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Abstract: The quality of borehole sealing is a key factor affecting the efficiency of gas production. A
new water-rich grouting material (RW) with composite coagulant and other additives was prepared in
this study to overcome the disadvantages of long setting time and low stone rate of traditional cement
materials. When the coagulants A is 4 g and coagulants B is 2 g, the setting time of RW material was
reduced by 60.85% and 50.62%, which significantly shortened the setting time of the RW material,
respectively. Based on the orthogonal method, 29 groups of comparative experiments were designed
to investigate the interaction mechanism between different additives on the performance index of
RW, including setting time, water secretion rate, and compressive strength. Quadratic regression
equations were fitted using the response surface method. All the correlation coefficients R2 of each
response model were greater than 0.97, R2 and R2

adj were less than 0.2 through variance analysis,
indicating a high correlation between the actual and prediction results. The water–cement ratio had
the most significant effect among all factors on setting time, water secretion rate, and compressive
strength of the RW material. The scanning electron microscope (SEM) was used to compared the
micromorphological characteristics of RW and conventional Portland cement material (PC). The
results showed that the hydration products of RW were mostly smack ettringite, calcium silicate
hydrate gel, and calcium hydroxide, which interweaved with each other to form a network structure
that was denser than the PC material. Furthermore, the interface bonding degree between RW and
injected coal was tighter than that of PC, without obvious cracks at the slurry–coal interface. The
results indicate that the addition of composite coagulant can significantly accelerate the hydration
process of RW material and also enhance the interface strength of injected coal, which is conducive to
improving the grouting quality and sealing effect of the extraction borehole.

Keywords: gas extraction; water-rich grouting materials; orthogonal experiment methodology;
response surface methodology; scanning electron microscope

1. Introduction

Coalbed methane (CBM), a type of unconventional natural gas co-born with coal, has
significant reserves in China and can reach up to 36.81 × 1012 m3 at a shallow depth of
2000 m, with recoverable resources of 10.87 × 1012 m3 (about 30%) and a large potential for
development [1–3]. CBM is an efficient and clean energy source that brings considerable
economic benefits, which is of great importance in alleviating the constricted natural gas
supply [4]. However, the continuous development of deep CBM, the characteristics of high
stress, and gas pressure are more likely to cause coal and gas outburst disasters. Wang
et al. [5] developed a system for the in situ monitoring of spontaneous combustion gas
emissions from fissure channels by considering spontaneous combustion gas, meteorologi-
cal factors, and the thermal physical characteristics of fissures, and providing support for
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taking corresponding fire extinguishing measures for the degree of coal fire re-ignition in
coal fire areas. Bosikov et al. [6] developed a new modeling method for mine ventilation
networks to reduce the cost of eliminating mine fires, in order to improve the reliability
of mine gas mode control.Silva et al. [7] introduced the main technical differences of ICs
in order to provide a type of guideline on the use of these reactive fire protections. This
condition seriously limits the safe and efficient production of coal mines [8]. How to
efficiently extract and utilize CBM is currently an urgent problem.

