Monitoring the Ignition of Hay and Straw by Radiant Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples
2.2. Experimental Methods
2.2.1. Methodology for Monitoring the Thermal Degradation of Hay and Straw
2.2.2. Determination of the Minimum Ignition Temperature by Isothermal Heating Using a Hot-Plate according to EN 50281-2-1:1998 [58]
- Glowing, smouldering, or flaming combustion;
- The temperature–time curve recorded by the thermocouple, which is placed at the centre of the sample layer, continuously rises in comparison to the temperature of the isothermally heated plate;
- The temperature measured in the sample layer is 250 °C higher than the temperature of the heated plate.
3. Results and Discussion
Ignition Temperature | Hay | Straw |
---|---|---|
Experimentally determined temperature (°C) | 406.6 ± 5.1 | 385.33 ± 13.2 |
Temperature experimentally determined according to EN 50281-2-1:1998 [58] (°C) | 407 | 380 |
Temperature according to [19] (°C) | 310 | 330 |
Temperature according to [61] (°C) | 230 | 310 |
4. Conclusions
- The minimum ignition temperature of hay according to EN 50281-2-1:1998 [58] is 407 °C;
- During exposure to radiant heat, the critical temperatures of hay and straw were comparable, except for the initial phase, where hay degradation started earlier at a lower temperature and in a shorter time interval compared to straw;
- It is not possible to unequivocally determine which of the mentioned materials poses a greater risk of fire;
- The significant effect of weight and sample type on the minimum ignition temperature of hay and straw, as well as on the time-related development of thermal degradation of the samples, was not confirmed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Čajová, K.N.; Holubčík, M.; Trnka, J.; Čaja, A. Analysis of Ash Melting Temperatures of Agricultural Pellets Detected during Different Conditions. Fire 2023, 6, 88. [Google Scholar] [CrossRef]
- Štulajter, M.; Lieskovský, M.; Messingerová, V. Energy properties of pellets, briquettes and charcoal produced in Slovakia. Acta Fac. For. 2015, 57, 133–144. (In Slovak) [Google Scholar]
- Martiník, L.; Drastichová, V.; Horák, J.; Jankovská, Z.; Krpec, K.; Kubesa, P.; Hopan, F.; Kaličáková, Z. Combustion of waste biomass in small facilities. Chem. Listy 2014, 108, 156–162. (In Czech) [Google Scholar]
- Mullerová, J.; Hloch, S.; Valíček, J. Reducing Emissions from the Incineration of Biomass in the Boiler. Chem. Listy 2010, 104, 9. [Google Scholar]
- Baláš, M.; Lisý, M.; Lisá, H.; Vavříková, P.; Milcháček, P.; Elbl, P. Spalné Teplo a Složení Biopaliv a Bioodpadů. Energie z Biomasy XX. Vysoké Učení Technické, Fakulta Strojního Inženýrství, Lednice, 17–19 September 2019. Available online: https://eu.fme.vutbr.cz/file/Sbornik-EnBio/2019/Sborn%C3%ADk_Enbio_2019.pdf (accessed on 4 August 2023). (In Czech).
- Daňková, D.D.; Hejhálek, J. Tepelné Izolácie—Prehľad, Materiály, Druhy, Spôsoby Použitia. Available online: https://www.istavebnictvo.sk/clanky/tepelne-izolace-prehled-materialy-druhy-zpusoby-po (accessed on 4 December 2009). (In Slovak).
- Tobias, R.; Writer, R. Building with Straw Bales: A Comprehensive Guide. Available online: https://www.buildwithrise.com/stories/how-to-build-a-home-using-straw-bale (accessed on 10 July 2021).
- Cascone, S.; Rapisarda, R.; Cascone, D. Physical Properties of Straw Bales as a Construction. Material: A Review. Sustainability 2019, 11, 3388. [Google Scholar] [CrossRef]
- Giertlová, Z. Rettung von Großvieh bei Brandereignissen landwirtschaftlicher Gebäude in Holzbauweise. TV3: Brandschutztechnische Maßnahmen: Zwischenbericht, Berichtzeitraum 1.4.2021–30.6.2022, Förderkennzeichen 2220HV008C; Final Report; Bearbeitung Präventionsingenieure e.V.: Planegg, Germany, 2023. [Google Scholar]
- Marková, I.; Giertlová, Z.; Hutár, M. Stanovenie teploty vznietenia sena pre účely posudzovania rizík v stredných a malých poľnohospodárskych podnikoch. Krízový Manažment 2022, 21, 50–56. (In Slovak) [Google Scholar] [CrossRef]
- Kováč, M.; Čupka, V.; Kacerovský, O. Výživa a Kŕmenie Hospodárskych Zvierat (Nutrition and Feeding of Farm Animals), 1st ed.; Príroda: Bratislava, Slovakia, 1989; 536p. (In Slovak) [Google Scholar]
- Sraková, E.; Suchý, P.; Herzig, I.; Suchý, P.; Tvrzník, P. Výživa a Dietetika. I. Diel—Všeobecná Výživa (Nutrition and Dietetics. Part I—General Nutrition), 1st ed.; VFU: Brno, Czech Republic, 2008; pp. 75–76. (In Czech) [Google Scholar]
- Zarechny, M.V. Koľko Sena Potrebuje Krava na Rok, Deň a Zimu (How Much Hay Does a Cow Need for a Year, Day and Winter). Available online: https://garden.desigusxpro.com/sk/krs/soderzhani/skolko-sena-na-zimu-nuzhno.html (accessed on 10 July 2023). (In Slovak).
