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Abstract: Fieldbus control systems play a pivotal role in industries such as mining, beneficiation, and
metallurgy, facilitating precise process control. However, diverse process conditions and applications
often lead to challenges during system implementation. The prevalence of process control projects
underscores the need for dedicated control system laboratories to address these problems. Our
research delves into the complexities of process control systems, focusing on mainstream brands
such as Siemens, Rockwell, and Emerson, involving analysis of network architectures, software, and
hardware configurations. Through rigorous testing of real equipment systems, we uncover prevalent
issues in practical control system applications. These findings guide the resolution of technical
challenges faced in project control, concurrently enhancing the design and debugging prowess of
engineering professionals. We also anticipate the trajectory of intelligent manufacturing, embracing
collaborative manufacturing aspects in networked environments. This research establishs a robust
foundation for the forthcoming generation of control network technologies specific to metal mining,
beneficiation, and metallurgy.

Keywords: nonferrous metal; mining and metallurgy; fieldbus; DCS; laboratory construction;
industrial process control; communication network

1. Introduction

In recent years, a succession of scientific and technological innovation waves, includ-
ing “innovation-driven development”, “Internet Plus”, “Made in China 2025”, “Industrial
Internet of Things”, and “Industry 4.0.”, have surged forward [1–3]. Evolutions in industry
and applications, propelled by cutting-edge technologies such as 5G communication, intel-
ligent industrial manufacturing, machine learning, and humanoid bionics, have garnered
prominence [4–6]. This wave of progress has set the stage for the rise of intelligent automatic
control in the realm of non-ferrous metal mining, beneficiation, and metallurgy [7–11].

The Distributed Control System (DCS), an advanced control equipment system, con-
verges computer technology, network communication, control algorithms, and graphical
interfaces around a microprocessor core. It governs geographically dispersed workshops
and on-site areas, centrally managed from dispatch rooms and control centers. Infiltrating
industrial production and equipment systems, particularly in mining and metal smelting,
the DCS system has wielded significant influence, enhancing output efficiency and dimin-
ishing manual intervention, thereby yielding substantial economic and social dividends.
The advent of network distributed computer control systems, grounded in interface stan-
dardization and open data instructions [12–15], has rectified the limitations of traditional
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PLC control networks, dispelling information blockades and isolation controls. As high-
speed fiber optics and wireless communication thrive, the DCS system has evolved into a
fully distributed wireless remote-control network, deploying operational control on-site
while facilitating direct analysis, decision-making, and optimization at the management
level [16–19]. Its role as an essential foundation for intelligent control in non-ferrous metal
mining, beneficiation, and smelting processes is now irreplaceable.

The Laboratory for Field Bus Control Systems is an innovative technological plat-
form for industrial process control. It has been established with a focus on educational
institutions, research centers, and design facilities acting as the foundation. Guided by
real-world engineering challenges, it emphasizes the seamless integration of industry,
academia, research, and application [20–23]. This platform will assume a pivotal role and
hold a significant position in the domains of automation control, intelligent optimization,
and the management of resources and environments [24–27]. The Distributed Control
System (DCS) is extensively employed within process control industries such as mining
and metallurgy. Given the diverse nature of process flows and application conditions, it is
imperative to engage in engineering debugging and address practical issues discovered in
such applications. This need is particularly pressing when it comes to the advancement
of intelligent automatic control systems and software algorithms for fields such as metal
mining, beneficiation, and metallurgy [28–31]. These systems and algorithms find broad
application in numerous projects related to process control system engineering. Therefore,
there is an urgent requirement to establish a DCS distributed control system laboratory,
which would permit remote access to project data via an industrial cloud platform tailored
to meet scientific research and engineering project demands [32,33]. This system would
facilitate on-site project monitoring, diagnosis, engineering debugging, and the storage
backup of project data, ultimately leading to the creation of an industrial internet platform
for intelligent control.