Pre-extraction through boreholes is a prominent technique for achieving efficient gas
extraction form coal seams [9]. The deep coal seams in China are characterized by high
geostress, high gas content, high gas stress, and low permeability, thus leading to a difficult
extraction process, including borehole collapse, inadequate sealing of borehole plugging,
and other phenomena [10,11]. Therefore, the selection of suitable grouting plugging ma-
terials is one of the key factors to improving gas extraction [12,13]. In this regard, related
scholars have achieved many results in their research on the mechanism of grouting plug-
ging. Wang et al. [14] studied the influence of sealing support force on the air leakage rate
of boreholes, proposed the principle of active support grouting sealing, and analyzed the
factors that affect the air leakage rate. Zhang et al. [15] systematically investigated the
evolution law of permeability by establishing a two-media coupling model considering
matrix shrinkage and effective stress. They found that the gas concentration increases with
the increase in the seal length and pore diameter, and decreases with the increase in the
negative pressure of pumping and coal permeability. Wang et al. [16] discussed the effects
of extraction time, seal length, and air leakage rate on gas concentration by constructing
a fluid–solid coupling model. Si et al. [17] developed a self-healing sealing material to
reduce the impact of regenerated fractures on gas extraction efficiency, which can achieve
self-healing of fractures. Xia et al. [18] systematically explored the effects of different seal
lengths, leakage rates, and leakage crack widths on the concentration of gas discharged
from the cracks by establishing a coupled model of coal seam deformation, coal seam gas
flow and transport, and air flow in the coal seam. For cement additives, Chen et al. [19]
synthesized a reactive halogen-free organic grouting reinforcement material with excellent
thermal stability to address the problem of high halogen content in ordinary polyurethane
grouting reinforcement materials, which causes catalyst poisoning and deactivation in coal
chemical enterprises. Sun et al. [20] developed a new cement grouting materials and used
scanning electron microscopy (SEM) to observe the product morphology under different
sodium hydroxide dosages. Zhao et al. [21] analyzed the role of aluminate cement in the
curing and expansion mechanism of the material by testing different aluminate cement
dosages. Liu et al. [22] introduced 2-Acrylamido-2-methylpropanesulfonic acid combined
with triethanolamine as an organic early strengthening component. They investigated the
preparation and performance of the early strengthening agent through orthogonal tests and
thermogravimetric analysis, X-ray diffraction analysis, and SEM. Qian et al. [23] conducted
experiments on the water absorption performance of water absorbing resins in different
slurry environments. They verified that using water-absorbing resins as the stopping grout-
ing of boreholes grouting can significantly reduce the compressive strength of the cement
in contact with it, and the influence range is about 100 mm. Guan et al. [24] developed
an inorganic and organic composite grouting reinforcement material for deep soft rock
based on prominent issues such as large deformation, crack closure, and permeability of
surrounding rock in soft rock tunnels with a depth of one kilometer. The material exhibits
“high early strength, high injectability, and high adhesion”.

For sealing the borehole using grouting, improving the performance of grouting mate-
rials is the key to improving the effectiveness of sealing. On the basis of previous research,
this work formulates a water-rich grouting material (RW) with composite coagulants, ana-
lyzes the changes of setting time, water secretion rate, and compressive strength of RW by
using the response surface method (RSM), and observes the microscopic microstructure
characteristics of RW and Portland cement (PC). The microstructure of RW and injected
coal is studied by using SEM, and the hydration process of slurry and hydration prod-
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ucts is analyzed, thus providing a theoretical basis for improving the quality of grouting
and sealing.

2. Materials Preparation and Test Methods
2.1. Raw Materials

RW is prepared by using ordinary PC as the base material, with compound component
coagulant and a few additives. Its water–cement ratio can reach 1.0. The main mineral
components of the base material are tricalcium silicate (C3S), dicalcium silicate (C2S),
tricalcium chlorate (C3A), tetracalcium aluminoferrite (C4AF), and some free calcium oxide
and magnesite. The mineral composition of coagulant A is mainly calcium sulfoaluminate
(C4A3S), C2S, and so on. The main component of coagulant B is carbonate, and the main
component of coagulant C is a complex of sulphate and calcium formate. The main
component of the suspension is montmorillonite.

To understand the composition of hydration products in the preparation engineering
of RW and PC materials, two sets of RW and PC materials were prepared. The phase
differences between the two materials were compared through X-ray diffraction, in order
to provide theoretical support for slurry improvement. The physical phase analysis of the
mineral composition of RW and PC materials is shown in Figure 1. A certain amount of
C3S, C2S, C3A, C4AF, and C4A3S’ are present in the mineral composition of cement. C3S
can hydrate with C2S to form C-S-H gels, C3A will hydrate with C4AF to form CH gels, and
C4A3S’ hydration can react rapidly with gypsum to form smack ettringite (AFt) in the early
stages of hydration. The hydration of the mineral components to form calcium aluminate
crystals of different amounts and morphology will result in different grout properties,
which will affect the grouting and sealing performance.
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Figure 1. Physical composition analysis of basic materials.

