Controlling the Physical Properties of Fe3O4-Immobilized Palladium Complexes towards Reusable Catalysts in the Methoxycarbonylation of 1-Hexene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Magnetically Immobilized Palladium Complexes
2.2. Methoxycarbonylation Reactions
2.2.1. Optimization Experiments of the Methoxycarbonylation Reactions
2.2.2. Investigation of the Role of Palladium Loading on the Catalytic Behavior
2.2.3. Role of Calcination Temperature on Material Property and Catalytic Activity
2.2.4. Recycling of the F3O4-Immobilized Palladium Catalysts
2.2.5. Comparison of Catalytic Activities of Complex Pd2 to the Reported Supported Systems
3. Conclusions
4. Experimental Section
4.1. Instrumentation and General Materials
4.2. Preparation of the Fe3O4 Magnetic Nanoparticle-Immobilized Palladium Compounds
4.2.1. Synthesis of Complex [Pd1-Fe3O4@10%Pd@100 °C] (Pd2)
4.2.2. Synthesis of [Pd1-Fe3O4@5%Pd@100 °C] (Pd5)
4.2.3. Synthesis of [Pd1-Fe3O4@15%Pd@100 °C] (Pd6)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagen, J. Industrial Catalysis: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Centi, G.; Perathoner, S. Catalysis and sustainable (green) chemistry. Catal. Today 2003, 77, 287–297. [Google Scholar] [CrossRef]
- Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev. 2012, 41, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Hübner, S.; de Vries, J.G.; Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 2016, 358, 3–25. [Google Scholar] [CrossRef]
- Piermatti, O.; Abu-Reziq, R.; Vaccaro, L. Strategies to Immobilized Catalysts: A Key Tool for Modern Chemistry. Catal. Immobil. Methods Appl. 2020, 18, 1–22. [Google Scholar]
- Gürsel, I.V.; Noël, T.; Wang, Q.; Hessel, V. Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem. 2015, 17, 2012–2026. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Eliseev, O.L.; Chernyshev, V.V.; Bondarenko, T.N.; Vergun, V.V.; Kapustin, G.I.; Lapidus, A.L.; Kustov, L.M. Palladium nanoparticles embedded in MOF matrices: Catalytic activity and structural stability in iodobenzene methoxycarbonylation. Polyhedron 2019, 158, 55–64. [Google Scholar] [CrossRef]
- Akiri, S.O.; Ojwach, S.O. Synthesis of MCM-41 Immobilized (Phenoxy) Imine Palladium (II) Complexes as Recyclable Catalysts in the Methoxycarbonylation of 1-Hexene. Catalysts 2019, 9, 143. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Sarkar, B.R.; Chaudhari, R.V. Anchored Pd complex in MCM-41 and MCM-48: Novel heterogeneous catalysts for hydrocarboxylation of aryl olefins and alcohols. J. Am. Chem. Soc. 2002, 124, 9692–9693. [Google Scholar] [CrossRef]
- Beletskaya, I.; Ganina, O. Hydroxy-and alkoxycarbonylation of aryl iodides catalyzed by polymer-supported palladium, Reaction Kinetics. Mech. Catal. 2010, 99, 1–4. [Google Scholar]
- Chen, X.; Zhu, H.; Wang, T.; Li, C.; Yan, L.; Jiang, M.; Liu, J.; Sun, X.; Jiang, Z.; Ding, Y. The 2V-P, N polymer supported palladium catalyst for methoxycarbonylation of acetylene. J. Mol. Catal. A Chem. 2016, 414, 37–46. [Google Scholar] [CrossRef]