With the aim of exploring and crafting process control systems for tangible engi-
neering endeavors, scrutinizing network architecture diagrams, and conducting practical
experiments on actual equipment systems, this study endeavors to identify challenges
within control system practices. Its ultimate goal is to rectify technical quandaries in project
control, elevate the skillset of engineering personnel in terms of design and debugging,
and substantially enhance the efficiency of engineering project implementation. In this
article, the focus is on comprehensively analyzing the task-related characteristics that the
laboratory must assume, taking into account the existing parameters of the automated
laboratory. The content of the laboratory’s system construction plan is thoroughly exam-
ined from multifaceted perspectives, with particular emphasis on securing an optimal
laboratory construction outcome through meticulous layout design and budgetary analysis.
Finally, a conclusive summary is presented, offering valuable insights and recommenda-
tions for expeditiously establishing an automatic control laboratory within the mining and
metallurgical industry.

Our work contributes to both the available literature and actual practice in the
following ways:

1. This study offers a profound insight that resonates as a clarion call: the need for a diverse
embrace of network control system architectures and hardware configurations from
multiple influential brands. This strategic shift not only forges a robust foundation
for laboratory procurement and utilization but also ushers in an era of cross-brand
collaboration that is poised to ignite innovation through unexpected intersections.

2. This paper presents a transformative vision for the future, envisaging the laboratory
as a nexus of convergence between academia and industry. In seamless collaboration
with the nonferrous metal industry and other sectors, the laboratory is poised to
undertake pioneering industry-university research endeavors, catalyzing revolution-
ary automation engineering experiments. This collaborative endeavor, buttressed by
interdisciplinary experimental teaching, curriculum design, and talent cultivation
initiatives, is set to shape a future enriched by synergistic expertise.
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2. Research on Laboratory Control System Equipment
2.1. Selection of Laboratory Base

The DCS system constitutes a comprehensive assemblage of network and electrical
system devices. Consequently, a spacious chamber exceeding 60 square meters was delib-
erately chosen to establish a control system laboratory that adheres to the requirements
stipulated for the installation and operation environment of diverse DCS components
and equipment. Moreover, considering the abundance of low-voltage equipment, the
laboratory necessitates the installation of anti-static flooring. Furthermore, in order to
facilitate engineers’ on-site experimental undertakings and ensure the efficacy of scientific
research and engineering experiments, the laboratory has been equipped with projectors,
indoor broadcasting systems, air conditioning, dehumidification systems, and provisions
for ample illumination and reliable power supply.

2.2. Control Network Architecture Scheme

The production process within the realm of metal mining, beneficiation, and metal-
lurgy industry entails a significant multitude of scattered electric-operated equipment and
measuring electronic instruments. As a laboratory specializing in DCS encompassing vari-
ous renowned brands, utmost importance lies in carefully selecting cutting-edge controllers
and architectural designs from the industry’s leading brands.

Currently, the pursuit of deep mining has emerged as a pivotal undertaking within
the realm of metal mining. Shallow metal mines, with their relatively straightforward de-
velopment models, facilitate sizable quantities of extraction and transportation. However,
with deep metal mining, significant challenges arise, given the substantial discrepancies
in ventilation and extended transportation durations. It becomes imperative, therefore, to
delve into the realms of research and experimentation concerning communication networks
tailored for deep metal mining. As illustrated in Figure 1, the intricate network system
diagram for Underground deep metal mining development continues to expand. This
diagram encompasses the control communication station pertinent to the metal mining
process section, alongside the control communication station affiliated with long-range
equipment at various depths. The computing-driven acquisition and transmission of
mine environment data, as well as the requisite support from the communication network,
necessitate thorough optimization designs to fulfill the demands of realizing a fully inte-
grated intelligent network system. This system encompasses facets such as environmental
awareness, analysis and decision-making, as well as command and control. Notably, the in-
telligent deep mining of metal mines, characterized by swift data acquisition, coupled with
the identification and alarming of perilous faults through seamless coordination, presents
metal mine production managers with a novel developmental paradigm for precious
metal resources.

