Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics
Abstract
:1. Introduction
2. Theory
2.1. Decarburization and Cobalt Etching in HFCVD Diamond Coating
2.2. The Effect of Substrate to Filament Distance in HFCVD Coating Process
2.3. ZrO2 Cutting Mechanism
3. Experimental Setup
4. Result and Discussion
4.1. The Effects of Distance between Substrate and Filament on Grain Size and Coating Thickness of HFCVD Coated Milling Tools
4.2. The Effects of Distance between Substrate and Filament on the Purity of sp3 Carbon of Diamond-Coated Milling Tools
4.3. The Effects of Distance between Substrate and Filament on Tool Wear
4.4. Influence of Distance between Substrate and Filament on Surface Quality
5. Conclusions
- Shorter substrate-to-filament distances lead to a smaller grain size and a thinner coating thickness due to excessively high temperatures and secondary nucleation.
- Shorter substrate to filament distances lead to a lower diamond purity of the coating.
- Tools with coating produced under a shorter substrate-to-filament distance are less prone towards tool breakage.
- An appropriately thin coating and fine grain size from a shorter substrate-to-filament distance produces a better machined surface with far less micro-voids and cavities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Chattopadhyay, A.B.; Virkar, A.; Paul, A. Development and performance of zirconia-toughened alumina ceramic tools. Wear 1992, 156, 365–383. [Google Scholar] [CrossRef]
- Pantea, M.; Antoniac, I.; Trante, O.; Ciocoiu, R.; Fischer, C.A.; Traistaru, T. Correlations between connector geometry and strength of zirconia-based fixed partial dentures. Mater. Chem. Phys. 2019, 222, 96–109. [Google Scholar] [CrossRef]
- Chen, H.; Ding, C.X. Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surf. Coat. Technol. 2002, 150, 31–36. [Google Scholar] [CrossRef]
- Pfefferkorn, F.E.; Shin, Y.C.; Tian, Y.; Incropera, F.P. Laser-assisted machining of magnesia-partially-stabilized zirconia. J. Manuf. Sci. Eng. 2004, 126, 42–51. [Google Scholar] [CrossRef]
- Yin, L.; Jahanmir, S.; Ives, L.K. Abrasive machining of porcelain and zirconia with a dental handpiece. Wear 2003, 255, 975–989. [Google Scholar] [CrossRef]
- Hocheng, H.; Kuo, K.L.; Lin, J.T. Machinability of Zirconia Ceramics in Ultrasonic Drilling. Mater. Manuf. Process. 1999, 14, 713–724. [Google Scholar] [CrossRef]
- Juri, A.Z.; Zhang, Y.; Kotousov, A.; Yin, L. Zirconia responses to edge chipping damage induced in conventional and ultrasonic vibration-assisted diamond machining. J. Mater. Res. Technol. 2021, 13, 573–589. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef]
- Tsugawa, K.; Ishihara, M.; Kim, J.; Hasegawa, M.; Koga, Y. Large-Area and Low-Temperature Nanodiamond Coating by Microwave Plasma Chemical Vapor Deposition. 2006. Available online: https://www.researchgate.net/publication/236737100 (accessed on 30 May 2023).
- Shen, B.; Sun, F. Effect of surface morphology on the frictional behaviour of hot filament chemical vapour deposition diamond films. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 1049–1058. [Google Scholar] [CrossRef]
- Polini, R.; Mantini, F.P.; Braic, M.; Amar, M.; Ahmed, W.; Taylor, H. Effects of Ti- and Zr-based interlayer coatings on the hot filament chemical vapour deposition of diamond on high speed steel. Thin Solid Films 2006, 494, 116–122. [Google Scholar] [CrossRef]
- Zhu, W.; Mccune, R.C.; Devries, J.E.; Tamor, M.A.; Ng, K.Y.S. Characterization of diamond films on binderless W-Mo composite carbide. Diam. Relat. Mater. 1994, 3, 1270–1276. [Google Scholar] [CrossRef]
- Ehrhardt, H. New developments in the field of superhard coatings. Surf. Coat. Technol. 1995, 74, 29–35. [Google Scholar] [CrossRef]
- Liu, H.; Dandy, D.S. Studies on nucleation process in diamond CVD: An overview of recent developments. Diam. Relat. Mater. 1995, 4, 1173–1188. [Google Scholar] [CrossRef]
- Michler, J.; Stiegler, J.; von Kaenel, Y.; Moeckli, P.; Dorsch, W.; Stenkamp, D.; Blank, E. Microstructure evolution and non-diamond carbon incorporation in CVD diamond thin films grown at low substrate temperatures. J. Cryst. Growth 1997, 172, 404–415. [Google Scholar] [CrossRef]
- Rozbicki, R.T.; Sarin, V.K. Nucleation and growth of combustion flame deposited diamond on silicon nitride. Int. J. Refract. Met. Hard Mater. 1998, 16, 377–388. [Google Scholar] [CrossRef]
- Geng, D.; Zhang, D.; Xu, Y.; He, F.; Liu, F. Comparison of drill wear mechanism between rotary ultrasonic elliptical machining and conventional drilling of CFRP. J. Reinf. Plast. Compos. 2014, 33, 797–809. [Google Scholar] [CrossRef]