- Gaspercova, S.; Osvaldova, L.M.; Kadlicova, P. Additional thermal insulation materials and their reaction on fire. J. Fire Prot. Saf. Secur. 2017, 44, 51–56. [Google Scholar]
- Osvaldova, L.M.; Janigova, I.; Rychly, J. Non-Isothermal Thermogravimetry of Selected Tropical Woods and Their Degradation under Fire Using Cone Calorimetry. Polymers 2021, 13, 708. [Google Scholar] [CrossRef]
- Marková, I.; Mitrenga, P.; Makovická Osvaldová, L.; Hybská, H. Determination of the ignition temperature of hay for the purposes of fire risk assessment on farms—Slovak case study. BioResources 2022, 17, 6926–6940. [Google Scholar] [CrossRef]
- BORGA. Skladovanie Sena a Slamy Alebo ako Predísť Požiarom. Available online: https://www.montovane-haly-borga.sk/skladovanie-sena-a-slamy-alebo-ako-predist-poziarom (accessed on 30 May 2022). (In Slovak).
- Shipton, P. Effective Bedding Management. Incorporating Results from a Farmer Survey on Bedding Management, Mastitis and On-Farm Bacterial Analysis. Report. Available online: https://www.kingshay.com/wp-content/uploads/BeddingReport-020911-785.pdf (accessed on 9 February 2011).
- Preventing Fires in Baled Hay and Straw. Farm and Ranch Extension in Safety and Health (FReSH) Community of Practice 2012. Available online: http://www.extension.org/pages/66577/preventing-fires-in-baled-hay-and-straw4 (accessed on 15 August 2018).
- 258-2007; Requirements for Fire SAFETY in Storage, Storage and Handling of Solid Combustible Substances. The Ministry of the Interior of the Slovak Republic: Bratislava, Slovakia, 2007.
- Madigan, M.T.; Martinko, J.M.; Parker, J. Brock-Biology of Microorganisms; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Griffin, D.M. Water and microbial stress. In Advances in Microbial Ecology; Alexander, M., Ed.; Plenum Press: New York, NY, USA, 1981; pp. 91–136. [Google Scholar]
- Richard, T.L.; Hamelers, H.V.M.; Veeken, A.; Silva, T. Moisture relationships in composting processes. Compost. Sci. Util. 2002, 10, 286–302. [Google Scholar] [CrossRef]
- Gervais, P.; Marechal, P.A.; Molin, P. Water relations of solid-state fermentation. J. Sci. Ind. Res. 1996, 55, 343–357. [Google Scholar]
- Bowes, P.C. Self-Heating: Evaluating and Controlling the Hazards; Elsevier Science: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Festenstein, G.N.; Lacey, J.; Skinner, F.A.; Jenkins, P.A.; Pepys, J. Self-heating of hay and grain in Dewar flasks and the development of farmer’s lung antigens. J. Gen. Microbiol. 1965, 41, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Rothbaum, H.P. Spontaneous combustion of hay. J. Appl. Chem. 1963, 13, 291–302. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Hayder, G.; Birniwa, A.H.; Taha, A.T.B.; Mnzool, M.; Lawal, I.M. Waste Derived Biocomposite for Simultaneous Biosorption of Organic Matter and Nutrients from Green Straw Biorefinery Effluent in Continuous Mode Activated Sludge Systems. Processes 2022, 10, 2262. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, H.; Xie, S.; Li, G.; Du, Z.; Wang, X.; Luo, Y. Highly Selective Production of Valuable Aromatic Hydrocarbons/Phenols from Forestry and Agricultural Residues Using Ni/ZSM-5 Catalyst. Processes 2022, 10, 1970. [Google Scholar] [CrossRef]
- Brown, P.R.; Henry, S. Impacts of House Mice on Sustainable Fodder Storage in Australia. Agronomy 2022, 12, 254. [Google Scholar] [CrossRef]
- Du, S.; You, S.; Jiang, X.; Li, Y.; Jia, Y. Longitudinal Investigation of the Native Grass Hay from Storage to Market Reveals Mycotoxin-Associated Fungi. Microorganisms 2022, 10, 1154. [Google Scholar] [CrossRef]
- Liu, M.; Sun, L.; Wang, Z.; Ge, G.; Jia, Y.; Du, S. Effects of Alfalfa Hay to Oat Hay Ratios on Chemical Composition, Fermentation Characteristics, and Fungal Communities during Aerobic Exposure of Fermented Total Mixed Ration. Fermentation 2023, 9, 480. [Google Scholar] [CrossRef]
