The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sample
2.2. Methods
- -
- glowing, smoldering, or flame combustion;
- -
- the temperature of the thermocouple located in the middle of the sample layer continuously rises in comparison with the temperature of the isothermally heated plate;
- -
- measured temperature exceeded by 250 °C the temperature of the hotplate.
3. Results and Discussion
4. Conclusions
- during the action of radiant heat, the processes of thermal degradation occurred earlier in samples of fully dried digestate;
- we observed higher temperatures of thermal degradation in samples of additionally dried digestate;
- samples of digestate with a weight of 3 g (thickness of 0.43 cm) are not suitable as bedding material due to the sample being burnt to ash;
- samples of digestate with a weight of 10 g (thickness of 1.13 cm) are dangerous from the point of view of fire-technical characteristics since, after the end of the experiment, we observed the processes of additional smoldering and glowing inside the sample;
- samples of digestate weighing 5 g (thickness of 0.62 cm) show a constant course of thermal processes and are, therefore, suitable as bedding material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munir, T.M.; Irle, M.; Belloncle, C.; Federighi, M. Wood based bedding material in animal production: A minireview. Approaches Poult. Dairy Vet. Sci. 2019, 6, 582–588. [Google Scholar] [CrossRef]
- Bradley, A.J.; Leach, K.A.; Green, M.J.; Gibbons, J.; Ohnstad, I.C.; Black, D.H.; Breen, J.E. The impact of dairy cows’ bedding material and its microbial content on the quality and safety of milk: A cross sectional study of UK farms. Int. J. Food Microbiol. 2018, 269, 36–45. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, T.; Rajput, M.; Baishya, A.; Bhatt, N.; Roy, S. A Review: Effect of Bedding Material on Production, Reproduction and Health and Behavior of Dairy Animals. Int. J. Livest. Res. 2020, 10, 11–20. [Google Scholar] [CrossRef]
- Mitev, J.; Varlyakov, I.; Miteva, T.; Vasilev, N.; Gergovska, J.; Uzunova, K.; Dimova, V. Preferences of freestall housed dairy cows to different bedding materials. İstanb. Üniv. Vet. Fak. Derg. 2012, 38, 135–140. [Google Scholar]
- Endres, M.I.; Barberg, A.E. Behavior of dairy cows in an alternative bedded-pack housing system. J. Dairy Sci. 2007, 90, 4192–4200. [Google Scholar] [CrossRef] [PubMed]
- Galama, P.J. On Farm Development of Bedded Pack Dairy Barns in The Netherlands; Wageningen UR Livestock Research: Lelystad, The Netherlands, 2014; Available online: https://www.wur.nl/ (accessed on 1 July 2023).
- Fávero, S.; Portilho, F.V.R.; Oliveira, A.C.R.; Langoni, H.; Pantoja, J.C.F. Factors associated with mastitis epidemiologic indexes, animal hygiene, and bulk milk bacterial concentrations in dairy herds housed on compost bedding. Livest. Sci. 2015, 181, 220–230. [Google Scholar] [CrossRef]
- Leso, L.; Conti, L.; Rossi, G.; Barbari, M. Criteria of design for deconstruction applied to dairy cows housing: A case study in Italy. Agron. Res. 2018, 16, 794–805. [Google Scholar] [CrossRef]
- Oliveira, V.C.; Damasceno, F.A.; Oliveira, C.E.A.; Ferraz, P.F.P.; Ferraz, G.A.S.; Saraz, J.A.O. Compost-bedded pack barns in the state of Minas Gerais: Architectural and technological characterization. Agron. Res. 2019, 17, 2016–2028. [Google Scholar] [CrossRef]
- Yajima, A.; Owada, H.; Kobayashi, S.; Komatsu, N.; Takehara, K.; Ito, M.; Matsuda, K.; Sato, K.; Itabashi, H.; Sugimura, S.; et al. Cacao bean husk: An applicable bedding material in dairy free-stall barns. Asian-Australas. J. Anim. Sci. 2017, 30, 1048–1053. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Potential of pelleted wheat straw as an alternative bedding material for broilers. Poult. Sci. 2017, 96, 1641–1647. [Google Scholar] [CrossRef]
- Niraula, R.; Eng, P.; Lebeau, B. Alternative Bedding Materials for Livestock. In FACTSHEET 18-011; AGDEX 400; 2018. Available online: www.omafra.gov.on.ca (accessed on 1 July 2023).
