Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method
Abstract
:1. Introduction
2. Methods of Research
3. Results of Research
3.1. Case 1—Meander
3.2. Case 2—Spiral Ø 6 m, 3.75 Coils
3.3. Case 3—Spiral Ø 6 m, 2.75 Coils
3.4. Case 4—Spiral Ø 8 m, 3.75 Coils
3.5. Case 5—Spiral Ø 10 m, 3.75 Coils
4. Discussion
- A pit would be dug in a circular pattern, with a reasonable depth of 2–4.5 m, possibly a little more.
- The collector would be laid while continuously backfilling the already laid pipe.
- Ø 6 m…………….3384–4681.2 EUR + sand + hoses
- Ø 8 m…………….4518–6249.9 EUR + sand + hoses
- Ø 10 m……………5652–7818.6 EUR + sand + hoses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. HPT: ETP 2017 Shows that Heat Pumps Will Be One of the Key Technologies for the Building Sectors in the 2BDS. 2017. Available online: https://heatpumpingtechnologies.org/etp2017-heat-pumps-key-technologies-building-sectors/ (accessed on 14 September 2020).
- IEA. Share of Households Purchasing Heat Pumps for Heating and Hot Water Production in Selected Regions the Sustainable Development Scenario, 2010–2030. 2020. Available online: https://www.iea.org/reports/heat-pumps (accessed on 14 September 2020).
- Bhutta, M.M.A. CFD Applications in Various Heat Exchangers Design: A Review. Appl. Therm. Eng. 2012, 32, 1–12. Available online: https://www.sciencedirect.com/science/article/pii/S1359431111004807 (accessed on 20 February 2020).
- Hepburn, B.D.P.; Sedighi, M.; Thomas, H.R.; Manju. Field-scale monitoring of a horizontal ground source heat system. Geothermics 2016, 61, 86–103. Available online: https://www.sciencedirect.com/science/article/pii/S0375650516000146 (accessed on 24 February 2019). [CrossRef]
- Benazza, A.; Blanco, E.; Aichouba, M.; Río, J.L.; Laouedj, S. Numerical Investigation of Horizontal Ground Coupled Heat Exchanger. Energy Procedia 2011, 6, 29–35. Available online: https://cyberleninka.org/article/n/1221350.pdf (accessed on 24 February 2019). [CrossRef]
- del-Castillo-García, G.; Borinaga-Treviño, R.; Sañudo-Fontaneda, L.A.; Pascual-Muñoz, P. Influence of pervious pavement systems on heat dissipation from a horizontal geothermal system. Eur. J. Environ. Civ. Eng. 2013, 17, 956–967. Available online: https://www.researchgate.net/publication/257222793_Influence_of_Pervious_Pavement_Systems_on_heat_dissipation_from_a_horizontal_geothermal_system (accessed on 24 February 2019). [CrossRef]
- Sanaye, S.; Niroomand, B. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule. Energy Convers. Manag. 2007, 48, 1450–1461. Available online: https://www.sciencedirect.com/science/article/pii/S0196890406003724 (accessed on 24 February 2019). [CrossRef]
- Chong, C.S.A.; Gan, G.; Verhoef, A.; Garcia, R.G.; Vidale, P.L. Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps. Appl. Energy 2013, 104, 603–610. Available online: https://www.sciencedirect.com/science/article/pii/S0306261912008744 (accessed on 23 February 2019). [CrossRef]
- Congedo, P.M.; Colangelo, G.; Starace, G. CFD simulations of horizontal ground heat exchangers: A comparison among different configurations. Appl. Therm. Eng. 2012, 33–34, 24–32. Available online: https://www.sciencedirect.com/science/article/pii/S1359431111004856 (accessed on 24 February 2019). [CrossRef]
- Congedo, P.M.; Colangelo, G.; Starace, G. Horizontal Heat Exchangers for GSHP. Efficiency and Cost Investigation for Three Different Applications. In STARACE. CONGEDO a COLANGELO, Proceedings of the ECOS2005–18th International Conference on Efficiency. Cost. Optimization. Simulation and Environment, Trondheim, Norway, 20–22 June 2005; Tapir Academic Press: Trondheim, Norway, 2005; Available online: https://www.researchgate.net/profile/Gianpiero_Colangelo/publication/257277153_Horizontal_Heat_Exchangers_for_GSHP_Efficiency_and_Cost_Investigation_for_Three_Different_Applications/links/54db5e0d0cf261ce15cffefb.pdf (accessed on 5 April 2019).
