Application of Alcohol-Salt Aqueous Biphasic System for the Recovery of Ectoine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Cultivation and Fermentation
2.3. Intracellular Ectoine Extraction
2.4. Ectoine Recovery in ABS
2.5. Ectoine Quantification
2.6. Calculations
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Types of Phase-Forming Alcohol and Salt on Ectoine Recovery
3.2. Effect of Concentration of Phase-Forming Alcohol and Salt on Ectoine Recovery
3.3. Effect of Crude Load Concentration on Ectoine Recovery
3.4. Effect of pH on Ectoine Recovery
3.5. Effect of Type and Concentration of Adjuvants on Ectoine Recovery
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czech, L.; Hermann, L.; Stöveken, N.; Richter, A.A.; Höppner, A.; Smits, S.H.J.; Heider, J.; Bremer, E. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: Genetics, phylogenomics, biochemistry, and structural analysis. Genes 2018, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-L.; Chi, Y.-W.; Kao, T.-T.; Liu, Y.-L.; Chiou, T.-J.; Lai, Y.-T. Effects of specific pathogen-free porcine platelet-rich plasma activated by the novel activator ectoine on cell proliferation and biological function. Biochem. Eng. J. 2020, 153, 107424. [Google Scholar] [CrossRef]
- Yao, C.-L.; Lin, Y.-M.; Mohamed, M.S.; Chen, J.-H. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines. Biochem. Eng. J. 2013, 78, 163–169. [Google Scholar] [CrossRef]
- Benítez-Mateos, A.I.; Paradisi, F. Halomonas elongata: A microbial source of highly stable enzymes for applied biotechnology. Appl. Microbiol. Biotechnol. 2023, 107, 3183–3190. [Google Scholar] [CrossRef] [PubMed]
- Kunte, H.; Lentzen, G.; Galinski, E. Industrial production of the cell protectant ectoine: Protection mechanisms, processes, and products. Curr. Biotechnol. 2014, 3, 10–25. [Google Scholar] [CrossRef]
- Becker, J.; Schäfer, R.; Kohlstedt, M.; Harder, B.J.; Borchert, N.S.; Stöveken, N.; Bremer, E.; Wittmann, C. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb. Cell Factories 2013, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Molino, J.V.; de Araújo Viana Marques, D.; Júnior, A.P.; Mazzola, P.G.; Gatti, M.S. Different types of aqueous two-phase systems for biomolecule and bioparticle extraction and purification. Biotechnol. Prog. 2013, 29, 1343–1353. [Google Scholar] [CrossRef]
- Wan, P.K.; Lan, J.C.-W.; Chen, P.-W.; Tan, J.S.; Ng, H.S. Recovery of intracellular ectoine from Halomonas salina cells with poly(propylene) glycol/salt aqueous biphasic system. J. Taiwan. Inst. Chem. Eng. 2018, 82, 28–32. [Google Scholar] [CrossRef]
- Basaiahgari, A.; Gardas, R.L. Ionic liquid–based aqueous biphasic systems as sustainable extraction and separation techniques. Curr. Opin. Green. Sustain. Chem. 2021, 27, 100423. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, L.; Jin, M.; Zhao, M.; Niu, J.; Deng, S.; Long, X. Efficient isolation of biosurfactant rhamnolipids from fermentation broth via aqueous two-phase extraction with 2-propanol/ammonium sulfate system. Biochem. Eng. J. 2022, 188, 108676. [Google Scholar] [CrossRef]
- Goja, A.M.; Yang, H.; Cui, M.; Li, C. Aqueous two-phase extraction advances for bioseparation. J. Bioprocess. Biotech. 2014, 4, 1000140. [Google Scholar]
- Moldes, D.; Rojo, E.M.; Bolado, S.; García-Encina, P.A.; Comesaña-Gándara, B. Biodegradable solvents: A promising tool to recover proteins from microalgae. Appl. Sci. 2022, 12, 2391. [Google Scholar] [CrossRef]
- Kruse, T.; Kampmann, M.; Rüddel, I.; Greller, G. An alternative downstream process based on aqueous two-phase extraction for the purification of monoclonal antibodies. Biochem. Eng. J. 2020, 161, 107703. [Google Scholar] [CrossRef]
- Torres-Acosta, M.A.; Mayolo-Deloisa, K.; González-Valdez, J.; Rito-Palomares, M. Aqueous two-phase systems at large scale: Challenges and opportunities. Biotechnol. J. 2019, 14, 1800117. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Wan, P.K.; Ng, T.-C.; Lan, J.C.-W. Primary purification of intracellular Halomonas salina ectoine using ionic liquids-based aqueous biphasic system. J. Biosci. Bioeng. 2020, 130, 200–204. [Google Scholar]
