A Filtering-Based Stochastic Gradient Estimation Method for Multivariate Pseudo-Linear Systems Using the Partial Coupling Concept
Abstract
:1. Introduction
- (1)
- A filter is used to transform the autoregressive moving average noise of multivariate pseudo-linear systems into white noise by applying the data filtering approach. The filtered system is converted into a number of subsystem identification models based upon system the output dimensions according to the coupling identification method.
- (2)
- A filtering-based multivariate gradient algorithm employing the partial coupling concept for multivariate pseudo-linear systems is proposed. Additionally, a conventional multivariate gradient algorithm is derived for comparison. The proposed algorithm has higher identification precision and faster computational efficiency than the conventional algorithm.
2. Problem Description
3. The Filtering-Based Multivariate Partially Coupled Gradient Algorithm
- Let , set the initial values , , , , , , , , 1, ⋯, max[], , and set the data length K.
- Gain k by 1 if , and then skip to Step 2. If not, obtain the parameter estimates , , and and quit.
4. The Multivariate Generalized Extended Stochastic Gradient Algorithm
- Let , set the initial values , , , , , 1, ⋯, max[], , and set the data length K.
- Gain k by 1 if , and then skip to Step 2. If not, acquire the parameter estimate and quit.
5. Convergence Analysis
6. Simulations
- Table 1 and Table 2, Figure 2 and Figure 5 indicate that parameter identification errors of the M-GESG and the F-M-PC-GESG algorithms decrease with increasing data length k. This reveals that the proposed algorithms are valid in parameter identification for the multivariate equation-error autoregressive moving average system.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.Y.; Jiang, W.; Charalambous, T. Machine learning based iterative learning control for non-repetitive time-varying systems. Int. J. Robust Nonlinear Control 2022, 33, 4098–4116. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, Y.; Chen, H.; Zhang, L.; Zhou, Y. Multivariate time-series modeling for forecasting sintering temperature in rotary kilns using DCGNet. IEEE Trans. Ind. Inform. 2021, 17, 4635–4645. [Google Scholar] [CrossRef]
- Terbuch, A.; O’Leary, P.; Khalili-Motlagh-Kasmaei, N.; Auer, P.; Zohrer, A.; Winter, V. Detecting anomalous multivariate time-series via hybrid machine learning. IEEE Trans. Instrum. Meas. 2023, 72, 2503711. [Google Scholar] [CrossRef]
- Niaki, S.T.A.; Davoodi, M. Designing a multivariate-multistage quality control system using artificial neural networks. Int. J. Prod. Res. 2009, 47, 251–271. [Google Scholar] [CrossRef]
- Wen, C.; Xie, Y.; Qiao, Z.; Xu, L.; Qian, Y. A tensor generalized weighted linear predictor for FDA-MIMO radar parameter estimation. IEEE Trans. Veh. Technol. 2022, 71, 6059–6072. [Google Scholar] [CrossRef]
- Olivier, L.E.; Craig, I.K. Model-plant mismatch detection and model update for a run-of-mine ore milling circuit under model predictive control. J. Process Control 2013, 23, 100–107. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, J.; Bai, W. MIMO non-parametric modeling of ship maneuvering motion for marine simulator using adaptive moment estimation locally weighted learning. Ocean. Eng. 2022, 261, 112103. [Google Scholar] [CrossRef]
- Qi, R.; Tao, G.; Jiang, B. Adaptive control of MIMO time-varying systems with indicator function based parametrization. Automatica 2014, 50, 1369–1380. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, L.; Wan, Q. Beamspace joint azimuth, elevation, and delay estimation for large-scale MIMO-OFDM system. IEEE Trans. Instrum. Meas. 2023, 72, 9506412. [Google Scholar] [CrossRef]
- Ibrir, S. Joint state and parameter estimation of non-linearly parameterized discrete-time nonlinear systems. Automatica 2018, 97, 226–233. [Google Scholar] [CrossRef]
- Mari, J.; Stoica, P.; McKelvey, T. Vector ARMA estimation: A reliable subspace approach. IEEE Trans. Signal Process. 2000, 48, 2092–2104. [Google Scholar] [CrossRef]
