Experimental Investigation of Stress Sensitivity of Elastic Wave Velocities for Anisotropic Shale in Wufeng–Longmaxi Formation
Abstract
:1. Introduction
2. Experimental Specimen and Test Procedure
2.1. Sample Description and Preparation
2.2. Test Equipment and Procedures
2.3. Related Concepts and Formula Calculation
- (1)
- The elastic stiffness coefficient
- (2)
- The anisotropy parameters
3. Experimental Results
3.1. The Effect of Confining Pressure on Acoustic Wave Velocity
3.2. The Effect of Confining Pressure on the Wave Velocity Ratio
3.3. The Effect of Confining Pressure on the Elastic Stiffness Coefficients
4. Discussion
4.1. The Stress Sensitivity of the Acoustic Wave Velocity
4.2. Elastic Anisotropy and Influencing Factors of Shale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Li, X.; Hu, R.L.; Wu, Y.F.; Gao, W. Review of reaserch process and application of ultrasonic testing for rock and soil. J. Eng. Geol. 2015, 23, 287–300. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, L.X.; Cai, Z.J.; Wang, Y.; Xu, M.H.; Zhang, F.S.; Han, D.H.; Geng, J.H. Compressional and shear wave velocities relationship in anisotropic organic shales. J. Pet. Sci. Eng. 2022, 219, 111070. [Google Scholar] [CrossRef]
- Zhubayev, A.; Houben, M.E.; Smeulders, D.J.; Barnhoorn, A. Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom. Geophysics 2016, 1, D45–D56. [Google Scholar] [CrossRef]
- Xia, K.W.; Li, X.; Qi, C.Y.; Yao, W.; Xiao, X.J.; Zhang, J.; Nasseri, M.H.B. Anisotropic seismic wave velocity of fractured tight sandstone under in-situ stress conditions and its correlation to permeability. J. China Coal Soc. 2022, 47, 246–258. [Google Scholar] [CrossRef]
- Amann, F.; Button, E.A.; Evans, K.F.; Gischig, V.S.; Blümel, M. Experimental study of the brittle behavior of clay shale in rapid unconfined compression. Rock Mech. Rock Eng. 2011, 4, 415–430. [Google Scholar] [CrossRef]
- Xie, J.Y.; Cao, J.X.; Schmitt, D.R.; Di, B.R.; Xiao, L.Z.; Wang, X.J.; Wang, K.; Chen, Y.K. Effects of kerogen content on elastic properties-based on artificial organic-rich shale (aors). J. Geophys. Res.-Solid Earth 2019, 12, 12660–12678. [Google Scholar] [CrossRef]
- Ding, P.B.; Wang, D.; Gong, F.; Wang, L.; Li, X.Y. Laboratory observation of velocity anisotropy affected by clays and microcracks in artificial clay-rich shale samples. J. Pet. Sci. Eng. 2020, 191, 107156. [Google Scholar] [CrossRef]
- Povarov, V.G.; Kopylova, T.N.; Sinyakova, M.A.; Rudko, V.A. Quantitative Determination of Trace Heavy Metals and Selected Rock-Forming Elements in Porous Carbon Materials by the X-ray Fluorescence Method. ACS Omega 2021, 38, 24595–24601. [Google Scholar] [CrossRef] [PubMed]
- Nazarenko, M.Y.; Saltykova, S.N.; Rudko, V.A.; Pihl, O. Production of Isotropic Coke from Shale Tar at Various Parameters of the Delayed Coking Process. ACS Omega 2021, 34, 22173–22179. [Google Scholar] [CrossRef] [PubMed]
- Vasilenko, T.; Kirillov, A.; Islamov, A.; Doroshkevich, A. Study of hierarchical structure of fossil coals by small-angle scattering of thermal neutrons. Fuel 2021, 292, 120304. [Google Scholar] [CrossRef]