2.2. Test Program

In the process of preparing grouting materials, a group of RW materials without
the addition of coagulants was preferentially prepared and its slurry setting time was
measured, which was found to be approximately 567 min, and the phenomenon of water
secretion occurred. Therefore, a comparative experiment was carried out with the addition
of three different coagulants to investigate the effect of the type and dosage of coagulants
on the RW materials.



Processes 2023, 11, 2789 4 of 14

2.3. Test Methods

(1) Test for setting time

The time taken from the completion of the slurry preparation to the setting is known
as the setting time. The slurry setting time was based on GB1346-89 “Test methods for
water requirement of normal consistency, setting time and soundness of Portland cement”,
which was applied using the ISO standard method of the Vickers apparatus [25].

(2) Test for water secretion rate

The water secretion rate was tested by first weighing the sample cylinder. Then, the
mixed slurry was loaded into the sample cylinder and smoothed at the opening [26]. The
outer surface and mouth of the specimen cylinder were wiped clean, and the total weight
of the stirred slurry and the specimen cylinder were weighed. Afterward, the timer was
started. Finally, the remaining weight of the slurry and sample cylinder was weighed at
the end of water secretion. The rate of water secretion was calculated using Formula (1),
and the water secretion rate is accurate to 0.01% [27].

c =
a − b

a
× 100% (1)

where a is the full cylinder mass, g; b is the residual mass, g; and c is the water secretion
rate, %.

(3) Test for compressive strength

The uniaxial compression test was conducted on the prepared standard specimens
under standard preservation conditions using the RMT-150 rock mechanics test system
manufactured by the Wuhan Institute of Geotechnics, Chinese Academy of Sciences [28,29].
The experimental equipment and procedure are shown in Figure 2. The maximum horizon-
tal load of the test system was up to 500 kN, the maximum axial load was up to 1000 kN,
the maximum peripheral pressure was 50 MPa, the maximum axial travel was 50 mm, the
displacement was 5 mm, and the transverse displacement was 2.5 mm. This test adopts the
displacement loading method, and the loading rate was 0.12 mm/min. We mixed cement,
admixtures, and water in a water–cement ratio of 0.8(A), 1.0(B), and 1.2(C) to produce three
sets of slurry. Once the mixture was uniformly mixed, we poured it into a mold with a
diameter of 61.8 mm and a height of 20 mm. We smoothed the surface and allowed it to
cure at room temperature for 24 h before removing it from the mold. Afterward, we cured
it in a standard curing room for 28 days to test its compressive strength. The process is
outlined in Figure 2.
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Figure 2. Flow chart of compressive strength experiment.

The compressive strength test results are shown in Figure 3, where A experiences
shear failure. When the cylindrical specimen is subjected to pressure, shear failure may
occur at the center of the specimen. This type of failure is more common when the material
has high shear strength. B undergoes crush. When the pressure on the sample exceeds its
compressive capacity, the sample may experience crush, which is more common when the
compressive strength of the material is low. C exhibits delamination failure, and the surface
of the sample exhibits layered delamination or cracks.
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3. Response Surface Methodology Analysis
3.1. Selection of Coagulants

The setting time of the RW material chosen for the experiment is 567 min. The long
condensation time and the phenomenon of water secretion will lead to the formation of air
leakage channels in the boreholes, which will cause the boreholes to not be sealed tightly
and affect the overall pumping effect of the mine. Three kinds of coagulants were selected
to study the effect of different kinds of coagulant and dosage on the setting time of the
RW material. The experimental program is shown in Table 1. The experimental results are
shown in Figure 4.

Table 1. Design of different kinds of coagulants dosage programs.

Coagulants Kinds Dosage/g

Coagulant A 2 4 6
Coagulant B 1 2 3
Coagulant C 2 4 6
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Figure 4. Effect of type and dosage of coagulants on setting time of RW materials.

The experimental results show that the setting time of the RW material is 567 min
without adding coagulants. From Figure 4a, the dosage of coagulant A is 2 g, and the setting
time of the RW material is 400 min, which is 29.45% shorter than that without coagulants.
In addition, the setting time of RW materials are shortened by 60.85% and 48.85% at the
dosage of coagulant A are 4 g and 6 g, respectively, indicating that when 4 g of coagulant A
is added, the setting time of the RW material achieves the maximum reduction.