- Luo, K.; Manikas, A. Superresolution multitarget parameter estimation in MIMO radar. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 3683–3693. [Google Scholar] [CrossRef]
- Zhang, G.D.; Sheng, Y.H.; Shi, Y.X. Uncertain hypothesis testing of multivariate uncertain regression model. J. Intell. Fuzzy Syst. 2022, 43, 7341–7350. [Google Scholar] [CrossRef]
- Oigard, T.A.; Hanssen, A.; Hansen, R.E.; Godtliebsen, F. EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution. Signal Process. 2005, 85, 1655–1673. [Google Scholar] [CrossRef]
- Ding, F.; Liu, X.M.; Chen, H.B.; Yao, G.Y. Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 2014, 97, 31–39. [Google Scholar] [CrossRef]
- Xu, L.; Ding, F. Separable synthesis estimation methods and convergence analysis for multivariable systems. J. Comput. Appl. Math. 2023, 427, 115104. [Google Scholar] [CrossRef]
- Xu, L. Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int. J. Control Autom. Syst. 2022, 20, 432–443. [Google Scholar] [CrossRef]
- Cui, T.; Chen, F.; Ding, F.; Sheng, J. Combined estimation of the parameters and states for a multivariable state-space system in presence of colored noise. Int. J. Adapt. Control Signal Process. 2020, 34, 590–613. [Google Scholar] [CrossRef]
- Zheng, M.; Li, L.; Peng, H.; Xiao, J.; Yang, Y.; Zhao, H. Parameters estimation and synchronization of uncertain coupling recurrent dynamical neural networks with time-varying delays based on adaptive control. Neural Comput. Appl. 2018, 30, 2217–2227. [Google Scholar] [CrossRef]
- Geng, X.; Xie, L. Learning the LMP-load coupling from data: A support vector machine based approach. IEEE Trans. Power Syst. 2017, 32, 1127–1138. [Google Scholar]
- Ding, F.; Liu, G.; Liu, X.P. Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Autom. Control 2010, 55, 1976–1981. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Ding, F. Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 2022, 414, 126663. [Google Scholar] [CrossRef]
- Huang, Y.G.; Cao, L.B.; Zhang, J.; Pan, L.; Liu, Y.Y. Exploring feature coupling and model coupling for image source identification. IEEE Trans. Inf. Forensics Secur. 2018, 13, 3108–3121. [Google Scholar] [CrossRef]
- Wang, X.H.; Ding, F. Partially coupled extended stochastic gradient algorithm for nonlinear multivariable output error moving average systems. Eng. Comput. 2017, 34, 629–647. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L. Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory. Int. J. Adapt. Control Signal Process. 2021, 35, 1898–1915. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, W.; Ding, F.; Alsaedi, A.; Hayat, T. Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities. J. Frankl.-Inst.-Eng. Appl. Math. 2016, 353, 4280–4299. [Google Scholar] [CrossRef]
- Li, M.; Liu, X. The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 2018, 147, 23–34. [Google Scholar] [CrossRef]
- Ji, Y.; Jiang, A. Filtering-based accelerated estimation approach for generalized time-varying systems with disturbances and colored noises. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 206–210. [Google Scholar] [CrossRef]
- Imani, M.; Braga-Neto, U.M. Maximum-likelihood adaptive filter for partially observed boolean dynamical systems. IEEE Trans. Signal Process. 2017, 65, 359–371. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Ji, Y. Gradient parameter estimation of a class of nonlinear systems based on the maximum likelihood principle. Int. J. Control Autom. Syst. 2022, 20, 1393–1404. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Q.M.; Liu, Y.J. Modified Kalman filtering based multi-step length gradient iterative algorithm for ARX models with random missing outputs. Automatica 2020, 118, 109034. [Google Scholar]
- Li, M.H.; Liu, X.M. Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 2021, 35, 2056–2074. [Google Scholar] [CrossRef]
