percentage of load shedding in the candidate bus n.
ke Cost of losses, USD/kWh.
tp
R The duration of power outages caused by permanent faults, s.

αj,y Integer multiplying factor of the base value for the DG power capacity.
β j,y Integer multiplying factor of the power factor base value.
γj,y Integer multiplying factor of the load shedding base value.
λ

p
h Failure rate of line h per kilometer year.

πi Set of branches belonging to section i.
σm Set of branches belonging to the microgrid m.
τw Set of branches belonging to the microgrid m.
∆X Base value of the load shedding.
∆p f Base value of the power factor.
IRR Internal rate of return.
g(c) Greedy function to assess the candidate solution c.
∆PDG Base value of the DG power capacity, kW.
β Set of all sections defined by the protection and control devices.
ϕ Set of year of the planning horizon.
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