The Siemens DCS system embraces the PCS7 system as its fundamental construction
element. This system employs a combination of S7-410smart and S7-1500PLC to establish a
test platform for DCS network control systems. Likewise, the Rockwell DCS system centers
around the AB PlantPaX system as its foundational structure. The core of this network
control system test platform is constituted by the 1756-L71 controller. In the case of the
Emerson DCS system, the Delta V system serves as the basis for its construction, with the
MQ Controller PLC acting as the central core for the establishment of the DCS control
system test platform. Similarly, the ABB DCS system is founded on the 800xA system,
utilizing the AC800M as the controller core in the creation of the DCS system control system
test platform. Among the domestic systems, the Supcon DCS system is grounded in the
ECS-700 system. The FCU712-S01 functions as the controller core in the development of
the DCS system control system test platform.
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Figure 1. Underground deep metal mining network. 
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The DCS implementation embraces a tripartite network system architecture. Draw-
ing upon ABB as an illustrative example, Figure 2 showcases the architectural diagram of 
the DCS system, elegantly partitioned into the computer workstation’s monitoring layer, 
the controller core’s control layer, and the on-site layer housing the sensor IO system and 
electrically controlled equipment. 

Figure 1. Underground deep metal mining network.

The DCS implementation embraces a tripartite network system architecture. Drawing
upon ABB as an illustrative example, Figure 2 showcases the architectural diagram of
the DCS system, elegantly partitioned into the computer workstation’s monitoring layer,
the controller core’s control layer, and the on-site layer housing the sensor IO system and
electrically controlled equipment.
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3. Laboratory Research Design Content
3.1. Construction of Metal Mining, Dressing and Metallurgy Control System Device

By employing on-site control consoles and constructing new glass partitions, intel-
ligent displays, and accessible electrical cabinets, we aim to establish an inclusive and
collaborative experimental environment conducive to personnel maintenance, communi-
cation, and showcasing. The completion of the DCS control system’s construction and
debugging represents a pivotal final step, encompassing the assembly of electrical equip-
ment cabinets, the arrangement of data communication lines, the interconnection of IO
signals through various communication protocols, and the system’s regular operation and
debugging. Notably, the interface communication link between the DCS control system
and the controlled electrical equipment is susceptible to offline faults. In the laboratory’s
initial stage, we have constructed five sets of distinct and cutting-edge DCS control systems,
each equipped with comprehensive control system software and hardware architecture, as
well as the necessary instruments and equipment for establishing connections. This setup
facilitates a faithful simulation of actual operations within industrial automatic process
control systems, allowing for continuous updates and expansions of the latest DCS system
software and hardware from other widely-used brands as required. Moving forward,
based on scientific research demands and engineering project requisites, project data can
be remotely accessed via the industrial cloud platform to observe and diagnose on-site
conditions of various projects, conduct engineering debugging, and store backups of project
data. Thus, an experimental platform is established to encompass the complete process of
the industrial control internet system for metal mining, selection, and metallurgy.