- Ding, F.; Liu, X.M.; Ma, X.Y. Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 2016, 301, 135–143. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, X.M. Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int. J. Control Autom. Syst. 2020, 18, 1581–1592. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhou, Y.W. Machine learning based decision making for time varying systems: Parameter estimation and performance optimization. Knowl.-Based Syst. 2020, 190, 105479. [Google Scholar] [CrossRef]
- Altbawi, S.M.A.; Khalid, S.B.A.; Bin Mokhtar, A.S.; Shareef, H.; Husain, N.; Yahya, A.; Haider, S.A.; Moin, L.; Alsisi, R.H. An improved gradient-based optimization algorithm for solving complex optimization problems. Processes 2023, 11, 498. [Google Scholar] [CrossRef]
- Xu, L. Parameter estimation for nonlinear functions related to system responses. Int. J. Control Autom. Syst. 2023, 21, 1780–1792. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, F. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
- Roman, C.; Ferrante, F.; Prieur, C. Parameter identification of a linear wave equation from experimental boundary data. IEEE Trans. Control Syst. Technol. 2021, 29, 2166–2179. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Q.M.; Hu, M.F.; Guo, L.X.; Narayan, P. Improved gradient descent algorithms for time-delay rational state-space systems: Intelligent search method and momentum method. Nonlinear Dyn. 2020, 101, 361–373. [Google Scholar] [CrossRef]
- Kulikova, M.V. Gradient-based parameter estimation in pairwise linear Gaussian system. IEEE Trans. Autom. Control 2017, 62, 1511–1517. [Google Scholar] [CrossRef]
- Imani, M.; Braga-Neto, U.M. Particle filters for partially-observed Boolean dynamical systems. Automatica 2018, 87, 238–250. [Google Scholar] [CrossRef]
- Ding, F. Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J. Comput. Appl. Math. 2023, 426, 115107. [Google Scholar] [CrossRef]
- Ding, F.; Xu, L.; Zhang, X.; Zhou, Y. Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea. Int. J. Robust Nonlinear Control 2023, 33, 5510–5535. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L. Partially coupled stochastic gradient estimation for multivariate equation-error systems. Mathematics 2022, 10, 2955. [Google Scholar] [CrossRef]
- Ding, F. Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 2013, 7, 68–79. [Google Scholar] [CrossRef]
- Xu, L.; Ding, F.; Zhu, Q. Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements. IEEE Trans. Instrum. Meas. 2022, 71, 6501313. [Google Scholar] [CrossRef]
- Wang, Y.J. Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 2016, 71, 308–313. [Google Scholar] [CrossRef]
- Goodwin, G.C.; Sin, K.S. Adaptive Filtering, Prediction and Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Ding, F. System Identification-Performances Analysis for Identification Methods; Science Press: Beijing, China, 2014. [Google Scholar]
Algorithms | k | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Value |
---|---|---|---|---|---|---|---|---|
M−GESG | 0.24221 | 0.24151 | 0.24223 | 0.23292 | 0.22983 | 0.22863 | 0.24000 | |
0.05203 | 0.02792 | −0.00854 | −0.02886 | −0.04654 | −0.05528 | −0.14000 | ||
−0.61451 | −0.61142 | −0.59979 | −0.61122 | −0.60372 | −0.60521 | −0.60000 | ||
−0.00923 | 0.00479 | 0.00416 | 0.01756 | 0.01947 | 0.02117 | 0.02000 | ||
0.42969 | 0.44032 | 0.44813 | 0.46623 | 0.47098 | 0.47768 | 0.65000 | ||
−0.43009 | −0.43931 | −0.44511 | −0.45792 | −0.45798 | −0.46094 | −0.31000 | ||
−0.05862 | −0.06323 | −0.06660 | −0.06933 | −0.07090 | −0.07281 | −0.12000 | ||
−0.00128 | −0.00411 | −0.00552 | −0.00673 | −0.00676 | −0.00691 | 0.17000 | ||
−0.02181 | −0.02119 | −0.02004 | −0.01749 | −0.01566 | −0.01452 | −0.03000 | ||
0.00430 | 0.00556 | 0.00304 | −0.00250 | −0.00599 | −0.00827 | −0.24000 | ||
42.79473 | 41.60834 | 40.01046 | 38.71188 | 37.83113 | 37.30980 | |||
F−M−PC−GESG | 0.24743 | 0.23989 | 0.24511 | 0.23901 | 0.23664 | 0.23713 | 0.24000 | |
−0.10583 | −0.11597 | −0.12770 | −0.13172 | −0.13459 | −0.13672 | −0.14000 | ||