- Vasilenko, T.; Kirillov, A.; Islamov, A.; Doroshkevich, A.; Łudzik, K.; Chudoba, D.M.; Mita, C. Permeability of a coal seam with respect to fractal features of pore space of fossil coals. Fuel 2022, 329, 125113. [Google Scholar] [CrossRef]
- Vernik, L.; Liu, X.Z. Velocity anisotropy in shales-a petrophysical study. Geophysics 1997, 2, 521–532. [Google Scholar] [CrossRef]
- Vernik, L.; Milovac, J. Rock physics of organic shales. Lead. Edge 2011, 3, 318–323. [Google Scholar] [CrossRef]
- Sondergeld, C.H.; Rai, C.S. Laboratory observations of shear-wave propagation in anisotropic media. Lead. Edge 1992, 2, 38–43. [Google Scholar] [CrossRef]
- Wang, Z.J. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics 2002, 5, 1423–1440. [Google Scholar] [CrossRef]
- Dewhurst, D.N.; Siggins, A.F. Impact of fabric, microcracks and stress field on shale anisotropy. Geophys. J. Int. 2006, 1, 135–148. [Google Scholar] [CrossRef]
- Sarout, J.; Guéguen, Y. Anisotropy of elastic wave velocities in deformed shales: Part 1-experimental results. Geophysics 2008, 5, D75–D89. [Google Scholar] [CrossRef]
- Raven, M.D.; Dewhurst, D.N.; Sarout, J.; Nordgard-Bolas, H.M.; Siggins, A.F. Geomechanical and ultrasonic characterization of a Norwegian Sea shale. Geophysics. J. Soc. Explor. Geophys. 2011, 3, WA101–WA111. [Google Scholar] [CrossRef]
- Ma, Z.G.; Wu, X.Y.; Wang, Z.H. Effect of effective pressure on compressional and shear wave velocities. Prog. Explor. Geophys. 2006, 3, 183–186. [Google Scholar]
- Ma, X.Y.; Li, C.C.; Bai, J.; Ma, Z.G. Analysis of physical characteristics of shale rock based on ultrasonic testing. Oil Geophys. Prospect. 2021, 4, 801–808. [Google Scholar] [CrossRef]
- Deng, Z.; Cheng, L.J.; Pan, L.H.; He, P. Effect of bedding angle on shale triaxial sress, testing and velocity of P-wave and S-wave. J. Northeast. Pet. Univ. 2016, 1, 33–39. [Google Scholar] [CrossRef]
- Zhai, H.Y.; Chang, X.; Zhu, W.; Lei, X.L.; Xue, Z.Q. Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment. Sci. China Earth Sci. 2021, 3, 380–397. [Google Scholar] [CrossRef]
- Heng, S.; Guo, Y.T.; Yang, C.H.; Daemen, J.J.K.; Li, Z. Experimental and theoretical study of the anisotropic properties of shale. Int. J. Rock Mech. Min. Sci. 2015, 74, 58–68. [Google Scholar] [CrossRef]
- Wang, J.; Xie, L.Z.; Xie, H.P.; Ren, L.; He, B.; Li, C.B.; Yang, Z.P.; Gao, C. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests. J. Nat. Gas Sci. Eng. 2016, 36, 1120–1129. [Google Scholar] [CrossRef]
- Lin, C.; He, J.M.; Li, X.; Wan, X.L.; Zheng, B. An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech. Rock Eng. 2017, 3, 543–554. [Google Scholar] [CrossRef]
- Yang, C.H.; Hu, X.M.; Xu, F.; Wang, T.T.; Li, H.R.; Wang, L.; Guo, Y.T.; Hou, Z.K. Effect of bedding planes on wave velocity and AE characteristics of the Longmaxi shale in China. Arab. J. Geosci. 2017, 6, 141. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Liu, X.W. Seismic rock physics characterization of anisotropic shale-a Longmaxi Shale case study. J. Geophys. Eng. 2018, 2, 512–526. [Google Scholar] [CrossRef]
- Zhang, F. A modified rock physics model of overmature organic-rich shale: Application to anisotropy parameter prediction from well logs. J. Geophys. Eng. 2019, 1, 92–104. [Google Scholar] [CrossRef]
