New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria
Abstract
:1. The Disease Known as Tuberculosis and Relevant Aspects Associated to It
2. Tuberculosis as a Public Health Problem: An Old Challenge Still Present Due to Drug Resistance
3. Alternative Treatments and Their Availability
4. Potential Use of Natural Products as Alternatives against Antibiotic Resistance
5. The Only Preventive Treatment: Novel Generation of Vaccines
6. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- WHO (World Health Organization). Global Tuberculosis Report; Licence: CC BY-NC-SA 3.0 IGO; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Bloom, B.R.; Atun, R.; Cohen, T.; Dye, C.; Fraser, H.; Gomez, G.B.; Knight, G.; Murray, M.; Nardell, E.; Rubin, E.; et al. Tuberculosis. In Major Infectious Diseases, 3rd ed.; Holmes, K.K., Ed.; Chapter 11; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Guinn, K.M.; Rubin, E.J. Tuberculosis: Just the FAQs. mBio 2017, 8, e01910-17. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev. 2019, 43, 548–575. [Google Scholar] [CrossRef] [PubMed]
- Barksdale, L.; Kim, K.S. Mycobacterium . Bacteriol. Rev. 1977, 41, 217–372. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, L.; Lefebvre, C.; Parra, J.; Marcoux, J.; Burlet-Schiltz, O.; Etienne, G.; Tropis, M.; Daffé, M. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 2017, 7, 12807. [Google Scholar] [CrossRef]
- Alderwick, L.J.; Harrison, J.; Lloyd, G.S.; Birch, H.L. The mycobacterial cell wall—Peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 2015, 5, a021113. [Google Scholar] [CrossRef]
- Behr, M.A.; Kaufmann, E.; Duffin, J.; Edelstein, P.H.; Ramakrishnan, L. Latent tuberculosis: Two centuries of confusion. Am. J. Respir. Crit. Care Med. 2021, 204, 142–148. [Google Scholar] [CrossRef]
- CDC (Centers for Disease Control and Prevention). Tuberculosis Treatment. Available online: https://www.cdc.gov/TB/topic/treatment/TBdisease.htm (accessed on 30 July 2023).
- Patil, K.; Bagade, S.; Bonde, S.; Sharma, S.; Saraogi, G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed. Pharmacother. 2018, 99, 735–745. [Google Scholar] [CrossRef]
- Günther, G.; Ruswa, N.; Keller, P.M. Drug-resistant tuberculosis: Advances in diagnosis and management. Curr. Opin. Pulm. Med. 2021, 28, 211–217. [Google Scholar] [CrossRef]
- Fatima, S.; Kumari, A.; Das, G.; Dwivedi, V.P. Tuberculosis vaccine: A journey from BCG to present. Life Sci. 2020, 252, 117594. [Google Scholar] [CrossRef] [PubMed]
- Ritz, N.; Hanekom, W.A.; Robins-Browne, R.; Britton, W.J.; Curtis, N. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol. Rev. 2008, 32, 821–841. [Google Scholar] [CrossRef]
- Wang, J.F.; Dai, F.Y.; Gong, X.L.; Bao, L. Commonly administered bacille Calmette-Guerin strains induce comparable immune response. Int. J. Clin. Exp. Med. 2015, 8, 15834–15839. [Google Scholar] [PubMed]
- Mjid, M.; Cherif, J.; Ben Salah, N.; Toujani, S.; Ouahchi, Y.; Zakhama, H.; Louzir, B.; Mehiri-Ben Rhouma, N.; Beji, M. Épidémiologie de la tuberculose [Epidemiology of tuberculosis]. Rev. De Pneumol. Clin. 2015, 71, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kwon, N.; Goo, G.Y.; Cho, S.I. Inadequate housing and pulmonary tuberculosis: A systematic review. BMC Public Health 2022, 22, 622. [Google Scholar] [CrossRef]
- Van Deun, A.; Maug, A.K.; Salim, M.A.; Das, P.K.; Sarker, M.R.; Daru, P.; Rieder, H.L. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 2010, 182, 684–692. [Google Scholar] [CrossRef]
- Poulton, N.C.; Rock, J.M. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2022, 12, 997283. [Google Scholar] [CrossRef]
- Bi, K.; Cao, D.; Ding, C.; Lu, S.; Lu, H.; Zhang, G.; Zhang, W.; Li, L.; Xu, K.; Li, L.; et al. The past, present and future of tuberculosis treatment. J. Zhejiang Univ. Med. Sci. 2022, 51, 657–668. [Google Scholar] [CrossRef]