- Cardoso, G.B.; Mourão, T.; Pereira, F.M.; Freire, M.G.; Fricks, A.T.; Soares, C.M.F.; Lima, Á.S. Aqueous two-phase systems based on acetonitrile and carbohydrates and their application to the extraction of vanillin. Sep. Purif. Technol. 2013, 104, 106–113. [Google Scholar] [CrossRef]
- Tan, Z.-J.; Li, F.-F.; Xu, X.-L. Extraction and purification of anthraquinones derivatives from Aloe vera L. using alcohol/salt aqueous two-phase system. Bioprocess. Biosyst. Eng. 2013, 36, 1105–1113. [Google Scholar] [CrossRef]
- Ooi, C.W.; Tey, B.T.; Hii, S.L.; Kamal, S.M.M.; Lan, J.C.W.; Ariff, A.; Ling, T.C. Purification of lipase derived from Burkholderia pseudomallei with alcohol/salt-based aqueous two-phase systems. Process Biochem. 2009, 44, 1083–1087. [Google Scholar] [CrossRef]
- Van-Thuoc, D.; Guzmán, H.; Quillaguamán, J.; Hatti-Kaul, R. High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J. Biotechnol. 2010, 147, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Reis, I.A.O.; Santos, S.B.; Pereira, F.D.S.; Sobral, C.R.S.; Freire, M.G.; Freitas, L.S.; Soares, C.M.F.; Lima, Á.S. Extraction and recovery of rutin from acerola waste using alcohol-salt-based aqueous two-phase systems. Sep. Sci. Technol. 2014, 49, 656–663. [Google Scholar] [CrossRef]
- Fenizia, S.; Thume, K.; Wirgenings, M.; Pohnert, G. Ectoine from bacterial and algal origin is a compatible solute in microalgae. Mar. Drugs 2020, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Teng, G.; Zhang, J. Ethanol/salt aqueous two-phase system based ultrasonically assisted extraction of polysaccharides from Lilium davidiivar. unicolor Salisb: Physicochemical characterization and antiglycation properties. J. Mol. Liq. 2018, 256, 497–506. [Google Scholar] [CrossRef]
- Bonomo, R.C.F.; Minim, L.A.; Coimbra, J.S.R.; Fontan, R.C.I.; da Silva, L.H.M.; Minim, V.P.R. Hydrophobic interaction adsorption of whey proteins: Effect of temperature and salt concentration and thermodynamic analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 844, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Amid, M.; Shuhaimi, M.; Islam Sarker, M.Z.; Abdul Manap, M.Y. Purification of serine protease from mango (Mangifera Indica Cv. Chokanan) peel using an alcohol/salt aqueous two phase system. Food Chem. 2012, 132, 1382–1386. [Google Scholar]
- Chow, Y.H.; Yap, Y.J.; Tan, C.P.; Anuar, M.S.; Tejo, B.A.; Show, P.L.; Ariff, A.B.; Ng, E.-P.; Ling, T.C. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems. J. Biosci. Bioeng. 2015, 120, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, V.H.; Iyyaswami, R. Aqueous two phase partitioning of fish proteins: Partitioning studies and ATPS evaluation. J. Food Sci. Technol. 2015, 52, 3539–3548. [Google Scholar] [CrossRef]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef]
- Sauer, T.; Galinski, E.A. Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnol. Bioeng. 1998, 57, 306–313. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, L.; Lv, L.; Yao, S.; Li, B.; Qian, J. Optimization of the extraction and purification of the compatible solute ectoine from Halomonas elongate in the laboratory experiment of a commercial production project. World J. Microbiol. Biotechnol. 2017, 33, 116. [Google Scholar] [CrossRef]
- Laughlin, R.G. Fundamentals of the zwitterionic hydrophilic group. Langmuir 1991, 7, 842–847. [Google Scholar] [CrossRef]
- Ghandi, K. A review of ionic liquids, their limits and applications. Green. Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Almeida, M.R.; Passos, H.; Pereira, M.M.; Lima, Á.S.; Coutinho, J.A.P.; Freire, M.G. Ionic liquids as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Sep. Purif. Technol. 2014, 128, 1–10. [Google Scholar] [CrossRef]