- Deng, J.J.; Xiong, J.; Liu, X.J.; Liang, L.X.; Ding, Y. Anisotropy of shale in deep Longmaxi Formation of Sichuan Basin based on acoustic wave experiment. Prog. Geophys. 2023, accepted. [Google Scholar]
- Johnston, J.E.; Christensen, N.I. Seismic anisotropy of shales. J. Geophys. Res.-Solid Earth 1995, B4, 5991–6003. [Google Scholar] [CrossRef]
- Grgic, D. Dynamic anisotropic elastic properties of a claystone under variable loading direction and saturation. Geophys. J. Int. 2019, 1, 148–163. [Google Scholar] [CrossRef]
- Sarout, J.; Molez, L.; Guéguen, Y.; Hoteit, N. Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations. Phys. Chem. Earth 2007, 32, 896–906. [Google Scholar] [CrossRef]
- Wang, Z.J. Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method. Geophysics 2002, 5, 1415–1422. [Google Scholar] [CrossRef]
- Wong, R.C.K.; Schmitt, D.R.; Collis, D.; Gautam, R. Inherent transversely isotropic elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison with static and acoustic in situ log measurements(article). J. Geophys. Eng. 2008, 1, 103–117. [Google Scholar] [CrossRef]
- Liu, Z.C.; Zhang, F.; Li, X.Y. Elastic anisotropy and its influencing factors in organic-rich marine shale of southern China. Sci. China Earth Sci. 2019, 11, 1801–1816. [Google Scholar] [CrossRef]
- Jones, L.E.A.; Wang, H.F. Ultrasonic velocities in cretaceous shales from the williston basin. Geophysics 1981, 46, 288–297. [Google Scholar] [CrossRef]
- Li, Q.C.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.F.; Yan, C.L. Hydrate as a by-product in CO2 leakage during the long-term sub-seabed sequestration and its role in preventing further leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737–77754. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.L.; Wang, Y.L.; Forson, K.; Cao, L.L.; Zhang, C.L.; Zhou, C.; Zhao, B.; Chen, J.S. Experimental investigation on the high-pressure sand suspension and adsorption capacity of guar gum fracturing fluid in low-permeability shale reservoirs: Factor analysis and mechanism disclosure. Environ. Sci. Pollut. Res. 2022, 29, 53050–53062. [Google Scholar] [CrossRef]
- Wang, F.L.; Xiao, Z.X.; Liu, X.; Ren, J.W.; Xing, T.; Li, Z.; Li, X.Y.; Chen, Y.L. Strategic design of cellulose nanofibers@zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe2O4/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall water-splitting. J. Power Sources 2022, 521, 230925. [Google Scholar] [CrossRef]
- Sun, K.; Liu, H.Q.; Wang, J.; Liu, R.J.; Feng, Y.B.; Kang, Z.J.; Zhang, Y. Research on stress sensitivity characteristics of deep carbonate fractured-vuggy media. Earth Sci. Front. 2023; in press. [Google Scholar] [CrossRef]
- Brahma, J.; Sircar, A. Estimation of the effect of anisotropy on young’s moduli and poisson’s ratios of sedimentary rocks using core samples in western and central part of Tripura, India. Int. J. Geosci. 2014, 2, 184–195. [Google Scholar] [CrossRef]
- Li, X.Y.; Lei, X.L.; Li, Q. Response of velocity anisotropy of shale under isotropic and anisotropic stress fields. Rock Mech. Rock Eng. 2018, 51, 695–711. [Google Scholar] [CrossRef]