3.2. Technological Research and Development and Experimental Requirements of Metal Mining
and Beneficiation Laboratories

In the initial phase, drawing from the fundamental practical courses on industrial
control training offered by the manufacturer of the self-control brand, the design task of
the DCS process control system primarily encompasses system configuration, control con-
figuration, and monitoring screen configuration. Thus, the project’s task system is divided
into three segments: system integration, control system design, and monitoring screen con-
figuration. Ultimately, comprehensive debugging is concluded, and the system is ready for
production operations. Following the holistic design process of industrial process control
systems, engineering design is accomplished based on three essential components: system
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integration, control configuration, and interface design. By adopting prevailing control
network architecture, concluding communication configuration settings, optimizing plat-
form performance, and utilizing software for process control system design and debugging,
as well as creating monitoring screens, remote monitoring and information management
objectives can be achieved. Presently, industrial control engineering projects continue to
conduct essential research and development tests to address challenges encountered in
the production control of critical and formidable non-ferrous metals. Moving forward,
industrial enterprises in the realm of resources and environment, alongside other indus-
tries and relevant university research institutions, will engage in collaborative innovation
research to tackle significant issues and resolve complex challenges pertaining to intelligent
engineering control. Additionally, it is imperative to enhance the involvement of resources,
particularly non-ferrous metal enterprises and the automation industry, in the development
and implementation of transdisciplinary projects. Furthermore, the future holds potential
for providing vital scientific research projects for the graduate training engineering practice
base established through collaborative efforts between educational institutions and enter-
prises. An active pursuit of innovative approaches to training diverse professionals in the
realm of non-ferrous metal automation is necessary, along with a proactive commitment to
intelligent scientific and technological advancements aimed at resolving production issues.
This endeavor aims to achieve safety, efficiency, personnel reduction, unmanned operations,
while effectively enhancing the production and management capabilities and profitability
of enterprises operating within the resources and environment sector.

Currently, as one of the fundamental industries in our nation, the steel industry is
confronted with the imperative of decreasing production capacity while simultaneously
contending with the dual pressures of consistently enhancing environmental requirements
and achieving “carbon peak carbon neutrality.” Energy consumption within the steel
industry typically constitutes more than 10% of the nation’s total energy consumption.
Thus, there is an urgent necessity to reform outdated production methods and processes
of the past, embracing green and intelligent production practices, and reducing energy
consumption and pollution emissions in all aspects. The gas generated by the steel in-
dustry, comprising primarily of converter, blast furnace, and coke oven gases, serves as a
valuable byproduct. Its primary components consist of combustible gases with high energy
utilization value, such as carbon monoxide, methane, and hydrogen. Utilizing this gas
for power generation can alleviate and diminish the energy consumption demands and
greenhouse gas emissions in steel production, resulting in substantial enhancements in
the green and economic efficiency of steel industry production. Moreover, these efforts
contribute significantly to China’s economic transformation and the future development
of the world. Notably, large-scale steel mills exhibit the distinct characteristic of contin-
uous production on a massive scale, leading to consistent industrial gas production and
significantly higher resource utilization value and efficiency. The production process re-
quires a substantial amount of energy consumption. Consequently, the thermoelectric
energy system, comprised of industrial gas, steam, and electricity, represents a vital green
optimization measure for supporting steel industry production. To effectively utilize the
considerable amount of industrial gas, it becomes imperative to align the design and use of
ultra-large-scale supercritical steam turbines for combustion and power generation. This
strategy aims to absorb the generated steel industrial gas, while simultaneously supplying
waste heat steam to fulfill the thermal energy demands of the steel plant. Prior to burning
and utilization, the gas generated by the steel industry needs to undergo purification
and pre-treatment to prevent significant reductions in utilization efficiency. Additionally,
the emission of combustion byproducts must undergo atmospheric pollution treatments,
such as desulfurization and denitrification, to achieve low and zero pollution emissions.
This approach ensures the truly environmentally friendly and green utilization of steel
industry gas. Energy management and consumption scheduling within large-scale steel
industries present significant optimization potential. Numerous research findings have
emerged, providing valuable insights into optimizing energy scheduling and management
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practices within the steel industry. For instance, traditional mathematical statistics and
planning theory can significantly delve into operational rules to optimize management
practices. Furthermore, emerging algorithms such as neural networks and deep learning
can efficiently and rapidly discern the intrinsic energy laws within the steel industry. Based
on supervised, semi-supervised, or unsupervised learning methods, energy supply, genera-
tion, consumption, and storage processes can be optimized, controlled, and managed to
maximize utilization efficiency through energy conservation and consumption reduction.
Conversely, small-scale steel industries have limited output, resulting in small and inter-
mittent gas volumes. Hence, large gas turbines are unsuitable for power generation due to
their prolonged startup time, high costs, and low efficiency.