In accordance with Figure 4b, the dosage of coagulant B is 1 g, the setting time of the
RW material is reduced by 38.27% compared with that without coagulants. However, the
setting time of the RW material is decreased by 50.62% when the dosage of coagulant B is
2 g. When the dosage of coagulant B is 3 g, the setting time of the RW material is reduced
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by 57.67%. This shows that when the dosage of coagulant B is 3 g, the setting time of the
RW material achieves maximum reduction.

As demonstrated in Figure 4c, when the dosage of coagulant C is 2 g, the setting time
is shortened by 15.34%. The setting times of the RW materials are shortened by 25.93%
and 33.86% when the dosage of coagulant C are 4 g and 6 g, respectively. Therefore, the
shortening of the setting time of RW material is greatest when the dosage of coagulant C is
6 g.

As can be seen from Figure 4, the addition of coagulants is able to reduce the setting
time of the RW material. Coagulants A and B show strong hydration promoting ability,
which can greatly shorten the coagulation time of the RW material. Therefore, the combina-
tion of coagulants A and B, supplemented with a suspending agent, was selected for the
study of accelerated coagulation modification of the RW material.

3.2. Experimental Response Surface Study
3.2.1. Experimental Design and Results

RSM is a design methodology for establishing the accuracy of mathematical modeling
to achieve optimum performance and economy [30,31]. This method is used to investigate
the relationship between water–cement ratio (X1), coagulant A (X2), coagulant B (X3), and
suspending agent dosage (X4) interactions with the response targets of setting time (Y1),
water secretion rate (Y2), and compressive strength (Y3). The response model of the surfaces
was designed using Design-Expert software. Central composite response surface analysis
was applied to implement the program design, and a total of 29 groups were designed. The
design of test factors and levels is shown in Table 2, and the detailed mix ratios and test
results are shown in Table 3.

Table 2. Coding levels of factors in the text design.

Factors Variables
Level

−1 0 1

Water–cement ratio X1 0.8 1.0 1.2
Coagulant A X2 2 4 6
Coagulant B X3 1 2 3

Suspending agent X4 5 10 15

Table 3. Detailed mix ratio and test results of RW.

Group
Level Results

X1 X2 X3 X4 Y1/min Y2/% Y3/MPa

1 0 0 0 0 360 0.98 6.52
2 0 1 1 0 408 1.03 7.95
3 0 0 0 0 304 1.02 7.74
4 1 0 0 −1 240 0.61 11.41
5 0 1 0 1 300 1.06 8.56
6 1 1 0 0 276 0.89 7.3
7 −1 0 0 −1 516 2.35 5.45
8 −1 1 0 0 400 1.08 6.52
9 0 0 −1 −1 304 1.02 7.74

10 0 −1 1 0 272 0.93 8.37
11 1 0 −1 0 304 1.02 7.74
12 0 −1 0 −1 492 1.96 5.1
13 0 0 1 1 296 0.96 8.55
14 0 0 1 −1 480 1.77 5.91
15 0 0 0 0 240 0.61 11.41
16 1 −1 0 0 208 0.55 11.82
17 0 1 −1 0 420 1.13 7.92
18 −1 0 1 0 296 0.95 6.11
19 1 0 1 0 516 2.35 5.45
20 1 0 0 1 400 1.08 6.52
21 0 0 0 0 276 0.89 7.3
22 0 0 −1 1 280 0.99 7.25
23 0 0 0 0 304 1.02 7.74
24 0 1 0 −1 500 1.83 4.47
25 −1 0 0 1 404 1.07 8.96
26 −1 0 −1 0 176 0.44 11.15
27 0 −1 0 1 472 1.42 4.89
28 −1 −1 0 0 484 1.65 5.1
29 0 −1 −1 0 304 1.02 7.74
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3.2.2. Analysis of Regression Model