- Boltianskyi, B.; Sklyar, R.; Boltyanska, N.; Boltianska, L.; Dereza, S.; Grigorenko, S.; Syrotyuk, S.; Jakubowski, T. TheProcess of Operation of a Mobile Straw Spreading Unit with a Rotating Finger Body-Experimental Research. Processes 2021, 9, 1144. [Google Scholar] [CrossRef]
- Winans, K.; Whalen, J.K.; Cogliastro, A.; Rivest, D.; Ribaudo, L. Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada. Forests 2014, 5, 1952–1966. [Google Scholar] [CrossRef]
- Cheng, H.; Gong, Y.; Zhao, N.; Zhang, L.; Lv, D.; Ren, D. Simulation and Experimental Validation on the Effect of Twin-Screw Pulping Technology upon Straw Pulping Performance Based on Tavares Mathematical Model. Processes 2022, 10, 2336. [Google Scholar] [CrossRef]
- Rajabnia, H.; Orozovic, O.; Williams, K.C.; Lavrinec, A.; Ilic, D.; Jones, M.G.; Klinzing, G. Optimizing Pressure Prediction Models for Pneumatic Conveying of Biomass: A Comprehensive Approach to Minimize Trial Tests and Enhance Accuracy. Processes 2023, 11, 1698. [Google Scholar] [CrossRef]
- Zhou, A.; Ma, L. Thermogravimetric Analysis on Co-Gasification Characteristics of Sludge and Straw under CO2 Atmosphere. Processes 2023, 11, 1402. [Google Scholar] [CrossRef]
- Li, D.; Zhao, N.; Feng, Y.; Xie, Z. Thermogravimetric Analysis of coal semi-charco-firing with straw in O2/CO2 mixtures. Processes 2021, 9, 1421. [Google Scholar] [CrossRef]
- Hybu Cig Cymru Alternative Bedding Materials for Beef and Sheep Housing Systems in Wales. Project in 2010. Available online: https://meatpromotion.wales/images/resources/HCC_Alternative_Bedding_Materials.pdf (accessed on 30 August 2023).
- Diarra, S.; Lameta, S.; Amosa, F.; Anand, S. Alternative Bedding Materials for Poultry: Availability, Efficacy, and Major Constraints. Front. Vet. Sci. 2021, 8, 669504. [Google Scholar] [CrossRef]
- Nona, K.D.; Lenaerts, B.; Kayacan, E.; Saeys, W. Bulk compression characteristics of straw and hay. Biosyst. Eng. 2014, 118, 194–202. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. The elemental composition of ash from straw and hay in the context of their agricultural utilization. Acta Sci. Polonorum. Agric. 2011, 10, 97–104. [Google Scholar]
- Lisowski, A.; Kostrubiec, M.; Dąbrowska-Salwin, M.; Świętochowski, A. The Characteristics of Shredded Straw and Hay Biomass—Part 1—Whole Mixture. Waste Biomass Valorization 2018, 9, 853–859. [Google Scholar] [CrossRef]
- Glatter, M.; Bochnia, M.; Wensch-Dorendorf, M.; Greef, J.M.; Zeyner, A. Feed Intake Parameters of Horses Fed Soaked or Steamed Hay and Hygienic Quality of Hay Stored following Treatment. Animals 2021, 11, 2729. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, R.; Zhao, D.; Liu, S.; Fu, J.; Zhang, Y.; Dai, N.; Song, D.; Ding, H. Microbial-Mediated Emissions of Green house Gas from Farm Land Soils: A Review. Processes 2022, 10, 2361. [Google Scholar] [CrossRef]
- Smith, M.; Simms, C.L.; Aber, A.J. Case Study: Animal bedding cost and somatic cell count across New England dairy farms: Relationship with bedding material, housing type, herd size, and management system. Prof. Anim. Sci. 2017, 33, 616–626. [Google Scholar] [CrossRef]
- Solan, P.J.; Valdramidis, V.; Androny, C.; Tiwari, B.; O’Donnel, C.; Owens, G.; Scannell, A.G.M.; Curran, T.P. Production of Medicated Bedding Straw: Challenges and Perspectives. In Proceedings of the American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting, Louisville, KY, USA, 7–10 August 2011. [Google Scholar] [CrossRef]
- Ďudák, J. Stavby a Objekty na Uskladnenie Objemových Krmív (Buildings and Objects for Bulk Feed Storage). Available online: http://www.agroparadenstvo.sk/stroje-zber-urody?article=2450 (accessed on 20 January 2022). (In Slovak).