- Tang, N.; Wang, Y.; Liu, M.; Liu, L.; Yin, C.; Yang, X.; Wang, S. Ionic liquid as adjuvant in an aqueous biphasic system composed of polyethylene glycol for green separation of Pd(II) from hydrochloric solution. Sep. Purif. Technol. 2020, 246, 116898. [Google Scholar] [CrossRef]
- Pereira, J.F.B.; Lima, Á.S.; Freire, M.G.; Coutinho, J.A.P. Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic system. Green Chem. 2010, 12, 1661. [Google Scholar] [CrossRef]
- Milevskiy, N.A.; Boryagina, I.V.; Karpukhina, E.A. Effect of sodium chloride and pH on the composition of the equilibrium phases and the partition of palladium (II) in the aqueous two-phase system PEG1500-Na2SO4-Water. J. Chem. Eng. Data 2021, 66, 1021–1031. [Google Scholar] [CrossRef]
- Wu, Q.; Li, S.-R.; Wang, Y.-H.; Wang, H.-G.; Wang, Z.-M.; Li, M.; Lin, D.-Q. Effects of sodium chloride addition on immunoglobulin G partitioning and solubility in polyethylene glycol/hydroxypropyl starch aqueous two-phase system. Process Biochem. 2022, 122, 299–305. [Google Scholar] [CrossRef]
Alcohol-Salt ABS | Phase Composition, % (w/w) | (%) | |||
---|---|---|---|---|---|
Alcohol | Salt | Alcohol | Salt | ||
Ethanol | Phosphate | 22 | 18 | 0.09 ± 0.03 a | 5.72 ± 2.01 a |
24 | 19 | 0.10 ± 0.00 a | 5.89 ± 0.27 a | ||
26 | 20 | 0.11 ± 0.01 a | 6.78 ± 0.55 a | ||
Ethanol | Sulphate | 22 | 18 | 1.16 ± 0.04 a,b | 72.94 ± 0.94 d,e,f |
22 | 20 | 1.40 ± 0.12 a,b,c | 68.44 ± 8.20 c,d,e | ||
24 | 22 | 1.35 ± 0.00 a,b,c | 59.47 ± 2.76 b,c,d | ||
1-propanol | Phosphate | 18 | 14 | 3.24 ± 0.85 b,c,d | 89.72 ± 1.72 g |
20 | 16 | 2.90 ± 1.51 b,c,d | 82.57 ± 8.80 e,f,g | ||
22 | 18 | 1.68 ± 0.98 a,b,c | 73.04 ± 9.33 d,e,f | ||
1-propanol | Sulphate | 18 | 14 | 4.70 ± 0.91 d | 94.86 ± 0.94 g |
20 | 16 | 3.57 ± 0.12 b,c,d | 89.29 ± 0.32 f,g | ||
22 | 18 | 3.72 ± 0.32 c,d | 88.74 ± 0.85 f,g | ||
2-propanol | Phosphate | 18 | 14 | 1.06 ± 0.04 a,b | 47.41 ± 0.97 b |
20 | 16 | 1.12 ± 0.12 a,b | 52.62 ± 1.26 b,c | ||
22 | 18 | 1.15 ± 0.05 a,b | 56.71 ± 1.09 b,c,d | ||
2-propanol | Sulphate | 18 | 14 | 1.94 ± 0.03 a,b,c | 89.72 ± 1.41 g |
20 | 16 | 2.68 ± 0.73 b,c,d | 85.82 ± 3.31 f,g | ||
22 | 18 | 3.30 ± 1.24 b,c,d | 84.42 ± 6.49 e,f,g |
Phase Composition, % (w/w) | (%) | ||
---|---|---|---|
Ammonium Sulphate | 1-Propanol | ||
14 | 16 | 5.28 ± 1.69 a | 95.26 ± 1.45 a,b,c |
18 | 4.70 ± 0.91 a | 94.86 ± 0.94 a,b,c | |
20 | 4.01 ± 1.80 a | 91.20 ± 3.63 a,b,c | |
22 | 6.03 ± 0.83 a | 93.31 ± 0.86 a,b,c | |
16 | 16 | 5.66 ± 1.63 a | 95.07 ± 1.36 a,b,c |
18 | 3.81 ± 1.13 a | 92.84 ± 1.98 a,b,c | |
20 | 3.57 ± 0.12 a | 89.29 ± 0.32 a,b | |
22 | 4.41 ± 0.32 a | 89.95 ± 0.13 a,b,c | |
18 | 16 | 6.99 ± 1.28 a | 96.05 ± 1.08 b,c |
18 | 5.40 ± 1.47 a | 91.80 ± 2.00 a,b,c | |
20 | 4.21 ± 1.05 a | 90.51 ± 2.14 a,b,c | |
22 | 3.72 ± 0.32 a | 88.74 ± 0.85 a | |
20 | 16 | 7.20 ± 0.57 a | 96.76 ± 0.15 b,c |
18 | 5.33 ± 0.53 a | 92.52 ± 0.68 a,b,c | |
20 | 5.24 ± 1.50 a | 90.74 ± 2.41 a,b,c | |
22 | 4.22 ± 1.03 a | 90.08 ± 2.76 a,b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, Y.H.; Poh, C.T.; Kee, P.E.; Ng, H.S.; Lan, J.; Yoon, L.W. Application of Alcohol-Salt Aqueous Biphasic System for the Recovery of Ectoine. Processes 2023, 11, 2560. https://doi.org/10.3390/pr11092560
Chow YH, Poh CT, Kee PE, Ng HS, Lan J, Yoon LW. Application of Alcohol-Salt Aqueous Biphasic System for the Recovery of Ectoine. Processes. 2023; 11(9):2560. https://doi.org/10.3390/pr11092560
Chicago/Turabian StyleChow, Yin Hui, Chin Tee Poh, Phei Er Kee, Hui Suan Ng, John (Chi-Wei) Lan, and Li Wan Yoon. 2023. "Application of Alcohol-Salt Aqueous Biphasic System for the Recovery of Ectoine" Processes 11, no. 9: 2560. https://doi.org/10.3390/pr11092560
APA StyleChow, Y. H., Poh, C. T., Kee, P. E., Ng, H. S., Lan, J., & Yoon, L. W. (2023). Application of Alcohol-Salt Aqueous Biphasic System for the Recovery of Ectoine. Processes, 11(9), 2560. https://doi.org/10.3390/pr11092560