- Doherty, S.; Knight, J.G.; Betham, M. The first insoluble polymer-bound palladium complexes of 2-pyridyldiphenylphosphine: Highly efficient catalysts for the alkoxycarbonylation of terminal alkynes. Chem. Commun. 2006, 1, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Omar, S.; Natour, S.; Abu-Reziq, R. Palladium nanoparticles immobilized on magnetic nanoparticles: An efficient semi-heterogeneous catalyst for carbonylation of aryl bromides. Catal. Commun. 2015, 61, 31–36. [Google Scholar] [CrossRef]
- Dhanalaxmi, K.; Singuru, R.; Mondal, S.; Bai, L.; Reddy, B.M.; Bhaumik, A.; Mondal, J. Magnetic nanohybrid decorated porous organic polymer: Synergistic catalyst for high performance levulinic acid hydrogenation. ACS Sustain. Chem. Eng. 2017, 5, 1033–1045. [Google Scholar] [CrossRef]
- Negui, M.; Zhang, Z.; Foucher, C.; Guénin, E.; Richel, A.; Jeux, V.; Terrasson, V. Wood-sourced polymers as support for catalysis by group 10 transition metals. Processes 2022, 10, 345. [Google Scholar] [CrossRef]
- Molla, R.A.; Bhanja, P.; Ghosh, K.; Islam, S.S.; Bhaumik, A.; Islam, S.M. Pd nanoparticles decorated on hypercrosslinked microporous polymer: A highly efficient catalyst for the formylation of amines through carbon dioxide fixation. ChemCatChem 2017, 9, 1939–1946. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Hou, Y. Fe3O4 nanostructures: Synthesis, growth mechanism, properties and applications. Chem. Commun. 2011, 47, 5130–5141. [Google Scholar] [CrossRef] [PubMed]
- Akiri, S.O.; Ojwach, S.O. Methoxycarbonylation of olefins catalysed by homogeneous palladium (II) complexes of (phenoxy) imine ligands bearing alkoxy silane groups. Inorg. Chim. Acta 2019, 489, 236–243. [Google Scholar] [CrossRef]
- Williams, D.B.G.; Shaw, M.L.; Green, M.J.; Holzapfel, C.W. Aluminum triflate as a highly active and efficient nonprotic cocatalyst in the palladium—Catalyzed methoxycarbonylation reaction. Angew. Chem. 2008, 120, 570–573. [Google Scholar] [CrossRef]
- Vieira, T.O.; Green, M.J.; Alper, H. Highly regioselective anti-markovnikov palladium-borate-catalyzed methoxycarbonylation reactions: Unprecedented results for aryl olefins. Org. Lett. 2006, 8, 6143–6145. [Google Scholar] [CrossRef]
- Tshabalala, T.A.; Ojwach, S.O.; Akerman, M.A. Palladium complexes of (benzoimidazol-2-ylmethyl) amine ligands as catalysts for methoxycarbonylation of olefins. J. Mol. Catal. A Chem. 2015, 406, 178–184. [Google Scholar] [CrossRef]
- Bianchini, C.; Lee, H.M.; Mantovani, G.; Meli, A.; Oberhauser, W. Bis-alkoxycarbonylation of styrene by pyridinimine palladium catalysts. New J. Chem. 2002, 26, 387–397. [Google Scholar] [CrossRef]
- Ngcobo, N.L.; Akiri, S.O.; Ogweno, A.O.; Ojwach, S.O. Structural elucidation of chiral (imino) pyridine/phosphine palladium (II) complexes and their applications as catalysts in methoxycarbonylation of styrene. Polyhedron 2021, 203, 115243. [Google Scholar] [CrossRef]
- Abarca, G.; Brown, K.; Moya, S.A.; Bayón, J.C.; Aguirre, P.A. Methoxycarbonylation of Styrene Using a New Type of Palladium Complexes Bearing P, N-donor Ligands as Catalysts. Catal. Lett. 2015, 145, 1396–1402. [Google Scholar] [CrossRef]