- Xu, S.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. Int. J. Mach. Tools Manuf. 2014, 86, 12–17. [Google Scholar] [CrossRef]
- Singh, R.P.; Singhal, S. Investigation of machining characteristics in rotary ultrasonic machining of alumina ceramic. Mater. Manuf. Process. 2017, 32, 309–326. [Google Scholar] [CrossRef]
- Wojciechowski, S.; Mrozek, K. Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int. J. Mech. Sci. 2017, 134, 424–435. [Google Scholar] [CrossRef]
- Kizaki, T.; Harada, K.; Mitsuishi, M. Efficient and precise cutting of zirconia ceramics using heated cutting tool. CIRP Ann. Manuf. Technol. 2014, 63, 105–108. [Google Scholar] [CrossRef]
- Dong, X.; Zheng, L.; Wei, W.; Sun, X.; Liu, Z.; Sun, Y.; He, Z. Drilling force characteristics and casing drill wear analysis of GFRP low frequency axial vibration hole making. Diam. Abras. Eng. 2023, 43, 82–89. [Google Scholar] [CrossRef]
- Peng, F.; Lei, D.; Wang, W. Diamond grinding quality analysis based on control grinding depth. Diam. Abras. Eng. 2023, 43, 118–125. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, N.; Su, H.; Ding, W. Research on abrasive wear of CBN Hinge honing Tool based on Single Abrasive Cutting. Diam. Abras. Eng. 2022, 42, 728–737. [Google Scholar] [CrossRef]
- Neves, D.; Diniz, A.E.; Lima, M.S.F. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating. Appl. Surf. Sci. 2013, 282, 680–688. [Google Scholar] [CrossRef]
- Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S.O.; Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006, 128, 11635–11642. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Singh, R.N. A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 2007, 52, 29–64. [Google Scholar] [CrossRef]
- Bian, R.; He, N.; Ding, W.; Liu, S. A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics. Int. J. Adv. Manuf. Technol. 2017, 92, 2197–2206. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.; Zhang, J. Cutting performance of microcrystalline, nanocrystalline and dual-layer composite diamond coated tools in drilling carbon fiber reinforced plastics. Appl. Sci. 2018, 8, 1642. [Google Scholar] [CrossRef]
- Yuan, Z.; Guo, Y.; Li, C.; Liu, L.; Yang, B.; Song, H.; Zhai, Z.; Lu, Z.; Li, H.; Jiang, X.; et al. New multilayered diamond/β-SiC composite architectures for high-performance hard coating. Mater. Des. 2020, 186, 108207. [Google Scholar] [CrossRef]
- Carroll, L.J.; Cabet, C.; Carroll, M.C.; Wright, R.N. The development of microstructural damage during high temperature creep-fatigue of a nickel alloy. Int. J. Fatigue 2013, 47, 115–125. [Google Scholar] [CrossRef]
Deposition Set | Cobalt Etching Time (min) | Seeding (min) | CH4 Flow (sccm) | H2 Flow (sccm) | Substrate Distance from Filament (mm) | Chamber Pressure (mbar) | Power (kW) |
---|---|---|---|---|---|---|---|
A | 6 | 20 | 2000 | 30 | 10 | 10 | 4 |
B | 6 | 20 | 2000 | 30 | 30 | 10 | 4 |
Sample | Spindle Speed (kprm) | Feed Rate (mm/min) | Cutting Time (min) | Depth of Cut (mm) |
---|---|---|---|---|
1 | 22 | 100 | 200 | 0.6 |
2 | 22 | 100 | 400 | 0.6 |
3 | 22 | 100 | 800 | 0.6 |
4 | 22 | 200 | 200 | 0.6 |
5 | 22 | 200 | 400 | 0.6 |
6 | 22 | 200 | 800 | 0.6 |
Assignment | Area of Integration |
---|---|
Disordered sp3 carbon | 117,832 |
C-N vibrations | 94,698 |
Diamond | 164,886 |
Disordered graphite | 427,524 |
Distorted sp3 carbon | 253,574 |
Graphite | 197,225 |
Sp3/sp2 | 64.3809 |
Sp3 purity | 0.9847 |
Assignment | Area of Integration |
---|---|
Disordered sp3 carbon | 523,629 |
C-N vibrations | 738,764 |
Diamond | 801,438 |
Distorted sp3 carbon | 1,203,299 |
Graphite | 750,086 |
Sp3/sp2 | 252.8075 |
Sp3 purity | 0.9961 |
Sample | Surface Roughness (nm) | |
---|---|---|
Set A | Set B | |
1 | 470.667 | 620.667 |
2 | 405.667 | 949.333 |
3 | 478.333 | 235.333 |
4 | 395.333 | 618.667 |
5 | 159.667 | 487.666 |
6 | 423.667 | 360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.L.; Yip, W.S.; Sun, Z.; Zhang, B.; To, S. Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics. Processes 2023, 11, 2773. https://doi.org/10.3390/pr11092773
Fan LL, Yip WS, Sun Z, Zhang B, To S. Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics. Processes. 2023; 11(9):2773. https://doi.org/10.3390/pr11092773
Chicago/Turabian StyleFan, Louis Luo, Wai Sze Yip, Zhanwan Sun, Baolong Zhang, and Suet To. 2023. "Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics" Processes 11, no. 9: 2773. https://doi.org/10.3390/pr11092773
APA StyleFan, L. L., Yip, W. S., Sun, Z., Zhang, B., & To, S. (2023). Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics. Processes, 11(9), 2773. https://doi.org/10.3390/pr11092773