- Capozza, A.; Zarrella, A.; De Carli, M. Long-term analysis of two GSHP systems using validated numerical models and proposals to optimize the operating parameters. Energy Build. 2015, 93, 50–64. Available online: https://www.sciencedirect.com/science/article/pii/S0378778815000997 (accessed on 24 February 2019). [CrossRef]
- Wu, Y.; Gan, G.; Verhoef, A.; Vidale, P.L.; Gonzalez, R.G. Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers. Appl. Therm. Eng. 2010, 30, 2574–2583. Available online: https://www.sciencedirect.com/science/article/pii/S1359431110002917 (accessed on 24 February 2019). [CrossRef]
- Go, G.-H.; Lee, S.-R.; Yoon, S.; Kim, M.-J. Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers. Appl. Energy 2016, 162, 330–345. Available online: https://www.sciencedirect.com/science/article/pii/S0306261915013495 (accessed on 24 February 2019). [CrossRef]
- Yoon, S.; Lee, S.R.; Go, G.-H. Evaluation of thermal efficiency in different types of horizontal ground heat exchangers. Energy Build. 2015, 105, 100–105. Available online: https://www.sciencedirect.com/science/article/pii/S0378778815301717 (accessed on 24 February 2019). [CrossRef]
- Kim, M.-J.; Lee, S.-R.; Yoon, S.; Go, G.-H. Thermal performance evaluation and parametric study of a horizontal ground heat exchanger. Geothermics 2016, 60, 134–143. Available online: https://www.sciencedirect.com/science/article/pii/S0375650515001649 (accessed on 24 February 2019). [CrossRef]
- Kudelas, D.; Taušová, M.; Tauš, P.; Gabániová, Ľ.; Koščo, J. Investigation of Operating Parameters and Degradation of Photovoltaic Panels in a Photovoltaic Power Plant. Energies 2019, 12, 3631. [Google Scholar] [CrossRef]
- Cirillo, L.; Greco, A.; Masselli, C. Computational investigation on daily, monthly and seasonal energy performances and economic impact through a detailed 2D FEM model of an earth to air heat exchanger coupled with an air conditioning system in a continental climate zone. Energy Build. 2023, 296, 113365. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, Y.; Shi, L.; Zhou, T.; Huang, Y.; Peng, Y.; Wang, Y.; Tu, J. Parametric optimization of a spiral ground heat exchanger by response surface methodology and multi-objective genetic algorithm. Appl. Therm. Eng. 2023, 221, 119824. [Google Scholar] [CrossRef]
- Adamovský, R.; Neuberge, P.; Kodešová, R. Metodika pro Využití Půdy Jako Nízkoteplotního Zdroje Energie Tepelných Čerpadel: Certifikovaná Metodika; ČZU: Praha, Czech Republic, 2015; 29p. [Google Scholar]
- SOIL PORTAL. Available online: http://www.podnemapy.sk/portal/verejnost/obj_hmotnost/obj_hmotnost.aspx (accessed on 24 October 2020).
- Slovak Hydrometeorological Institute. Soil Temperatures 2008–2017; Measurement Stations of the Slovak Republic: Bratislava, Slovakia, 2019. [Google Scholar]
- SHMU. Bulletin Meteorology and Climatology of Slovakia; Slovak Hydrometeorological Institute: Bratislava, Slovakia, 2018; Volume 24, ISSN 1337-5458. Available online: http://www.shmu.sk/File/ExtraFiles/KMIS/publikacie/BMaK_0518.pdf (accessed on 27 February 2019).
- Füri, B.; (Slovak University of Technology, Bratislava, Slovakia). Personal Communication. 2018.
- Han, C.; Yu, X. Sensitivity analysis of a vertical geothermal heat pump system. Appl. Energy 2016, 170, 18. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0306261916302252 (accessed on 9 April 2020). [CrossRef]
- Wittenberger, G.; Sofranko, M. Formation and protection against incrustation on the geothermal pipe by utilizing of geothermal water in the area of Durkov (Eastern Slovakia). Acta Montan. Slovaca 2015, 20, 10–15. Available online: https://actamont.tuke.sk/pdf/2015/n1/2wittenberger.pdf (accessed on 17 July 2021).