The data in Table 3 were used to fit a polynomial model that represents Y1, Y2, and
Y3 as a function of X1, X2, X3, and X4. On the basis of the results of RSM, the response
equation can be expressed as:

Y1 = 304 + 130.67X1 − 26.33X2 − 58.33X3 − 6.67X4 + 8X1X2 + 11X1X3 + X1X4+
9X2X4 + 2X3X4 + 34.17X2

1 + 23.67X2
2 + 24.67X2

3 + 17.17X2
4

(2)

Y2 = 1.02 + 0.64X1 − 0.013X2 − 0.144X3 − 0.068X4 − 0.01X1X2 − 0.17X1X3 − 0.05X1X4 − 0.003X2X3+
0.02X2X4 + 0.09X3X4 + 0.18X2

1 − 0.009X2
2 − 0.007X2

3 + 0.008X2
4

(3)

Y3 = 7.74 − 3.1X1 + 0.913X2 − 0.313X3 + 0.006X4 + 0.07X1X4 − 0.025X1X3 + 0.058X2X3−
0.003X2X4 + 0.005X3X4 + 0.589X2

1 − 0.111X2
2 − 0.047X2

3 − 0.085X2
4

(4)

Analysis of variance (ANOVA) determined that the quadratic regression Equations
(2)–(4) could explain the experimental data at a 95% confidence level [32]. The ANOVA
of the quadratic model for setting time, water secretion rate, and compressive strength is
shown in Table 4. P is the significance value, and F is the ratio of the mean squared error to
its error, which is an important indicator of ANOVA. 0.01 < P < 0.05 indicates significant,
P < 0.01 indicates highly significant, and P > 0.05 indicates not significant [33]. R2 reflects
the degree of difference between the response and actual value. A large R2 corresponds to
better model correlation [34,35]. The R2 of the models Y1, Y2, and Y3 were 97.77%, 97.39%,
and 99.63%, respectively, with a CV < 10%, indicating that the experimental results had
high credibility and accuracy. This model can be used to optimize the setting time, water
secretion rate, and compressive strength of the RW material.

Table 4. Response surface ANOVA results.

Data
Sources

Degrees of
Freedom

Setting Time Water Secretion Rate Compressive Strength

F P F P F P

Model 14 30.8 <0.0001 37.27 <0.0001 268.78 <0.0001
X1 1 335.88 <0.0001 458.67 <0.0001 3353.07 <0.0001
X2 1 13.64 0.0006 0.2022 0.6598 292 <0.0001
X3 1 0.8743 <0.0001 5.18 0.0003 34.18 <0.0001
X4 1 66.94 0.2875 23.64 0.0390 0.0119 0.9146

X1X2 1 7.95 0.0155 0.0379 0.8484 15.72 0.0019
X1X3 1 5.44 0.0378 11.28 0.0047 13.31 0.0033
X1X4 1 0.0066 0.9366 6.05 0.0324 1.05 0.3254
X2X3 1 6.38 0.0281 1.47 0.2856 5.26 0.0407
X2X4 1 3.95 0.0755 0.0976 0.7593 1.12 0.3102
X3X4 1 0.0262 0.8737 8.93 0.0245 0.0029 0.9577
X1

2 1 8.44 0.0115 19.55 0.0006 65.68 <0.0001
X2

2 1 3.32 0.0899 0.0517 0.8235 2.32 0.1496
X3

2 1 6.71 0.0448 0.0385 0.8472 1.35 0.2641
X4

2 1 1.33 0.2688 0.0309 0.8631 0.4195 0.5277
Lack of Fit 10 1 0.5464 9.77 0.0732 11.04 0.0865