- Zolezzi, S.; Moya, S.A.; Valdebenito, G.; Abarca, G.; Parada, J.; Aguirre, P. Methoxycarbonylation of olefins catalyzed by palladium (II) complexes containing naphthyl (diphenyl) phosphine ligands. Appl. Organomet. Chem. 2014, 28, 364–371. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Molnár, Á. Silica-supported Pd catalysts for Heck coupling reactions. Tetrahedron 2007, 63, 6949–6976. [Google Scholar] [CrossRef]
- Díaz-Sánchez, M.; Díaz-García, D.; Prashar, S.; Gómez-Ruiz, S. Palladium nanoparticles supported on silica, alumina or titania: Greener alternatives for Suzuki–Miyaura and other C–C coupling reactions. Environ. Chem. Lett. 2019, 17, 1585–1602. [Google Scholar] [CrossRef]
- Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D.; Liu, C.; Leon, P.A.I.-D.; Perras, F.A.; Pruski, M.; Stair, P.C.; Delferro, M. Chemoselective hydrogenation with supported organoplatinum (IV) catalyst on Zn (II)-modified silica. J. Am. Chem. Soc. 2018, 140, 3940–3951. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, M.; Li, H.; Wang, Y. Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015, 17, 715–736. [Google Scholar] [CrossRef]
- Jayamani, A.; Nyamato, G.S.; Ojwach, S.O. Ethylene oligomerization reactions catalyzed by homogeneous and silica immobilized NO Fe (II) and Co (II) complexes. J. Organomet. Chem. 2019, 903, 120987. [Google Scholar] [CrossRef]
- Ngcobo, M.; Ojwach, S.O. Ethylene oligomerization reactions catalyzed by recyclable Fe (II), Ni (II) and Co (II) complexes immobilized on Fe3O4 magnetic nanoparticles. Mol. Catal. 2021, 508, 111583. [Google Scholar] [CrossRef]
- Akiri, S.O.; Ojwach, S.O. Structural studies and applications of water soluble (phenoxy) imine palladium (II) complexes as catalysts in biphasic methoxycarbonylation of 1-hexene. J. Organomet. Chem. 2021, 942, 121812. [Google Scholar] [CrossRef]
- Ngubane, N.P.; Akiri, S.O.; Omondi, B.; Ojwach, S.O. Syntheses of N^ O-donor palladium (II) complexes and applications as recyclable catalysts in biphasic methoxycarbonylation of alkenes. Polyhedron 2023, 237, 116387. [Google Scholar] [CrossRef]
- Rossetto, E.; Caovilla, M.; Thiele, D.; de Souza, R.F.; Bernardo-Gusmão, K. Ethylene oligomerization using nickel-β-diimine hybrid xerogels produced by the sol–gel process. Appl. Catal. A Gen. 2013, 454, 152–159. [Google Scholar] [CrossRef]
- Standfest-Hauser, C.M.; Lummerstorfer, T.; Schmid, R.; Hoffmann, H.; Kirchner, K.; Puchberger, M.; Trzeciak, A.M.; Mieczyńska, E.; Tylus, W.; Ziółkowski, J.J. Rhodium phosphine complexes immobilized on silica as active catalysts for 1-hexene hydroformylation and arene hydrogenation. J. Mol. Catal. A Chem. 2004, 210, 179–187. [Google Scholar] [CrossRef]
- Firuzabadi, F.D.; Asadi, Z.; Panahi, F. Immobilized NNN Pd-complex on magnetic nanoparticles: Efficient and reusable catalyst for Heck and Sonogashira coupling reactions. RSC Adv. 2016, 6, 101061–101070. [Google Scholar] [CrossRef]
- Veisi, H.; Hemmati, S.; Safarimehr, P. In situ immobilized palladium nanoparticles on surface of poly-methyldopa coated-magnetic nanoparticles (Fe3O4@ PMDA/Pd): A magnetically recyclable nanocatalyst for cyanation of aryl halides with K4 [Fe (CN) 6]. J. Catal. 2018, 365, 204–212. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Pd immobilized on amine-functionalized magnetite nanoparticles: A novel and highly active catalyst for hydrogenation and Heck reactions. Green Chem. 2011, 13, 1238–1243. [Google Scholar] [CrossRef]