Aim: Modeling of Ground Collectors with Meander Geometry Compared with Geometry of New Designs | |||||
---|---|---|---|---|---|
Step 1 | Create model in Design Modeler ANSYS R19.2 | ||||
Step 2 | Meshing model in ANSYS R19.2 | ||||
Step 3 | Set up FLUENT 19.2 general settings | ||||
Period | September–November | December–February | March–May | ||
Soil | Dry soil—sand | Moist soil—sand | Saturated soil—sand | Dry soil—clay | Wet soil—clay |
Classical geometry | Meander | ||||
New geometry | Spiral 6 m/3.75 | Spiral 6 m/2.75 | Spiral 8 m | Spiral 10 m |
Case | Model of Collector + Ground (Length × Width × Height) | Geometry | Length of Pipe | Area of Collector | Installation Depth | Inner Pipe Diameter |
---|---|---|---|---|---|---|
1 | 20 m × 15 m × 3 m | Meander | 142.5 m | 17.91 m2 | 1.5 m | 0.04 m |
2 | 13 m × 10 m × 4.8 m | Spiral Ø 6 m, 3.75 coils | 102 m | 12.82 m2 | 1–4 m | |
3 | 13 m × 10 m × 4.8 m | Spiral Ø 6 m, 2.75 coils | 67.4 m | 8.47 m2 | 1–4.5 m | |
4 | 20 m × 15 m × 3.8 m | Spiral Ø 8 m, 3.75 coils | 115.24 m | 14.48 m2 | 1–3 m | |
5 | 20 m × 15 m × 3.8 m | Spiral Ø 10 m, 3.75 coils | 133.8 m | 16.81 m2 | 1–3 m |
Wall pipe | Coupled, HDPE | |||
Symmetry ground | Via system coupling | |||
Wall ground top and bottom | Temperature | |||
Scheme | SIMPLE | |||
Model | Viscous—laminar | |||
Spatial discretization | Second order upwind | |||
Governing equations | continuity equation, heat transfer equation, Navier–Stokes equations | |||
Type of elements | 4 node linear tetrahedron | |||
Case | Volume of model (collector/ground) | Number of elements (collector/ground) | ||
1 | 900 m3 | (0.18 m³/899.82 m3) | 5,346,156 | (210,822/5,135,334) |
2 | 624 m3 | (0.11 m3/623.89 m3) | 3,393,966 | (21,913/3,372,053) |
3 | 624 m3 | (0.087 m3/623.91 m3) | 2,765,238 | (45,509/2,719,729) |
4 | 1140 m3 | (0.145 m3/1139.9 m3) | 8,136,882 | (194,189/7,942,693) |
5 | 1140 m3 | (0.173 m3/1139.8 m3) | 5,746,903 | (99,569/5,647,334) |
Case | Orthogonal Quality | Element Size/Behavior | |
---|---|---|---|
Ground | Collector | ||
1 | 4 nodes tetrahedral | Body sizing: 0.3 m/Soft | Face sizing: 0.01885 m/Soft |
2 | 4 nodes tetrahedral | Body sizing: 0.75 m/Soft | Face sizing: 0.0189 m/Soft |
3 | 4 nodes tetrahedral | Body sizing: 0.75 m/Soft | Face sizing: 0.0189 m/Soft |
4 | 4 nodes tetrahedral | Body sizing: 0.3 m/Soft | Body sizing: 0.012 m/Soft |
5 | 4 nodes tetrahedral | Body sizing. 0.3 m/Soft | Body sizing: 0.0178 m/Soft |
Boundary Conditions | Material | |
---|---|---|
Inlet | 0.1 m·s−1, 269 K | - |
Symmetry ground | Via system coupling | type of soil |
Bottom side | 2–5 m of depth Temperature September–November: 286.85 K December–February: 277.55 K March–May: 281.05 K | type of soil |
Topside | Temperature September–November: 284.95 K December–February: 273.45 K March–May: 284.65 K | type of soil |
Place of Measure | 10 cm | 100 cm | ||||||
---|---|---|---|---|---|---|---|---|
March – May | June – August | September – November | December – February | March – May | June – August | September – November | December – February | |
Bratislava | 14 °C | 27.9 °C | 13.1 °C | 0.6 °C | 9 °C | 19.9 °C | 15 °C | 4.9 °C |
Košice | 11.2 °C | 22.6 °C | 12.2 °C | 0.6 °C | Data not available | |||
Michalovce | 12.7 °C | 23.8 °C | 12.6 °C | 0.3 °C | 8.6 °C | 15.3 °C | 14.6 °C | 4.6 °C |