R2 = 0.9777 R2 = 0.9739 R2 = 0.9963
Radj

2 = 0.9533 Radj
2 = 0.9477 Radj

2 = 0.9926
CV% = 6.05 CV% = 9.43 CV% = 2.35

3.2.3. Analysis of Response Surface

RSM is a statistical experimental design used to establish a continuous variable surface
model, evaluate the influencing factors and their interactions of an indicator, determine the
optimal level range, and require a relatively small number of experimental groups, which
can save manpower and resources [36,37]. Therefore, this method has been successfully
and widely applied. The significant terms (P < 0.05) were used to propose models for
each response, without damaging the model hierarchy. These models were then tested
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for adequacy and fitness by analysis of variance (ANOVA). The response surface plots
were generated to visualize the combined effect of two variables on a particular response.
Three-dimensional diagrams based on two independent variables were constructed, as
shown in Figures 5–7 to investigate the effects of the water–cement ratio, coagulant A,
coagulant B, and suspending agent interaction on setting time, water secretion rate, and
concretion compressive strength of the RW material.
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(1) Effect of interaction factors on setting time

The model ANOVA results in Table 4 show that the correlation coefficients
R2 = 0.9777 and Radj

2= 0.9533 are close to 1, indicating a strong correlation between actual
and prediction. The coefficient of variation CV = 6.05% (<10%) indicates that the model
has a high level of confidence, explaining 97.77% of the variation in response values, and
only 2.23% of the total variation could not be used in the model explanation, making the
model an appropriate choice. X1 (P < 0.0001), X2 (P = 0.0006), and X3 (P < 0.0001) are highly
significant. X1X2, X1X3, X2X3, X1

2, X3
2, and X4

2 are significant. The degree of influence
of the primary factors on the setting time (Y1) is X1 > X4 > X2 > X3, indicating that the
water–cement ratio has the greatest influence on the setting time. The degree of influence
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of interaction on the condensation time is X1X2 > X2X3 > X1X3 > X2X4 > X3X4 > X1X4,
thus indicating that the interaction effect of the water–cement ratio and coagulant A on
setting time is the most significant.
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Figure 5 shows that the setting time of the RW material decreases with the increase in
coagulant A when the water–cement ratio is a fixed value. When the amount of coagulant
A is fixed, the setting time of the RW material is significantly prolonged with the increase
in the water–cement ratio. Compared with changing coagulant A, increasing the water–
cement ratio has a more significant effect on setting time. The main reason for this condition
is that when the coagulant A is fixed, in the case of low water–cement ratio, the spacing
of cement clinker particles in the slurry after mixing is smaller, and more cement clinker
particles are present in the unit volume. Therefore, the hydration reaction of slurry per
unit volume and unit time is slower, and the number of hydration products is less, thereby
resulting in a longer time needed for the hydration products to lap and penetrate, and the
slower formation of the skeleton structure, resulting in a longer setting time.

(2) Effect of interacting factors on water secretion rate

The results of the response surface ANOVA in Table 4 (P < 0.0001, F = 37.27) show a
significant relationship between Y2 and interacting factors. The lack of fit is not significant
(F = 9.77, P = 0.0732), indicating that the regression model was a good fit. The coefficient of
determination R2 = 0.9739 suggests a strong correlation between the actual and predicted
values. Furthermore, the coefficient of variation CV = 9.43% (<10%) is reasonable and the
model can explain 97.39% of the variation in response values, thereby implying that the
model is chosen appropriately. The effect of X1 (P < 0.0001), X3 (P = 0.0003), and X1X3
(P = 0.0047) on Y2 is highly significant. The effect of X4, X1X4, and X3X4 on water secretion
rate is significant. The degree of influence of the primary term on the urinary rate is
X1 > X4 > X3 > X2, indicating that the water–cement ratio has the greatest effect on the
water secretion rate. The degree of influence of the secondary term on the water secretion
rate is X1X3 > X3X4 > X1X4 > X2X3 > X2X4 > X1X2, indicating that the interaction of X1
and X2 had the greatest influence on the water secretion rate.