- Thomsen, L. Weak elastic anisotropy. Geophysics 1986, 10, 1954. [Google Scholar] [CrossRef]
- Zhao, L.X.; Ma, J.Q.; Li, K.J.; Zhu, J.W.; Gao, Z.Q.; He, Z.L.; Geng, J.H. Seismic rock physics characteristics and modeling of ultra-deep carbonate reservoirs. Chin. J. Geophys. 2023, 66, 16–33. [Google Scholar] [CrossRef]
- Ji, S.C.; Wang, Q.; Marcotte, D.; Salisbury, M.H.; Xu, Z.Q. P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J. Geophys. Res. Solid Earth 2007, B9, B09204. [Google Scholar] [CrossRef]
- Bernabe, Y. The effective pressure law for permeability in chelmsford granite and barre granite. Int. J. Rock Mech. Min. Sci. 1986, 3, 267–275. [Google Scholar] [CrossRef]
- Cao, C.N.; Lei, G. Stress sensitivity of tight reservoirs during pressure loading and unloading process. Pet. Explor. Dev. 2019, 1, 138–144. [Google Scholar] [CrossRef]
- Lucier, A.M.; Hofmann, R.; Bryndzia, L.T. Evaluation of variable gas saturation on acoustic log data from the haynesville shale gas play, NW Louisiana, USA. Lead. Edge 2011, 3, 300–311. [Google Scholar] [CrossRef]
- Omovie, S.J.; Castagna, J.P. P-to-S-wave velocity ratio in organic shales. Geophysics 2019, 6, MR205–MR222. [Google Scholar] [CrossRef]
- Wilkens, R.; Simmons, G.; Caruso, L. The ratio Vp/Vs as a discriminant of composition for siliceous limestones. Geophysics 1984, 11, 1850–1860. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ge, H.K.; Wang, W.W.; Zhang, Q. Experimental study on stress-related and matrix-related anisotropy in tight reservoirs. Chin. J. Geophys. 2021, 64, 4239–4251. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ge, H.K.; Wang, J.B.; Wang, D.B.; Chen, H. Evaluation of the micro-cracks in shale from the stress sensitivity of ultrasonic velocities. Rock Mech. Rock Eng. 2016, 12, 4929–4934. [Google Scholar] [CrossRef]
- Shi, X.M.; Wang, G.M.; Xiong, Z.H.; Li, M.P. Experimental study on influence of laminae direction on P-wave and S-wave velocities and elastic parameters of shale. Chin. J. Rock Mech. Eng. 2019, 38, 1567–1577. [Google Scholar] [CrossRef]
- Jie, J.Y.; Lu, H.Z.; Chen, L.; Jin, X.P.; Wang, D.; Fu, G.Q. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation. Bull. Geol. Sci. Technol. 2021, 40, 67–77. [Google Scholar] [CrossRef]
- Zadeh, M.K.; Mondol, N.H.; Jahren, J. Velocity anisotropy of upper jurassic organic-rich shales, norwegian continental shelf. Geophysics 2017, 82, C61–C75. [Google Scholar] [CrossRef]
- Vernik, L.; Landis, C. Elastic anisotropy of source rocks: Implications for hydrocarbon generation and primary migration. AAPG Bull. 1996, 4, 531–544. [Google Scholar] [CrossRef]
- Hornby, B.E. Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. J. Geophys. Res. Solid Earth 1998, B12, 29945–29964. [Google Scholar] [CrossRef]
- Pech, A.; Tsvankin, I.; Grechka, V. Quartic moveout coefficient: 3D description and application to tilted ti media. Geophysics 2003, 5, 1600–1610. [Google Scholar] [CrossRef]
- Pech, A.; Tsvankin, I. Quartic moveout coefficient for a dipping azimuthally anisotropic layer. Geophysics 2004, 3, 699–707. [Google Scholar] [CrossRef]
- Grechka, V.; Pech, A. Quartic reflection moveout in a weakly anisotropic dipping layer. Geophysics 2006, 1, D1–D13. [Google Scholar] [CrossRef]