- Eker, B.; Ortmann, J.; Migliori, G.B.; Sotgiu, G.; Muetterlein, R.; Centis, R.; Hoffmann, H.; Kirsten, D.; Schaberg, T.; Ruesch-Gerdes, S.; et al. Multidrug-and extensively drug-resistant tuberculosis, Germany. Emerg. Infect. Dis. 2008, 14, 1700–1706. [Google Scholar] [CrossRef]
- Wu, C.; Yi, H.; Hu, Y.; Luo, D.; Tang, Z.; Wen, X.; Zhang, Y.; Tang, M.; Zhang, L.; Wu, S.; et al. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front. Cell. Infect. Microbiol. 2023, 13, 1127916. [Google Scholar] [CrossRef]
- Jain, A.; Mondal, R. Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunol. Med. Microbiol. 2008, 53, 145–150. [Google Scholar] [CrossRef]
- Uplekar, M.; Weil, D.; Lonnroth, K.; Jaramillo, E.; Lienhardt, C.; Dias, H.M.; Falzon, D.; Floyd, K.; Gargioni, G.; Getahun, H.; et al. WHO’s new end TB strategy. Lancet 2015, 385, 1799–1801. [Google Scholar] [CrossRef]
- Yew, W.W. Management of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Current status and future prospects. Kekkaku 2011, 86, 9–16. [Google Scholar] [PubMed]
- Gupta, H.; Kant, S.; Jain, A.; Natu, S.M.; Ahluwalia, S. Initial drug resistance pattern among pulmonary tuberculosis patients. Indian J. Tuberc. 2013, 60, 154–161. [Google Scholar] [PubMed]
- Müller, B.; Dürr, S.; Alonso, S.; Hattendorf, J.; Laisse, C.J.; Parsons, S.D.; van Helden, P.D.; Zinsstag, J. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg. Infect. Dis. 2013, 19, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, M.; Fan, W.; Sun, S.; Fan, X. The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Front. Public Health 2022, 10, 994745. [Google Scholar] [CrossRef] [PubMed]
- Ilinov, A.; Nishiyama, A.; Namba, H.; Fukushima, Y.; Takihara, H.; Nakajima, C.; Savitskaya, A.; Gebretsadik, G.; Hakamata, M.; Ozeki, Y.; et al. Extracellular DNA of slow growers of mycobacteria and its contribution to biofilm formation and drug tolerance. Sci. Rep. 2021, 11, 10953. [Google Scholar] [CrossRef] [PubMed]
- Abalos, P.; Retamal, P. Tuberculosis: A re-emerging zoonosis? Rev. Sci. Et Tech. (Int. Off. Epizoot.) 2004, 23, 583–594. [Google Scholar] [CrossRef]
- Riccardi, N.; Del Puente, F.; Magnè, F.; Taramasso, L.; Di Biagio, A. Bedaquiline: A new hope for shorter and better anti-tuberculosis regimens. Recent Pat. Anti-Infect. Drug Discov. 2018, 13, 3–11. [Google Scholar] [CrossRef]
- Gaida, R.; Truter, I.; Peters, C.A. Adverse effects of bedaquiline in patients with extensively drug-resistant tuberculosis. S. Afr. J. Infect. Dis. 2020, 35, 23. [Google Scholar] [CrossRef]
- Edwards, B.D.; Field, S.K. The struggle to end a millennia-long pandemic: Novel candidate and repurposed drugs for the treatment of tuberculosis. Drugs 2022, 82, 1695–1715. [Google Scholar] [CrossRef]
- Bliden, K.P.; Tantry, U.S.; Chaudhary, R.; Byun, S.; Gurbel, P.A. Extended-release acetylsalicylic acid for secondary prevention of stroke and cardiovascular events. Expert Rev. Cardiovasc. Ther. 2016, 14, 779–791. [Google Scholar] [CrossRef]
- Sharma, K.; Ahmed, F.; Sharma, T.; Grover, A.; Agarwal, M.; Grover, S. Potential repurposed drug candidates for tuberculosis treatment: Progress and update of drugs identified in over a decade. ACS Omega 2023, 8, 17362–17380. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.; Brady, M.F. Isoniazid. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- MacVinish, S.; McMaster, D.; Moledina, T.; Tamne, S.K.; Ashworth, J.; Anderson, S.R. Ethambutol and visual assessment in England: Current practice and recommendations. Eye 2023, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E. Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1996, 23, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Peloquin, C.A.; Davies, G.R. The treatment of tuberculosis. Clin. Pharmacol. Ther. 2021, 110, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 2009, 360, 2397–2405. [Google Scholar] [CrossRef]