As can be seen from Figure 6, when the water–cement ratio is a fixed value, the water
secretion rate with the increase in coagulant B. When the amount of coagulant B is fixed,
the water secretion rate increases significantly with the increase in the water–cement ratio,
especially in the case of coagulant dosage is 1 g, and the degree of increase in the water
secretion rate is greater. This condition occurred mainly because coagulant B is unchanged
and has a low water–cement ratio. Moreover, uniform slurry cement clinker particles in
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the spacing are smaller, with more cement clinker particles per unit volume. In the unit
time per unit volume of slurry hydration reaction is faster, hydration products between the
rapid formation of a skeletal structure, locking the water to reduce the amount of free water,
thus reducing the water secretion rate. Similarly, a large water–cement ratio corresponds
to fewer cement clinker particles per unit volume. As a result, hydration products lap
require a longer time, and the formation of the skeleton structure is slower. Moreover, a
large volume of free water is present in the slurry system, leading to an increase in water
secretion rate. Coagulant B has an inhibitory effect on the slurry water secretion rate by
accelerating the formation of the skeleton structure, thereby shortening the slurry setting
time, which, in turn, reduces the free water content in the slurry system to reduce the water
secretion rate.

(3) Effect of interaction factors on compressive strength

The ANOVA results in Table 4 show that the correlation coefficient R2 = 0.9963 and
Radj

2 = 0.9926 are close to 1 in the response surface model, indicating that the designed
model has rationality and consistency. Moreover, F = 268.71, P < 0.0001, and the coefficient
of variation CV = 2.35% (<10%), indicating that this response surface model has a signifi-
cant effect on the experimental results and can explain 99.63% of the variation in response
values. Thus, the model is appropriately selected. X1, X2, X3, X1X2, and X1X3 are highly
significant for the compressive strength (Y2), and X2X3 is significant for the compressive
strength. The degree of influence of the primary term on the compressive strength is
X1 > X2 > X3 > X4, indicating that the water–cement ratio has the greatest effect on the com-
pressive strength. The degree of influence of the quadratic term on the compressive strength is
X1X2 > X1X3 > X2X3 > X2X4 > X1X4 > X3X4, indicating that the interaction of the water–
cement ratio and coagulant A has the greatest effect on the compressive strength.

Figure 7 shows that for a fixed water–cement ratio, the compressive strength increases
with increasing coagulant A. For a constant volume of coagulants, the compressive strength
decreases with the increase in water–cement ratio mainly because in slurries, the amount
of water that can react chemically with the cement component is limited. When the water–
cement ratio is high, the slurry has excess water, although the slurry can retain the excess
water after setting to prevent water secretion. However, with the increase in time, the
excess water will cause the solidified body microstructure to have more voids and be less
dense, thus reducing compressive strength. The hydration products of coagulant A are
mainly calcium sulfoaluminate hydrates, hydrated calcium silicate gel, calcium hydroxide
crystals, and aluminum gel. Thus, the amount of AFt produced by the hydration reaction
in the slurry is higher than that produced in the ordinary silicate slurry. As a result, the
grouted consolidation is less porous and denser, thus having improved strength.

Table 4 and Figures 5–7 show that increasing the water–cement ratio can increase the
setting time and the water secretion rate of the RW material, but weaken the compressive
strength of the solids. The X1X2 interaction has the greatest effect on the setting time and
compressive strength of the RW material. The X1X3 interaction has the greatest effect on
the water secretion rate of the grouting material.

4. Microscopic Interface Analysis of Slurry–Coal Solids
4.1. Microscopic Morphology Analysis of Grouting Materials

SEM can visually and accurately predict the three-dimensional structure of the surface
of the sample under test [38]. In the present research, the microstructural characteristics of
the concretion after grouting of broken coal samples are investigated using SEM, as shown
in Figure 8.

The figure depicts that the grouting materials contain needle-like AFt, six-sheeted CH
crystals, and C-S-H gels, which are interweaved to form a spatial network-like structure.
The density of the RW material is higher, as shown in Figure 8a, because the coagulant
added to the RW material can increase the number of needle-like AFt in the hydration prod-
ucts and fill the pore structure of the cementitious material. The hydration products form a
skeleton structure between them, and the generated hydrated C-S-H gel overlaps to form
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a relatively dense network structure, thus causing the slurry to settle quickly, increasing
the structural densification, and improving the strength of the solid. The microstructure
in Figure 8b shows that the AFt crystals of PC material are loosely connected, and the
resulting network structure has larger fractures, resulting in higher permeability compared
with the RW.
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4.2. Microscopic Morphology Analysis of Slurry–Coal Solids

The interfacial transition zone (ITZ) is an important component of the concretion,
characterized by low strength and low modulus of elasticity, which affects compressive
strength and permeability [39,40]. The transition zone at the grouting materials and injected
coal interface exhibits differences because of the difference in the PC and RW grouting
materials. In this study, we investigated the microscopic morphology of the slurry–coal
transition zone in different concretes. The SEM results are presented in Figure 9.