- Vernik, L.; Nur, A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 1992, 5, 727–735. [Google Scholar] [CrossRef]
- Sarout, J.; Esteban, L.; Delle, P.C.; Maney, B.; Dewhurst, D.N. Elastic anisotropy of opalinus clay under variable saturation and triaxial stress. Geophys. J. Int. 2014, 3, 1662–1682. [Google Scholar] [CrossRef]
- Vasin, R.N.; Wenk, H.R.; Kanitpanyacharoen, W.; Matthies, S.; Wirth, R. Elastic anisotropy modeling of kimmeridge shale. J. Geophys. Res. Solid Earth 2013, 8, 3931–3956. [Google Scholar] [CrossRef]
- Sayers, C.M.; Den Boer, L.D. The impact of different clay minerals on the anisotropy of clay matrix in shale. Geophys. Prospect. 2019, 9, 2298–2318. [Google Scholar] [CrossRef]
- Ma, Y.; Pan, Z.J.; Zhong, N.N.; Connell, L.D.; Down, D.I.; Lin, W.L.; Zhang, Y. Experimental study of anisotropic gas permeability and its relationship with fracture structure of longmaxi shales, Sichuan basin, China. Fuel 2016, 180, 106–115. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Lu, Y.; Zhang, A.; Wang, Y.; Chen, X.; Qing, J. Characterization method of shale pore structure based on nano-CT: A case study of well jy-1(article). Shiyou Xuebao/Acta Pet. Sin. 2018, 11, 1253–1261. [Google Scholar] [CrossRef]
- Tang, J.; Wu, G.C. Stress-dependent anisotropy of mudstone and shale with low porosity. Chin. J. Geophys.-Chin. Ed. 2015, 8, 2986–2995. [Google Scholar] [CrossRef]
- Gong, F.; Di, B.R.; Wei, J.X.; Ding, P.B.; Li, H.; Li, D.Y. Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale. Geophysics 2018, 5, C195–C208. [Google Scholar] [CrossRef]
Sample Number | Formation | Depth, m | TOC, wt% | Porosity, % | Density, g·cm−3 | Type and Content of Minerals,% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Pyrite | Clay | ||||||
L1 | Longmaxi | 3936.3 | 0.6 | 1.72 | 2.74 | 38 | 8 | 0 | 0 | 2 | 52 |
L2 | Longmaxi | 3972.4 | 1.9 | 3.64 | 2.63 | 19 | 7 | 20 | 16 | 2 | 36 |
L3 | Longmaxi | 3522.5 | 1.8 | 6.14 | 2.53 | 35 | 16 | 17 | 0 | 2 | 30 |
L4 | Wufeng | 3553.2 | 2.7 | 4.35 | 2.59 | 18 | 3 | 50 | 11 | 2 | 16 |
Sample Number | Vp, m/s | Vs1, m/s | Vs2, m/s | Vp/Vs1 | Vp/Vs2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 45° | 90° | 0° | 45° | 90° | 0° | 45° | 90° | 0° | 45° | 90° | 0° | 45° | 90° | |
L1 | 4298 | 4897 | 5454 | 2881 | 3211 | 3401 | 2771 | 3052 | 3413 | 1.49 | 1.53 | 1.60 | 1.55 | 1.60 | 1.60 |
L2 | 4352 | 4610 | 4737 | 2782 | 2840 | 2910 | 2824 | 2878 | 2867 | 1.56 | 1.62 | 1.63 | 1.54 | 1.60 | 1.65 |
L3 | 4411 | 4586 | 4850 | 2772 | 2884 | 2942 | 2720 | 2800 | 2827 | 1.59 | 1.59 | 1.65 | 1.62 | 1.64 | 1.72 |
L4 | 4450 | 4588 | 4821 | 2656 | 2730 | 2793 | 2701 | 2786 | 2849 | 1.68 | 1.68 | 1.73 | 1.65 | 1.65 | 1.69 |
Sample Number | Vp, % | Vs1, % | Vp/Vs1, % | ||||
---|---|---|---|---|---|---|---|
5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | ||
L1 | 0° | 9.5 | −1.7 | 4.7 | 0.7 | 4.6 | −2.3 |
45° | 6.0 | 0.1 | 4.4 | 1.5 | 1.5 | −1.4 | |
90° | 4.7 | 1.8 | 4.0 | −0.2 | 0.6 | 2.0 | |
L2 | 0° | 5.4 | 1.1 | 2.6 | −0.6 | 2.7 | 1.6 |
45° | 3.4 | −1.4 | 2.3 | 0.3 | 1.1 | −1.6 | |
90° | 3.2 | −0.6 | 2.2 | −1.3 | 1.0 | 0.7 | |
L3 | 0° | 6.1 | 0.9 | 3.0 | 0.1 | 3.0 | 0.9 |