−0.59934 | −0.58195 | −0.59534 | −0.59614 | −0.59351 | −0.59624 | −0.60000 | ||
0.01463 | 0.02155 | 0.01422 | 0.02609 | 0.02376 | 0.02292 | 0.02000 | ||
0.65312 | 0.66910 | 0.68801 | 0.70132 | 0.71257 | 0.71886 | 0.65000 | ||
−0.34080 | −0.32821 | −0.31140 | −0.29937 | −0.28767 | −0.28125 | −0.31000 | ||
−0.16261 | −0.17089 | −0.15802 | −0.14864 | −0.13486 | −0.13573 | −0.12000 | ||
0.03206 | 0.04136 | 0.04804 | 0.06647 | 0.07554 | 0.07958 | 0.17000 | ||
−0.02175 | −0.01882 | −0.01885 | −0.02282 | −0.02068 | −0.02177 | −0.03000 | ||
−0.14040 | −0.13357 | −0.13861 | −0.15208 | −0.15712 | −0.16094 | −0.24000 | ||
17.67220 | 17.44393 | 16.38489 | 14.48147 | 13.95661 | 13.86945 |
Algorithms | k | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Value |
---|---|---|---|---|---|---|---|---|
M−GESG | 0.09112 | 0.08857 | 0.06625 | 0.08761 | 0.08713 | 0.08118 | 0.08000 | |
−0.10932 | −0.10922 | −0.11672 | −0.11222 | −0.11331 | −0.11291 | −0.09000 | ||
0.10330 | 0.06629 | 0.04765 | 0.03156 | 0.02940 | 0.02798 | 0.02000 | ||
−0.08128 | −0.05999 | −0.05284 | −0.04692 | −0.04326 | −0.04202 | −0.01000 | ||
0.05408 | 0.04776 | 0.03644 | 0.03423 | 0.02818 | 0.02637 | −0.03000 | ||
0.63454 | 0.64477 | 0.66918 | 0.69922 | 0.71524 | 0.73325 | 0.89000 | ||
0.16746 | 0.16823 | 0.16294 | 0.15883 | 0.15732 | 0.15446 | 0.22000 | ||
−0.11067 | −0.10817 | −0.10595 | −0.10446 | −0.10122 | −0.10005 | −0.29000 | ||
−0.07832 | −0.08579 | −0.09696 | −0.10167 | −0.10818 | −0.11186 | 0.04000 | ||
−0.02125 | −0.02080 | −0.02172 | −0.02349 | −0.02480 | −0.02649 | −0.08000 | ||
0.19580 | 0.19361 | 0.19552 | 0.20044 | 0.19851 | 0.19854 | −0.03000 | ||
−0.03530 | −0.03103 | −0.02681 | −0.02341 | −0.02217 | −0.02248 | 0.10000 | ||
−0.19341 | −0.19073 | −0.18208 | −0.17582 | −0.17124 | −0.16896 | −0.05000 | ||
0.30383 | 0.29812 | 0.29649 | 0.29994 | 0.29897 | 0.29897 | 0.12000 | ||
51.69208 | 50.09867 | 48.69494 | 47.52852 | 46.83530 | 46.27683 | |||
F−M−PC−GESG | 0.06055 | 0.08860 | 0.07901 | 0.08999 | 0.08715 | 0.07885 | 0.08000 | |
−0.07339 | −0.08860 | −0.09644 | −0.09032 | −0.09163 | −0.08886 | −0.09000 | ||
0.07020 | 0.02402 | 0.01128 | 0.01168 | 0.01124 | 0.00870 | 0.02000 | ||
−0.00816 | 0.00063 | 0.00035 | 0.00275 | 0.00146 | −0.00635 | −0.01000 | ||
0.00114 | −0.02136 | −0.03064 | −0.03338 | −0.03768 | −0.03383 | −0.03000 | ||
0.99456 | 0.98815 | 0.98077 | 0.98014 | 0.97418 | 0.97488 | 0.89000 | ||
0.16879 | 0.15751 | 0.18199 | 0.19942 | 0.21985 | 0.21906 | 0.22000 | ||
−0.27855 | −0.29182 | −0.30472 | −0.29502 | −0.29439 | −0.29678 | −0.29000 | ||
0.10959 | 0.06096 | 0.05244 | 0.04869 | 0.02627 | 0.02232 | 0.04000 | ||
−0.20205 | −0.19511 | −0.16709 | −0.14945 | −0.13756 | −0.13392 | −0.08000 | ||
0.05176 | 0.05175 | 0.03801 | 0.01758 | 0.01343 | 0.00674 | −0.03000 | ||
0.02924 | 0.06773 | 0.08395 | 0.08658 | 0.09398 | 0.09718 | 0.10000 | ||
0.02688 | 0.04268 | 0.03090 | 0.02807 | 0.01438 | 0.00469 | −0.05000 | ||
0.14854 | 0.13947 | 0.11760 | 0.11307 | 0.10907 | 0.10424 | 0.12000 | ||
23.94783 | 21.27826 | 17.32330 | 15.14836 | 13.24001 | 12.48907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Liu, Y.; Chen, Y. A Filtering-Based Stochastic Gradient Estimation Method for Multivariate Pseudo-Linear Systems Using the Partial Coupling Concept. Processes 2023, 11, 2700. https://doi.org/10.3390/pr11092700
Ma P, Liu Y, Chen Y. A Filtering-Based Stochastic Gradient Estimation Method for Multivariate Pseudo-Linear Systems Using the Partial Coupling Concept. Processes. 2023; 11(9):2700. https://doi.org/10.3390/pr11092700
Chicago/Turabian StyleMa, Ping, Yuan Liu, and Yiyang Chen. 2023. "A Filtering-Based Stochastic Gradient Estimation Method for Multivariate Pseudo-Linear Systems Using the Partial Coupling Concept" Processes 11, no. 9: 2700. https://doi.org/10.3390/pr11092700
APA StyleMa, P., Liu, Y., & Chen, Y. (2023). A Filtering-Based Stochastic Gradient Estimation Method for Multivariate Pseudo-Linear Systems Using the Partial Coupling Concept. Processes, 11(9), 2700. https://doi.org/10.3390/pr11092700