The optimal strategy entails employing internal combustion gas generators of the
combustion type for the utilization of small-scale steel industry gas. These generators
offer a responsive start-stop capability, exceptional power generation efficiency, and cost-
effectiveness. Several enterprises of Shanxi Coking Company have already implemented
dozens of internal combustion engines to generate power for their own use, thus minimiz-
ing production costs. Simultaneously, a pressurization device is employed to elevate the
pressure of industrial gas, enabling the internal combustion gas generator to efficiently
burn low concentration gas for power generation. This significantly broadens the appli-
cation range of the steel industry gas power generation system. The versatile utilization
of internal combustion gas generators will also play a pivotal role in energy management
within the steel industry, further conserving energy and reducing consumption. The energy
system of the steel industry generates substantial carbon dioxide emissions, leading to the
greenhouse effect. Moreover, the gases present in the steel industry consist of nitrogen
and sulfur oxidation gases, which can cause detrimental effects, such as acid rain, upon
combustion and power generation. Therefore, it is imperative to conduct tail gas treatment
to facilitate desulfurization and denitrification, thereby minimizing atmospheric pollutant
emissions. This measure aligns with the objective of achieving cleaner production through
energy conservation and emission reduction. Progress has been made in the technology of
carbon capture and utilization of gases. With the introduction of biotechnology in this field,
significant advancements have been made. The utilization of anaerobic bacteria to produce
valuable products such as acetic acid and ethanol using CO2 has greatly propelled indus-
trial progress. However, achieving environmentally-friendly and pollution-free production
through a closed-loop management system necessitates further in-depth research. Further-
more, advancements have been made in the industrial production of Sodium metabisulfite
derived from sulfur oxide gas, specifically sulfur dioxide. This resourceful utilization
reduces the presence of SO4 ions, crucial contributors to acid rain formation, thus lowering
the likelihood of acid rain occurrences. Consequently, these measures for gas pollution
treatment have also broadened the possibilities for automation and intelligence, effectively
adapting to automated production processes. For instance, under intense acidic conditions,
the high failure rate of automatic equipment control valves and sensors can impede nor-
mal automatic control, substantially diminishing the gas treatment process’s effectiveness
and resulting in the need for manual and labor-intensive efforts. The goal of optimizing
industrial production through intelligent control becomes unattainable, leading to lost
investments. Therefore, it is imperative to vigorously promote research and application,
ultimately achieving automatic and intelligent production of tail gas treatment in the steel
industry. Implementing stable and reliable gas pollution control holds immense signifi-
cance. Furthermore, the filling system utilized in underground metal mining (as depicted
in Figure 3) comprises an array of process pipeline equipment and interconnected complex
network systems, necessitating the optimization design of intelligent algorithms to enhance
production management efficiency and overall cost-effectiveness throughout the entire
process of metal mining, dressing, and metallurgy.
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The current artificial intelligence deep learning algorithms have been able to perform
reliable and interpretable optimization control function blocks, especially intelligent control
tools such as multivariable model deep learning predictive control [34–38], fuzzy neural
network adaptive control, deep learning optimization soft sensor models, etc. Through
these algorithm functional models, the production process control effect can be optimized
without significantly increasing investment expenses for other software and hardware costs,
promoting the goal of reducing the impact on the production process [39,40], especially
the current deep learning optimization soft sensor models, based on deep learning and
mathematical optimization algorithms, new prediction architectures, data collection meth-
ods, fusion model prediction, feedback correction, deep learning, process mathematical
modeling, rolling optimization control, and digital twin real-time precise simulation tech-
nology. The online real-time collection, monitoring, control, and visualization of various
measurement data, even unmeasurable data, that can accurately predict and simulate the
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production process is of great significance for optimizing the management of production
control. In the internal production process data collection method of smelting furnace for
iron and steel industry, high temperature and high-pressure dust is complex, and the time
and space distribution difference of reaction process is large, which leads to great difficulty
in direct measurement. Soft sensing technology plays an important role. Through the
fusion, calculation, analysis and prediction of various original data, the production data in
the smelting furnace can be obtained comprehensively and in real time, it is beneficial for
the normal production of the smelting process to provide reliable guarantee, and also has a
very good auxiliary effect on improving the quality of smelting products.