- Reich, L.J.; Weary, D.M.; Veira, D.M.; von Keyserlingk, M.A.G. Effects of sawdust bedding dry matter on lying behavior of dairy cows: A dose-dependent response. J. Dairy Sci. 2010, 93, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Suzuki, T.; Yasui, S.; Ishii, K.; Kaziyama, T.; Oishi, K.; Ogino, A.; Hinata, T.; Hirooka, H.; Osada, T.; et al. Simulation of livestock biomass resource recycling and energy utilization model based on dry type methane fermentation system. IOP Conf. Ser. Earth Environ. Sci. 2020, 460, 012020. [Google Scholar] [CrossRef]
- Popluga, D.; Kreišmane, D. Climate-Friendly Agricultural Practice in Latvia. Separation of Liquid Manure and Digestate; University of Life Sciences and Technologies in cooperation with the Ministry of Agriculture of the Republic of Latvia: Jelgava, Latvia, 2020. [Google Scholar]
- Đurđević, D.; Blecich, P.; Lenić, K. Energy Potential of Digestate Produced by Anaerobic Digestion in Biogas Power Plants: The Case Study of Croatia. Environ. Eng. Sci. 2018, 35, 1286–1293. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakata, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Reuland, G.; Sigurnjak, I.; Dekker, H.; Michels, E.; Meers, E. The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertiliser Substitutes under the RENURE Criteria. Agronomy 2021, 11, 1374. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate Composition Affecting N Fertiliser Value and C Mineralisation. Waste Biomass Valor 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef]
- Grillo, F.; Piccoli, I.; Furlanetto, I.; Ragazzi, F.; Obber, S.; Bonato, T.; Meneghetti, F.; Morari, F. Agro-Environmental Sustainability of Anaerobic Digestate Fractions in Intensive Cropping Systems: Insights Regarding the Nitrogen Use Efficiency and Crop Performance. Agronomy 2021, 11, 745. [Google Scholar] [CrossRef]
- Leach, K.A.; Archer, S.C.; Breen, J.E.; Green, M.J.; Ohnstad, I.C.; Tuer, S.; Bradley, A.J. Recycling manure as cow bedding: Potential benefits and risks for UK dairy farms. Vet. J. 2015, 206, 123–130. [Google Scholar] [CrossRef]
- Ferraz, I.P.R.; Viana, F.L.; Pocinho, M.M.F.D. A “maturidade” para aprender a ler: Contributos para uma reflexão. Calidoscópio 2020, 18, 3–19. [Google Scholar] [CrossRef]
- Wolfe, T.; Vasseur, E.; DeVries, T.J.; Bergeron, R. Effects of alternative deep bedding options on dairy cow preference, lying behavior, cleanliness, and teat end contamination. J. Dairy Sci. 2018, 101, 530–536. [Google Scholar] [CrossRef] [PubMed]
- van Gastelen, S.; Westerlaan, B.; Houwers, D.J.; Van Eerdenburg, F.J.C.M. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials. J. Dairy Sci. 2011, 94, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, S.J.; Tierney, G.; Stockwell, C.; Logue, D.N.; Kelly, M. An evaluation of mattresses and mats in two dairy units. Appl. Anim. Behav. Sci. 2000, 66, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Ponciano Ferraz, P.; Araújo e Silva Ferraz, G.; Leso, L.; Klopčič, M.; Rossi, G.; Barbari, M. Evaluation of the Physical Properties of Bedding Materials for Dairy Cattle Using Fuzzy Clustering Analysis. Animals 2020, 10, 351. [Google Scholar] [CrossRef]