As shown in Figure 9a,b, the fracture at the interface of the grouting materials and in-
jected coal of the RW material is smaller than that of the PC material at 5000× magnification,
indicating that the bonding between the RW material and the coal is better. This condition
can be attributed to the presence of a high concentration of hydration products filled within
the RW material and the coal. These products interweave to form a compact network
structure that can endure some stress and absorb energy when subjected to an external
load. As a result, the strength of the ITZ of the RW material is improved. In contrast, the
ITZ of the PC has fewer hydration products, resulting in a looser skeletal structure and
insufficient bonding strength, and is, thus, prone to misalignment and separation under
external loading.
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Figure 9. ITZ microstructure of different concretion samples. (a) microscopic morphology of the
slurry—coal transition zone of RW material, (b) microscopic morphology of the slurry—coal transition
zone of PC material, (c) schematic diagram of hydration process in slurry—coal transition zone of RW
material, (d) schematic diagram of hydration process in slurry—coal transition zone of PC material.

Figure 9c,d present the microscopic cementation model of the RW and PC materials.
Ordinary cement has a low hydration degree, which later leads to shrinkage boreholes.
As a result, short columnar AFt and CH gel hydration products are formed. The C4A3S´
minerals supplied by the coagulants experience additional hydration with the mineral
particles in the cement, forming fine-needle AFt. The increased number of crystals results in
the densification of pores within the pristine cement particles. The microscopic properties
of the RW grouting materials have a significant effect on their macroscopic mechanical
properties. This effect is due to the rapid early-stage hydration of the C3A, C3S, and C2S
minerals in cement, forming the C-S-H gel and CH crystals, and the reaction of the C4A3S
minerals with calcium sulfate to form AFt and CH gels, accelerating the early hydration
rate. The hydration products, AFt crystals, C-S-H gels, and lamellar CH crystals interact
with each other. The particles depend on van der Waals forces and chemical bonding to
provide cured paste properties, including microexpansion and mechanical strength.

5. Conclusions

(1) The effect of different coagulant additives on the RW material was investigated
using one-factor analysis. The experimental results demonstrate that coagulants A and B
exhibit strong hydration-promoting abilities, which significantly shorten the setting time of
the RW material. When the coagulants A is 4 g and coagulants B is 2 g, the setting time
of RW material reduced by 60.85% and 50.62%, respectively. Therefore, coagulants A and
B were selected for the compounding process and, then, supplemented with suspending
agents to study the coagulant modification of the RW material. The water–cement ratio and
setting time should be strictly controlled when adding the coagulant additives to avoid
affecting the engineering practice effect.
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(2) The RSM was used to investigate the effect of each factor on the setting time,
water secretion rate, and compressive strength of the RW material. A quadratic regression
response model was fitted to indicate the influence of the interaction of each factor. The
ANOVA results demonstrated that all models were statistically significant with P values less
than 0.0001 and the model precision was high, effectively reflecting the degree of influence.
All the correlation coefficients R2 of each response model were greater than 0.97 through
variance analysis, indicating a high correlation between the actual and prediction results.
The water–cement ratio had the most significant effect among all factors on setting time,
water secretion rate, and compressive strength of the RW material. Coagulant B and
water–cement ratio interaction had the second-greatest effect.

(3) The microstructure of the RW and PC materials was analyzed by SEM. The SEM
microstructure of the coagulant-doped RW material showed an increase in the number
of needle-like AFt crystals, which filled the internal pore structure of the material, and a
cross-linked skeletal structure was formed between the hydration products, which was
denser than the network structure of the PC material. The slurry–coal interface of the
RW had no fractures, which showed that its sealing effect was superior to that of the PC
grouting material.
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