3.3. Construction of Laboratory Talent Team

Based on a fixed team of full-time automatic control technicians, we will flexibly
arrange a team of self-control personnel for relevant scientific research and production
engineering projects to supplement them, including rare metal process automation and
other project teams. Accept collaborative development and research from other personnel
during the project development phase, achieve efficient cultivation of automatic control
technology design and development capabilities, build a high-level talent team in the field
of teaching, scientific research, and automation, and focus on grasping and leading the
development trend of the mining and smelting automation industry.

4. Laboratory Scheme Design and Budget Analysis

The construction scheme and budget of the laboratory are Strongly correlated material,
so a comprehensive analysis of the detailed experimental scheme is carried out to provide
a reference for the formulation of optimized budget scheme.

4.1. Laboratory Configuration Plan

In general, metal mining and smelting facilities predominantly utilize prominent
brands of DCS system and electrical cabinets for laboratory configuration. The specific
configuration list will be established through negotiations and competitive bidding with
suppliers. The approximate configuration plan is outlined in Table 1, where a selection
of internationally renowned brands such as Siemens PCS7 will be employed, along with
Rockwell PlantPaX, Emerson Delta V, and Driver SYS for the transmission system. These
systems require support for interfaces such as EtherNET, ProfibusDP, and ProfiNet to
facilitate instrument data communication and collection in non-ferrous metal mining and
smelting establishments. Multiple sets of diverse process control instruments, including pH
meters, level meters, and flow control valves, will be provided, along with comprehensive
software for configuring the DCS system. Additionally, four high-performance industrial
computers and workstation tables and chairs will be equipped to simulate a centralized
monitoring and control center, mirroring the operations of an actual nonferrous metal
mining and smelting facility. Moreover, if necessary, a laboratory can be established with a
fully functional simulation platform for virtual display (VR) and augmented reality (AR).
To meet the specific production requirements of the non-ferrous metal industry, it is often
necessary to incorporate anti-corrosion and temperature-resistant coatings to safeguard the
control system from acidic and high-temperature substances. This precautionary measure
helps prevent detrimental accidents, such as production downtime. The laboratory may
consider implementing appropriate coatings based on budget considerations.

4.2. Budget Analysis

According to the classification of DCS brands, including Siemens systems, Rockwell
systems, Emerson systems, ABB systems, Supcon systems, etc., as well as transmission
systems and software construction, the cost is around 75,445.7 USD. Among them, in-
struments and other systems cost around 6858.7 USD, and office arrangements such as
laboratory smart screens, computer consoles, desks, and chairs cost around 6858.7 USD,
totaling around 89,163.1 USD.
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Table 1. DCS system configuration of mainstream brands.

Brand System Scheme Controller IO Module

Siemens
(in Germany Berlin&Munich) PCS7 S7-410 ET200M

Rockwell
(in U.S Pittsburgh) AB PlantPaX 1756-L71 1794-AENTR

Emerson
(in U.S St. Louis) Delta V MQ Controller Analog/Discrete Card

ABB
(in Swiss Zurich) 800xA AC 800M 810

Supcon
(in China Hangzhou) FCU712-S01 ECS-700 711-S11

5. Application and Effect of Typical Laboratory Design
5.1. Laboratory Layout Design

The laboratory generally requires a space of 50 m2 to 70 m2, and the equipment
layout of the experimental room is shown in Figure 4, which can be adjusted according
to specific circumstances. According to the floor area and height of the equipment, the
layout fully considers the beauty of the layout, and also reserves operation space for various
experimental debugging, taking into account the functional requirement of teaching display.
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(in Germany Berlin&Munich) PCS7 S7-410 ET200M 

Rockwell 
(in U.S Pittsburgh) 