45° | 3.5 | −1.5 | 1.7 | −0.8 | 1.7 | −0.8 | |
90° | 3.1 | −0.4 | 1.8 | −1.4 | 1.3 | 1.0 | |
L4 | 0° | 4.7 | −0.8 | 3.8 | −0.1 | 0.9 | −0.7 |
45° | 4.0 | −1.5 | 3.0 | 1.4 | 0.9 | −2.9 | |
90° | 2.2 | −1.4 | 2.5 | 0.4 | −0.3 | −1.9 |
Sample Number | C11, GPa | C33, GPa | C44, GPa | C66, GPa | C12, GPa | C13, GPa |
---|---|---|---|---|---|---|
L1 | 81.50 | 50.62 | 22.74 | 31.70 | 18.10 | 16.95 |
L2 | 59.02 | 49.81 | 20.35 | 22.27 | 14.47 | 16.38 |
L3 | 59.51 | 49.23 | 19.45 | 21.90 | 15.72 | 12.73 |
L4 | 60.19 | 51.29 | 18.27 | 20.20 | 19.78 | 16.47 |
Sample Number | C11, % | C33, % | C44, % | C66, % | C12, % | C13, % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | 5~65 MPa | 65~5 MPa | |
L1 | 9.5 | 3.7 | 20.0 | −3.3 | 9.7 | 1.3 | 8.2 | −0.3 | 14.0 | 18.0 | 21.6 | −12.9 |
L2 | 6.6 | −1.2 | 11.1 | 2.1 | 5.2 | −1.1 | 4.4 | −2.7 | 13.1 | 3.2 | 6.4 | −16.1 |
L3 | 6.3 | −0.9 | 12.6 | 1.9 | 6.1 | 0.1 | 3.6 | −2.8 | 13.7 | 4.6 | 3.2 | −26.9 |
L4 | 4.4 | −2.9 | 9.7 | −1.6 | 7.8 | −0.2 | 5.1 | 0.9 | 2.9 | −10.5 | 14.5 | −11.7 |
Sample Number | Stress Sensitivity Coefficient for P-Wave (m·s−1·MPa−1) | Stress Sensitivity Coefficient for S-Wave (m·s−1·MPa−1) | |||
---|---|---|---|---|---|
Compacted Stage | Elastic Stage | Compacted Stage | Elastic Stage | ||
L1 | 0° | 7.02 | 3.45 | 2.61 | 1.19 |
45° | 6.99 | 1.75 | 2.54 | 0.10 | |
90° | 4.59 | 1.23 | 1.79 | 1.18 | |
L2 | 0° | 5.33 | 1.09 | 1.44 | 0.59 |
45° | 3.11 | 0.70 | 1.32 | 0.55 | |
90° | 2.52 | 1.15 | 1.25 | 0.52 | |
L3 | 0° | 6.84 | 2.30 | 2.05 | 0.21 |
45° | 3.47 | 2.11 | 1.38 | 0.55 | |
90° | 2.08 | 1.71 | 1.11 | 0.85 | |
L4 | 0° | 4.50 | 2.25 | 2.55 | 0.82 |
45° | 2.59 | 1.27 | 1.92 | 0.99 | |
90° | 2.09 | 1.90 | 1.48 | 0.63 |
Sample Number | Calculated Value (5 MPa) | Change Rate after Loading (5~65 MPa) | Change Rate after Unloading (65~5 MPa) | |||
---|---|---|---|---|---|---|
ε | γ | ε | γ | ε | γ | |
L1 | 0.30 | 0.20 | −32.93 | −16.67 | −6.06 | −7.20 |
L2 | 0.09 | 0.05 | −21.09 | −12.67 | −7.76 | 7.84 |
L3 | 0.10 | 0.06 | −23.71 | −16.59 | −7.34 | −13.89 |
L4 | 0.09 | 0.05 | −14.20 | −8.78 | −5.77 | 4.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Tang, H.; Tang, H.; Leng, Y.; Shi, X.; Liu, J. Experimental Investigation of Stress Sensitivity of Elastic Wave Velocities for Anisotropic Shale in Wufeng–Longmaxi Formation. Processes 2023, 11, 2607. https://doi.org/10.3390/pr11092607
Feng Y, Tang H, Tang H, Leng Y, Shi X, Liu J. Experimental Investigation of Stress Sensitivity of Elastic Wave Velocities for Anisotropic Shale in Wufeng–Longmaxi Formation. Processes. 2023; 11(9):2607. https://doi.org/10.3390/pr11092607
Chicago/Turabian StyleFeng, Yutian, Hongming Tang, Haoxuan Tang, Yijiang Leng, Xuewen Shi, and Jia Liu. 2023. "Experimental Investigation of Stress Sensitivity of Elastic Wave Velocities for Anisotropic Shale in Wufeng–Longmaxi Formation" Processes 11, no. 9: 2607. https://doi.org/10.3390/pr11092607
APA StyleFeng, Y., Tang, H., Tang, H., Leng, Y., Shi, X., & Liu, J. (2023). Experimental Investigation of Stress Sensitivity of Elastic Wave Velocities for Anisotropic Shale in Wufeng–Longmaxi Formation. Processes, 11(9), 2607. https://doi.org/10.3390/pr11092607