Boľkovce | 11.9 °C | 23.3 °C | 11.6 °C | −0.1 °C | 8.1 °C | 17.3 °C | 13.8 °C | 4.3 °C |
Liesek | 7.7 °C | 19.1 °C | 9.5 °C | 0.2 °C | 5.7 °C | 15.5 °C | 11.4 °C | 3.7 °C |
Average | 11.5 °C | 23.3 °C | 11.8 °C | 0.3 °C | 7.9 °C | 17.0 °C | 13.7 °C | 4.4 °C |
Period | 10 cm Depth | 100 cm Depth | |
---|---|---|---|
March–May | 11.5 °C | 7.9 °C | |
September–November | 11.8 °C | 13.7 °C | |
December–February | 0.3 °C | 4.4 °C | |
Type of Soil | Specific Heat Capacity (J·kg −1·K−1) | Density (kg·m−3) | Coefficient of Thermal Conductivity (W·m−1·K−1) |
Dry soil—sand | 800 | 1600 | 0.7 |
Moist soil—sand | 1100 | 2000 | 1.4 |
Saturated soil—sand | 1350 | 2000 | 2.8 |
Dry soil—clay | 1000 | 1600 | 1 |
Wet soil—clay | 1300 | 2000 | 1.5 |
Collectors’ medium | Water + Ethylene glycol (70:30) |
Inlet temperature | −4 °C |
Density | 1049 kg·m−3 |
Specific heat capacity | 3669 J·kg−1·K−1 |
Coefficient of thermal conductivity | 0.432 W·m−1·K−1 |
Dynamic viscosity | 5.096∙10−3 Pa·s−1 |
Flow velocity | 0.1 m·s−1 |
Outer/inner diameter | 0.044/0.040 m |
Specific heat capacity | 2450 J·kg −1·K−1 |
Density | 950 kg·m−3 |
Coefficient of thermal conductivity | 0.42 W·m−1·K−1 |
Outlet Temperature (K) | |||||
---|---|---|---|---|---|
Daily Trends of Temperature (K) | Meander | Spiral 6 m 3.75 | Spiral 6 m 2.75 | Spiral 8 m | Spiral 10 m |
Dry sand, gravel | |||||
September–October–November (290.4–286.9–282.9) | 272.39 | 271.01 | 271.01 | 271.41 | 272.02 |
December–January–February (279.2–275.9–275.0) | 270.40 | 269.85 | 269.87 | 270.00 | 270.19 |
March–April–May (277.9–281.6–285.4) | 271.8 | 270.71 | 270.63 | 271.09 | 271.49 |
Moist sand | |||||
September–November | 274.88 | 272.59 | 272.58 | 273.24 | 274.28 |
December–February | 271.36 | 270.46 | 270.45 | 270.65 | 271.05 |
March–May | 273.86 | 272.00 | 271.92 | 272.58 | 273.44 |
Saturated sand, gravel | |||||
September–November | 278.36 | 275.10 | 275.05 | 276.17 | 277.54 |
December–February | 272.69 | 271.43 | 271.45 | 271.73 | 272.25 |
March–May | 276.70 | 274.05 | 273.89 | 274.92 | 276.11 |
Dry clay | |||||
September–November | 273.54 | 271.72 | 271.72 | 272.29 | 273.05 |
December–February | 270.84 | 270.12 | 270.14 | 270.29 | 270.58 |
March–May | 272.75 | 271.28 | 271.23 | 271.74 | 272.42 |
Wet clay | |||||
September–November | 275.19 | 272.80 | 272.79 | 273.62 | 274.57 |
December–February | 271.47 | 270.54 | 270.55 | 270.76 | 271.14 |
March–May | 274.10 | 272.16 | 272.09 | 272.78 | 273.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabániová, Ľ.; Kudelas, D. Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method. Processes 2023, 11, 2723. https://doi.org/10.3390/pr11092723
Gabániová Ľ, Kudelas D. Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method. Processes. 2023; 11(9):2723. https://doi.org/10.3390/pr11092723
Chicago/Turabian StyleGabániová, Ľubomíra, and Dušan Kudelas. 2023. "Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method" Processes 11, no. 9: 2723. https://doi.org/10.3390/pr11092723
APA StyleGabániová, Ľ., & Kudelas, D. (2023). Reducing the Environmental and Economic Consequences of Installing an Underground Collector and Increasing User Comfort with a New Geometry and Installation Method. Processes, 11(9), 2723. https://doi.org/10.3390/pr11092723