- Meng, J.; Shi, F.H.; Meng, Q.X.; Ren, L.P.; Zhou, Z.M.; Wu, H.; Zhao, L.P. Effects of bedding material composition in deep litter systems on bedding characteristics and growth performance of limousin calves. Asian-Australas. J. Anim. Sci. 2015, 28, 143–150. [Google Scholar] [CrossRef]
- Tucker, C.B.; Weary, D.M.; Fraser, D. Free-stall dimensions: Effects on preference and stall usage. J. Dairy Sci. 2004, 87, 1208–1216. [Google Scholar] [CrossRef]
- Tucker, C.B.; Zdanowicz, G.; Weary, D.M. Brisket boards reduce freestall use. J. Dairy Sci. 2006, 89, 2603–2607. [Google Scholar] [CrossRef]
- Okamoto, E.; Miyanishi, H.; Nakamura, A.; Kobayashi, T.; Kobayashi, N.; Terawaki, Y.; Nagahata, H. Bacteriological evaluation of composted manure solids prepared from anaerobic digested slurry for hygienic recycled bedding materials for dairy cows. Anim. Sci. J. 2018, 89, 727–732. [Google Scholar] [CrossRef]
- Ron, A. Digestate Utilization in the U.S. BioCycle 2012, 53, 56. [Google Scholar]
- Czekała, W.; Nowak, M.; Piechota, G. Sustainable management and recycling of anaerobic digestate solid fraction by composting: A review. Bioresour. Technol. 2023, 375, 128813. [Google Scholar] [CrossRef]
- Białowiec, A.; Wisniewski, D.; Pulka, J.; Siudak, M.; Jakubowski, B.; Myslak, B. Biodrying of the Digestate from Agricultural Biogas Plants. Rocz. Ochr. Sr. 2015, 17, 1554–1568. [Google Scholar]
- EN 50281-2-1:1998; Electrical Equipment for Areas with Combustible Dust. Part 1-2: The Test Methods. The Methods for Determining the Minimum Temperatures of Dust. European Committee for Standardization (CEN): Brussels, Belgium, 1998.
- Marková, I.; Ivaničová, M.; Makovická Osvaldový, L.; Harangózo, J.; Tureková, I. Ignition of Wood-Based Boards by Radiant Heat. Forests 2022, 13, 1738. [Google Scholar] [CrossRef]
- Kapuinen, P. SE—Structures and Environment: Deep litter systems for beef cattle housed in uninsulated barns, Part 2: Temperatures and nutrients. J. Agric. Eng. Res. 2001, 80, 87–97. [Google Scholar] [CrossRef]
- Keys, J.E.; Smith, L.W.; Weinland, B.T. Response of dairy cattle given a free choice of free stall location and 3 bedding materials. J. Dairy Sci. 1976, 59, 1157–1162. [Google Scholar] [CrossRef]
- Adamski, M.; Glowacka, K.; Kupczynski, R.; Benski, A. Analysis of the possibility of various litter beddings application with special consideration of cattle manure separate. Acta Sci. Pol. Zootech. 2011, 10, 5–12. [Google Scholar]
- Feiken, M.; van Laarhoven, W. Recycled Manure Solids (RMS) as Biobedding in Cubicles for Dairy Cattle. Considerations and Tips for Practice. Microsoft Word—20121130 Eindverslag def. Available online: verantwoordeveehouderij.nl (accessed on 1 July 2023).