- Soltani, S.S.; Taheri-Ledari, R.; Farnia, S.M.F.; Maleki, A.; Foroumadi, A. Synthesis and characterization of a supported Pd complex on volcanic pumice laminates textured by cellulose for facilitating Suzuki–Miyaura cross-coupling reactions. RSC Adv. 2020, 10, 23359–23371. [Google Scholar] [CrossRef]
- Sousa, W.; Guerra, Y.; Peña-Garcia, R.; Padrón-Hernández, E. Saturation magnetization as a function of temperature in Zn doped YIG nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 138, 115054. [Google Scholar] [CrossRef]
- El Rahman, S.K.A.; Ashour, S.S.; Altass, H.M.; Khairou, K.S. Pd nanoparticles supported on iron oxide nanorods for CO oxidation: Effect of preparation method. J. Environ. Chem. Eng. 2016, 4, 4794–4800. [Google Scholar]
- Yu, L.Q.; Zheng, L.J.; Yang, J.X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids. Mater. Chem. Phys. 2000, 66, 6–9. [Google Scholar] [CrossRef]
- Sharma, R.K.; Yadav, M.; Gaur, R.; Gupta, R.; Adholeya, A.; Gawande, M.B. Synthesis of iron oxide palladium nanoparticles and their catalytic applications for direct coupling of acyl chlorides with alkynes. ChemPlusChem 2016, 81, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Verma, D.; Sinha, A.K.; Jain, S.L. Palladium complex immobilized on graphene oxide–magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl. Catal. A Gen. 2015, 489, 17–23. [Google Scholar] [CrossRef]
- Elazab, H.A.; Siamaki, A.R.; Moussa, S.; Gupton, B.F.; El-Shall, M.S. Highly efficient and magnetically recyclable graphene-supported Pd/Fe3O4 nanoparticle catalysts for Suzuki and Heck cross-coupling reactions. Appl. Catal. A Gen. 2015, 491, 58–69. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Liu, Y.; Shi, P.; Liu, C.-J.; Liu, Y. Al-MCM-41 supported palladium catalyst for methane combustion: Effect of the preparation methodologies. Appl. Catal. B Environ. 2009, 90, 570–577. [Google Scholar] [CrossRef]
- Mulzer, M.; Whiting, B.T.; Coates, G.W. Regioselective carbonylation of trans-disubstituted epoxides to β-lactones: A viable entry into syn-aldol-type products. J. Am. Chem. Soc. 2013, 135, 10930–10933. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Nagy, G.; Siebenbu, M.; Kaur, R.; Dooley, K.M.; Bharti, B. Adsorption and catalytic activity of gold nanoparticles in mesoporous silica: Effect of pore size and dispersion salinity. J. Phys. Chem. C 2022, 126, 2531–2541. [Google Scholar] [CrossRef]
- Yu, K.; Sommer, W.; Weck, M.; Jones, C.W. Silica and polymer-tethered Pd–SCS-pincer complexes: Evidence for precatalyst decomposition to form soluble catalytic species in Mizoroki–Heck chemistry. J. Catal. 2004, 226, 101–110. [Google Scholar] [CrossRef]
- Ziccarelli, I.; Neumann, H.; Kreyenschulte, C.; Gabriele, B.; Beller, M. Pd-Supported on N-doped carbon: Improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chem. Commun. 2016, 52, 12729–12732. [Google Scholar] [CrossRef]