- BDLE Pub. 08-5. Bedding Options for Livestock and Equine. Available online: https://ag.umass.edu/sites/ag.umass.edu/files/fact-sheets/pdf/Bedding%2008-05.pdf (accessed on 5 May 2008).
- Tables of Flammable and Dangerous Substances, 1st ed.; Svaz PO ČSSR: Prague, Czech Republic, 1980. (In Czech)
- Purswell, J.L.; Davis, J.D.; Chesser, G.D.; Lowe, J.W. Evaluation of field-stored switchgrass hay as bedding material for broilers. J. Appl. Poult. Res. 2020, 29, 284–287. [Google Scholar] [CrossRef]
- Kadlicová, P.; Makovická Osvaldová, L.; Gašpercová, S. Ekologické dopady zatepľovacích systémov (Environmental impact of thermal isulation materials). Acta Univ. Matthiae Belii Ser. Environ. Manažérstvo 2016, 18, 2. (In Slovak) [Google Scholar]
- Makovická Osvaldová, L.; Gašpercová, S.; Petho, M. Natural Fiber Thermal Insulation Materials from Fire Prevention Point of View. In Proceedings of the International Symposium on Material, Energy and Environment Engineering, Bratislava, Slovakia, 5 May 2015. [Google Scholar] [CrossRef]
- Statistical Office of the Slovak Republic 2022. STATdat. Štatistika Stavu Hospodárskych Zvierat za Jednotlivé Roky 2011–2020. Available online: http://statdat.statistics.sk/cognosext/cgi-bin/cognos.cgi?b_action=cognosViewer&ui.action=run&ui.object=storeID(%22iF60EC5BD94894A19A9737BA5A8E4F162%22)&ui.name=Stavy%20hospod%c3%a1rskych%20zvierat%20k%2031.12.%20%5bpl2016rs%5d&run.outputFormat=&run.prompt=true&cv.header=false&ui.backURL=%2fcognosext%2fcps4%2fportlets%2fcommon%2fclose.html (accessed on 18 May 2022).
- Marková, I.; Monoši, M. Expressions of climatic change in Slovak Republic. Ann. Univ. Paedagog. Cracoviensis Stud. Nat. 2020, 5, 145–156. [Google Scholar] [CrossRef]
- Val-Aguasca, J.P.; Videgain-Marco, M.; Martín-Ramos, P.; Vidal-Cortés, M.; Boné-Garasa, A.; García-Ramos, F.J. Fire Risks Associated with Combine Harvesters: Analysis of Machinery Critical Points. Agronomy 2019, 9, 877. [Google Scholar] [CrossRef]
- Fire Hazard in Wet Bales. Available online: https://extension.sdstate.edu/fire-hazard-wet-bales (accessed on 18 May 2020).
- EN 50281-2-1; Electrical Apparatus for Use in the Presence of Combustible Dust—Part 2-1: Test Methods—Methods for Determining the Minimum Ignition Temperatures of Dust. BSI: Brussels, Belgium, 1998.
- Balog, K.; Martinka, J.; Chrebet, T.; Hrušovský, I.; Hirle, S. Zápalnosť materiálov a forenzný prístup pri zisťovaní príčin požiarov (Flammability of materials and forensic approach in fire investigation). In Proceedings of the XXIII. International Scientific Conference ExFoS—Expert Forensic Science, Brno, Czech Republic, 2 May 2014; pp. 20–36. (In Slovak). [Google Scholar]
- Hay and Straw Barn Fires a Real Danger. Available online: https://agcrops.osu.edu/newsletter/corn-newsletter/2019-21/hay-and-straw-barn-fires-real-danger (accessed on 19 May 2022).