Source | Product |
---|---|
Paper products | |
Industries, offices, residences | Shredded paper/cardboard |
Industries, construction | Shredded drywall paper |
Industry (paper mill wastewater) | Paper sludge |
Pulping process by product | Paper fibre |
Wood products | |
Industries, construction | Recycled wood products |
Industries, construction | Sawdust from furniture plants |
Separated manure solids | |
Anaerobic digester | Separated manure solids |
Solid–liquid separator | Separated manure solids |
Drum composter | Composted manure |
Other organic products | |
Mushroom farm | Mushroom farm compost |
Peat mine | Peat moss |
Mass (g) | Moisture (%) | Area of Heat Load (cm2) | Volume (cm3) | Density (g·cm−3) | Height (cm) |
---|---|---|---|---|---|
3 | 54.6 * | 78.54 | 34 | 0.09 | 0.43 |
5 | 32.37 | 78.54 | 49 | 0.10 | 0.62 |
10 | 33.86 | 78.54 | 89 | 0.11 | 1.13 |
Specimen | Specimen Weight | T Hot (°C) | T Digestate (°C) | t exp (s) | Visual Observations during Measurement |
---|---|---|---|---|---|
D1 | 3 | 256.7 | 155.5 | 555 | smell |
310.0 | 238.6 | 690 | thermal degradation (black surface) and smoking around the edges | ||
325.8 | 273.0 | 735 | incandescence | ||
373.0 | 267.1 | 900 | burning out of the specimen | ||
421.0 | 403.4 | 1125 | the combustion process (in the center of the thermocouple) | ||
434.0 | 284.5 | 1200 | combustion and total charring of the specimen (holes in the specimen) | ||
D2 | 3 (after dry 1.94) | 169.2 | 106.8 | 360 | smell |
256.7 | 156.3 | 555 | smoking | ||
304.0 | 189.8 | 675 | thermal degradation (black surface) around the edges | ||
320.9 | 215.2 | 720 | charring of the specimen | ||
330.0 | 279.5 | 750 | burning around the edges | ||
352.0 | 234.8 | 825 | burning in the center and holes in the specimen | ||
407.0 | 267.2 | 1050 | combustion and total charring of the specimen | ||
434.0 | 284.5 | 1200 | burnt to gray ash | ||
D3 | 5 | 250.0 | 156.0 | 540 | smell |
256.7 | 163.9 | 555 | smoking | ||
304.0 | 294.0 | 675 | thermal degradation around the edges | ||
315.7 | 341.9 | 705 | incandescence | ||
D4 | 5 (after dry 3.84) | 169.2 | 95.5 | 360 | smell |
275.6 | 168.0 | 600 | smoking | ||
310.0 | 239.2 | 690 | blackening of the layers touching the plate | ||
330.0 | 316.0 | 750 | total charring of the specimen | ||
373.0 | 269.3 | 900 | burning, small flames | ||
D5 | 10 | 193.8 | 52.3 | 420 | smell |
310.0 | 113.5 | 690 | smoking | ||
330.0 | 165.8 | 750 | smoking, acrid smell, thermal degradation starts | ||
340.0 | 206.3 | 780 | charring of the layer on the hot plate surface occurs | ||
369.0 | 360.0 | 885 | total charring of the specimen, without smoke | ||
after the experiment, carbon at the bottom touching the plate are monitored | |||||
D6 | 10 (after dry 7.74) | 169.2 | 64.8 | 360 | smell |
263.0 | 141.7 | 570 | smoking | ||
299.0 | 219.7 | 660 | thermal degradation (black surface) | ||
315.7 | 328.8 | 705 | incandescence, smoking, acrid smell | ||
335.0 | 415.6 | 765 | total charring of the specimen | ||
after the experiment, carbons at the bottom touching the plate are monitored |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaďuďová, J.; Marková, I.; Šťastná, M.; Giertlová, Z. The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material. Processes 2023, 11, 2609. https://doi.org/10.3390/pr11092609
Jaďuďová J, Marková I, Šťastná M, Giertlová Z. The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material. Processes. 2023; 11(9):2609. https://doi.org/10.3390/pr11092609
Chicago/Turabian StyleJaďuďová, Jana, Iveta Marková, Milada Šťastná, and Zuzana Giertlová. 2023. "The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material" Processes 11, no. 9: 2609. https://doi.org/10.3390/pr11092609
APA StyleJaďuďová, J., Marková, I., Šťastná, M., & Giertlová, Z. (2023). The Evaluation of the Fire Safety of the Digestate as An Alternative Bedding Material. Processes, 11(9), 2609. https://doi.org/10.3390/pr11092609