- Nakazawa, J.; Doi, Y.; Hikichi, S. Alkane oxidation reactivity of homogeneous and heterogeneous metal complex catalysts with mesoporous silica-immobilized (2-pyridylmethyl) amine type ligands. Mol. Catal. 2017, 443, 14–24. [Google Scholar] [CrossRef]
- Reynhardt, J.P.; Alper, H. Hydroesterification reactions with palladium-complexed PAMAM dendrimers immobilized on silica. J. Org. Chem. 2003, 68, 8353–8360. [Google Scholar] [CrossRef]
- Chen, M.; Mou, X.; Wang, S.; Chen, X.; Tan, Y.; Chen, M.; Zhao, Z.; Huang, C.; Yang, W.; Lin, R. Porous organic polymer-supported palladium catalyst for hydroesterification of olefins. Mol. Catal. 2020, 498, 111239. [Google Scholar] [CrossRef]
- Veisi, H.; Gholami, J.; Ueda, H.; Mohammadi, P.; Noroozi, M. Magnetically palladium catalyst stabilized by diaminoglyoxime-functionalized magnetic Fe3O4 nanoparticles as active and reusable catalyst for Suzuki coupling reactions. J. Mol. Catal. A Chem. 2015, 396, 216–223. [Google Scholar] [CrossRef]
Entry | Complex | Description | ICP-AES (wt%) | SBET [m2/g] a | Vp [cm3/g] b | AVPD [nm] c | Ms [emu/g] d |
---|---|---|---|---|---|---|---|
1 | Pd2 | Pd1-Fe3O4@10%Pd@100 °C | 1.91 | 44 | 0.1808 | 12.457 | 64.24 |
2 | Pd3 | Pd1-Fe3O4 @10%Pd@150 °C | 1.87 | 41 | 0.1748 | 12.123 | 63.36 |
3 | Pd4 | Pd1-Fe3O4 @10%Pd@200 °C | 1.92 | 43 | 0.1792 | 12.647 | 60.69 |
4 | Pd5 | Pd1-Fe3O4 @5%Pd@100 °C | 1.66 | 53 | 0.1946 | 11.346 | 69.93 |
5 | Pd6 | Pd1-Fe3O4 @15%Pd@100 °C | 2.10 | 41 | 0.1690 | 11.891 | 67.96 |
Entry | Complex | [Pd] b (wt%) | SBET c [m2/g] | TPV c [cm3/g] | Yield d (%) | B/L d (%) | TON e |
---|---|---|---|---|---|---|---|
1 | Pd2 | 1.91 | 44 | 0.1808 | 81 | 33/67 | 324 |
2 | Pd5 | 1.66 | 53 | 0.1946 | 75 | 33/67 | 334 |
3 | Pd6 | 2.10 | 41 | 0.1690 | 77 | 32/68 | 280 |
Entry | Complex | Temp b | SBET [m2/g] c | TPV [cm3/g] c | Yield (%) d | B/L (%) d | TON e |
---|---|---|---|---|---|---|---|
1 | Pd2 | 100 | 44 | 0.1808 | 81 | 33/67 | 324 |
2 | Pd3 | 150 | 43 | 0.1792 | 77 | 30/70 | 308 |
3 | Pd4 | 200 | 41 | 0.1748 | 72 | 32/68 | 288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akiri, S.O.; Schmitz, M.; Ojwach, S.O. Controlling the Physical Properties of Fe3O4-Immobilized Palladium Complexes towards Reusable Catalysts in the Methoxycarbonylation of 1-Hexene. Processes 2023, 11, 2516. https://doi.org/10.3390/pr11092516
Akiri SO, Schmitz M, Ojwach SO. Controlling the Physical Properties of Fe3O4-Immobilized Palladium Complexes towards Reusable Catalysts in the Methoxycarbonylation of 1-Hexene. Processes. 2023; 11(9):2516. https://doi.org/10.3390/pr11092516
Chicago/Turabian StyleAkiri, Saphan O., Markus Schmitz, and Stephen O. Ojwach. 2023. "Controlling the Physical Properties of Fe3O4-Immobilized Palladium Complexes towards Reusable Catalysts in the Methoxycarbonylation of 1-Hexene" Processes 11, no. 9: 2516. https://doi.org/10.3390/pr11092516
APA StyleAkiri, S. O., Schmitz, M., & Ojwach, S. O. (2023). Controlling the Physical Properties of Fe3O4-Immobilized Palladium Complexes towards Reusable Catalysts in the Methoxycarbonylation of 1-Hexene. Processes, 11(9), 2516. https://doi.org/10.3390/pr11092516