AB PlantPaX 1756-L71 1794-AENTR 

Emerson 
(in U.S St. Louis) 

Delta V MQ Controller Analog/Discrete Card 

ABB 
(in Swiss Zurich) 

800xA AC 800M 810 

Supcon 
(in China Hangzhou) 

FCU712-S01 ECS-700 711-S11 

4.2. Budget Analysis 
According to the classification of DCS brands, including Siemens systems, Rockwell 

systems, Emerson systems, ABB systems, Supcon systems, etc., as well as transmission 
systems and software construction, the cost is around 75,445.7 USD. Among them, instru-
ments and other systems cost around 6858.7 USD, and office arrangements such as labor-
atory smart screens, computer consoles, desks, and chairs cost around 6858.7 USD, total-
ing around 89,163.1 USD. 

5. Application and Effect of Typical Laboratory Design 
5.1. Laboratory Layout Design 

The laboratory generally requires a space of 50 m2 to 70 m2, and the equipment layout 
of the experimental room is shown in Figure 4, which can be adjusted according to specific 
circumstances. According to the floor area and height of the equipment, the layout fully 
considers the beauty of the layout, and also reserves operation space for various experi-
mental debugging, taking into account the functional requirement of teaching display. 

1/A

A

Smart screen Console to be 
selected

Newly built glass 
partition

Control display panel

Open electrical 
cabinet

Distribution cabinetDisplay cabinet  

Figure 4. Laboratory optimization layout.

5.2. Typical Application Scenarios of Mining, Dressing and Metallurgy in the Laboratory

At present, equipment is purchased according to the specific implementation configu-
ration, further following the characteristics and difficulties of the mineral processing and
metallurgical process control industry. In order to design and implement the corresponding
control links of metal mine backfill control system as Figure 5, a large number of fiber optic
communication network facilities are used.
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In depicting the typical scene of the mining and metallurgical process, as illustrated
in Figure 6, the various local sections encompassing the mining, beneficiation, and met-
allurgy production workshops are interconnected with the workshop control station and
central control room via the network bus of the control system. Within the central control
facility, real-time data communication is conducted through diverse and intricate network
communication modes. This enables the collection of real-time production status infor-
mation from all process connections in the mining, dressing, and smelting workshops,
facilitating the issuance of real-time control commands for optimizing production control.
Consequently, it accomplishes real-time monitoring and control of the entire process link.
However, due to the complexities involved in the control communication network of this
workshop process, continuous adjustment of the plan during the design phase proves
essential to accurately determine the network communication during the implementation
phase. Furthermore, during the final stage of installation and debugging, the intricate
communication control network poses significant challenges for on-site engineers, making
it difficult to resolve network communication failures and other issues without extensive
on-site experience. Troubleshooting problems related to network communication configu-
ration, program writing, and operation necessitates skillful problem-solving abilities. To
connect the on-site intelligent equipment with the DCS control system, widely utilized DP
and Modbus communication protocols in the industrial setting are employed to modify the
communication data interface of the complete process electrical equipment. Prior to the
debugging process, active communication with relevant manufacturers is advised to obtain
the necessary communication documents. Communication parameters at the equipment
end, such as communication address, Baud rate, data transmission format, and verification,
are set accordingly. Measures are taken to check for line interference and suitable actions
are implemented to ensure successful communication.
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In the intricate flotation process of metal mines, as depicted in Figure 7, an intri-
cate sequence of multiple process flows and stages unfolds in exquisite harmony [41–43].
Employing concentrate pretreatment and pre-neutralization, coupled with displacement
neutralization, sedimentation flotation, and comprehensive impurity removal, purification
is accomplished. Through flotation, direct leaching slag separates into concentrate and slag,
with the latter being meltable, filterable, and capable of granulation for the production of
alternative industrial mineral products, thereby achieving refined slag treatment. Ensuring
precise control over the addition of diverse feed materials and flotation reagents is pivotal
for the effective implementation of this process. Attaining optimal dosages of collectors
and inhibitors, meticulous regulation of the speed of the electric equipment in the stirring
tank, seamless coordination of flotation process requirements, as well as the meticulous
control of the timing and flow rate at the inlet and outlet of multi-level reactions, becomes
imperative to successfully execute the flotation reaction involving various intricate metals.
Such meticulous execution enables efficient extraction and purification of target metals from
metal minerals, thereby resulting in reagent conservation, reduced energy consumption,
enhanced concentrate yield, and diminished metal content in tailings.
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Hydrometallurgical technology serves as a prominent means for the extraction of most
non-ferrous metals, particularly suitable for their recovery from low-grade sources. This
method boasts high efficiency coupled with low smelting costs. Many hydrometallurgical
processes necessitate meticulous control over high-pressure and high-temperature con-
ditions to achieve selective extraction and leaching of target metals, thereby facilitating
the recovery of valuable metals. Moreover, in line with the requirements of the current
low-carbon economy, reducing material and energy consumption assumes paramount im-
portance. Lowering smelting production costs supports the promotion of environmentally
friendly practices in large-scale metal smelting. Within a metal hydrometallurgical reactor,
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intricate multi-stage controls, such as steam pressure regulation and metal slurry flow rate
adjustment, become essential to ensure that the smelting reaction’s process parameters
align with the requirements of selective leaching. However, the inherent complexity of the
hydrometallurgical process introduces challenges, including multivariable nonlinearity.
Consequently, guaranteeing effective production process control for the metal hydrometal-
lurgical reactor holds immense significance. The LD (Ladder Diagram) program for the
PID self-tuning control algorithm is represented in Figure 8.
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Using the first-order time-delay system transfer function to represent the controlled
object model of the reactor, as shown in:

G(s) =
A2e−LGTIMEs

A1(1 + s)
(1)

Among them, A1 and A2 are intrinsic coefficients, and LGTIME is the delay coefficient.
As shown in Figure 9, the Self-tuning control algorithm can get good control simulation
results but for the strict production quality of non-ferrous products, more accurate, efficient
and stable advanced control algorithm is necessary. In the future, the laboratory will be used
to complete the simulation of advanced control algorithm and actual system commissioning
experiments, to meet the control needs of non-ferrous mining and metallurgy process as
much as possible.
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6. Conclusions

This paper has ushered in a new phase of exploration within the realm of intelligent
automation for metal mining, beneficiation, and metallurgy. The control laboratory has
undertaken an insightful study, delving into the intricacies of cutting-edge network control
system software and hardware. Through this exploration, a pivotal insight has emerged:
the necessity for the laboratory to embrace the diverse landscape of network control system
architectures and hardware configurations from various eminent brands. This strategic shift
not only lays a robust foundation for procurement and utilization within the laboratory but
also heralds an era of cross-brand synergy that fosters innovative convergence.

In the future, the laboratory’s trajectory is one of strategic collaboration and trans-
formative innovation. As the automation landscape continues to evolve, the laboratory
is poised to engage in profound industry-university research endeavors, collaboratively
steering automation engineering experimentation with the nonferrous metal industry and
allied sectors. This collaborative endeavor extends its sphere to tackle monumental chal-
lenges inherent to megaprojects, effectively shaping the future of the sector. An exciting
facet is the proactive involvement of personnel from non-ferrous metal enterprises and
the automation industry in interdisciplinary experimental teaching, curriculum design,
and talent cultivation plans. This multifaceted approach ensures a continuous cycle of
innovation, skill development, and industry-adaptive expertise.

Undoubtedly, the laboratory’s role as a research and engineering technology testing
platform is pivotal. By conducting meticulous laboratory assessments of novel equipment,
network architectures, instruments, and control system software, the laboratory elevates
the standard of stability and reliability before automation engineering projects are set
into motion. Furthermore, its role as a dynamic demo and display platform for the latest
DCS control equipment amplifies its function as a bridge, fostering communication and
cooperation across diverse industries.
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