- Flachbart, J.; Svetlík, J. Waste Materials—Sources of Fire. Fire Risk Management in the Natural Environment; Collection of Scientific Papers; Fire Engineering and Expertise Institute of the Ministry of the Interior of the Slovak Republic: Bratislava, Slovakia, 2018; pp. 101–108. (In Slovak) [Google Scholar]
- Xie, T.; Wei, R.; Wang, Z.; Wang, J. Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry. Process Saf. Environ. Prot. 2020, 134, 121–130. [Google Scholar] [CrossRef]
Solid Flammable Substance | Characteristics | Moisture | Storage [17] |
---|---|---|---|
Dried animal feed (silage) | Mown green grasses | More than 16% and up to 30% | |
Mown green legumes | More than 16% and up to 35% | ||
Hay | Dried stems of grasses or legumes | Up to 16% | Bales, Haystack, Hayloft, Barn, Hay shed |
Straw | Dried stalks of cereal crops | - |
Samples (Fodder) | Hay | Straw |
---|---|---|
Moisture (%) determined gravimetrically | 11 | 10 |
Moisture (%) according to 258/2007 Act No. [20] | 9–10 | 10 |
Sample before the experiment |
Straw | ||||
---|---|---|---|---|
Process Order | Tstraw (°C) | tex (min)/(s) * | Visual Observations during Measurement | Tigniton °C |
1. | 69.1 | 6 (360) | Odour noted | 385.33 ± 13.2 |
2. | 91.4 | 8.5 (525) | Smoking process appeared | |
3. | 142.6 | 11 (825) | Carbonization of the lower stems of the tested sample | |
4. | 145.2 | 16 (975) | Carbonization of the edges of the tested sample, increasing smoke intensity | |
5. | 173.2 | 17.5 (1050) | Ignition and formation of flames | |
1. 2. 3. 4. 5. | ||||
Hay | ||||
Process Order | Thay (°C) | tex (min)/(s) * | Visual Observations during Measurement | Tigniton °C |
1. | 111.3 | 8 (480) | Smoke, thermal degradation | 406.6 ± 5.1 |
2. | 160.8 | 13.5 (810) | Carbonization of the layer on the surface of the hot-plate | |
3. | 185.4 | 16.75 (1005) | Carbonization of the edges of the samples and gradual degradation of the entire surface, smouldering process observed | |
4. | 192.6 | 18 (1080) | Ignition occurs | |
1. 2. 3. |
Samples | Hay | Straw | ||||
---|---|---|---|---|---|---|
Monitored Parameters * | Thot (°C) | Thay (°C) | tex (s) | Thot (°C) | Tstraw (°C) | tex (s) |
1. Process: Odour | - | 62.1 ± 5.1 | - | 110–160 | 68.9 ± 1.1 | 305 ± 43.0 |
2. Process: Smoke | 220–280 | 105.9 ± 5.2 | 505 ± 69.9 | 160–200 | 97.5 ± 5.8 | 454 ± 61.5 |
3. Process: Carbonization of the bottom layer of the sample | 340–360 | 150.2 ± 7.6 | 765 ± 44.1 | 360–400 | 169.4 ± 19.27 | 800 ± 18.7 |
4. Process: Carbonization of the edges of the sample | 400–430 | 175.6 ± 6.9 | 905 ± 50.1 | 400–410 | 179.4 ± 27.5 | 815 ± 30.8 |
5. Process: Ignition and burning | 430–450 | 183.8 ± 9.2 | 1050 ± 24.5 | 410–430 | 189.9 ± 25.6 | 960 ± 63.6 |
Ignition temperature | 406.6 ± 5.1 | 385.33 ± 13.2 | ||||
Ignition temperature according to EN 50281-2-1:1998 [58]. | 407 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markova, I.; Giertlova, Z.; Jadudova, J.; Turekova, I. Monitoring the Ignition of Hay and Straw by Radiant Heat. Processes 2023, 11, 2741. https://doi.org/10.3390/pr11092741
Markova I, Giertlova Z, Jadudova J, Turekova I. Monitoring the Ignition of Hay and Straw by Radiant Heat. Processes. 2023; 11(9):2741. https://doi.org/10.3390/pr11092741
Chicago/Turabian StyleMarkova, Iveta, Zuzana Giertlova, Jana Jadudova, and Ivana Turekova. 2023. "Monitoring the Ignition of Hay and Straw by Radiant Heat" Processes 11, no. 9: 2741. https://doi.org/10.3390/pr11092741
APA StyleMarkova, I., Giertlova, Z., Jadudova, J., & Turekova, I. (2023). Monitoring the Ignition of Hay and Straw by Radiant Heat. Processes, 11(9), 2741. https://doi.org/10.3390/pr11092741