- Liu, Y.; Matsumoto, M.; Ishida, H.; Ohguro, K.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis 2018, 111, 20–30. [Google Scholar] [CrossRef]
- Lee, S.F.K.; Laughon, B.E.; McHugh, T.D.; Lipman, M. New drugs to treat difficult tuberculous and nontuberculous mycobacterial pulmonary disease. Curr. Opin. Pulm. Med. 2019, 25, 271–280. [Google Scholar] [CrossRef]
- Manjunatha, U.; Boshoff, H.I.; Barry, C.E. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun. Integr. Biol. 2009, 2, 215–218. [Google Scholar] [CrossRef]
- Sbardella, G.; Mai, A.; Artico, M.; Loddo, R.; Setzu, M.G.; La Colla, P. Synthesis and in vitro antimycobacterial activity of novel 3-(1H-pyrrol-1-yl)-2-oxazolidinone analogues of PNU-100480. Bioorg. Med. Chem. Lett. 2004, 14, 1537–1541. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr. 2014, 2, MGM2-0023-2013. [Google Scholar] [CrossRef]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med. 2013, 19, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Meshnick, S.R. Artemisinin: Mechanisms of action, resistance and toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Makkar, N.; Pandey, P.; Parrish, N.; Singh, U.; Lamichhane, G. Carbapenems and rifampin exhibit synergy against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob. Agents Chemother. 2015, 59, 6561–6567. [Google Scholar] [CrossRef] [PubMed]
- Matt, U.; Selchow, P.; Dal Molin, M.; Strommer, S.; Sharif, O.; Schilcher, K.; Andreoni, F.; Stenzinger, A.; Zinkernagel, A.S.; Zeitlinger, M.; et al. Chloroquine enhances the antimycobacterial activity of isoniazid and pyrazinamide by reversing inflammation-induced macrophage efflux. Int. J. Antimicrob. Agents 2017, 50, 55–62. [Google Scholar] [CrossRef]
- Barry, V.C.; Conalty, M.L.; Gaffney, E.E. Antituberculosis activity in the phenazine series; Isomeric pigments obtained by oxidation of o-phenylenediamine derivatives. J. Pharm. Pharmacol. 1956, 8, 1089–1096. [Google Scholar] [CrossRef]
- Campoli-Richards, D.M.; Sorkin, E.M.; Heel, R.C. Inosine pranobex. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1986, 32, 383–424. [Google Scholar] [CrossRef]
- Zhang, J.; Lair, C.; Roubert, C.; Amaning, K.; Barrio, M.B.; Benedetti, Y.; Cui, Z.; Xing, Z.; Li, X.; Franzblau, S.G.; et al. Discovery of natural-product-derived sequanamycins as potent oral anti-tuberculosis agents. Cell 2023, 186, 1013–1025. [Google Scholar] [CrossRef]
- Diacon, A.H.; van der Merwe, L.; Barnard, M.; von Groote-Bidlingmaier, F.; Lange, C.; García-Basteiro, A.L.; Sevene, E.; Ballell, L.; Barros-Aguirre, D. β-lactams against tuberculosis--new trick for an old dog? N. Engl. J. Med. 2016, 375, 393–394. [Google Scholar] [CrossRef]
- Singh, R.; Manjunatha, U.; Boshoff, H.I.; Ha, Y.H.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008, 322, 1392–1395. [Google Scholar] [CrossRef]
- Lee, R.E.; Hurdle, J.G.; Liu, J.; Bruhn, D.F.; Matt, T.; Scherman, M.S.; Vaddady, P.K.; Zheng, Z.; Qi, J.; Akbergenov, R.; et al. Spectinamides: A new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat. Med. 2014, 20, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Pollo, L.A.E.; Martin, E.F.; Machado, V.R.; Cantillon, D.; Wildner, L.M.; Bazzo, M.L.; Waddell, S.J.; Biavatti, M.W.; Sandjo, L.P. Search for antimicrobial activity among fifty-two natural and synthetic compounds identifies anthraquinone and polyacetylene classes that inhibit Mycobacterium tuberculosis. Front. Microbiol. 2021, 11, 622629. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Takahashi, Y.; Shitara, T.; Nakamura, H.; Naganawa, H.; Miyake, T.; Akamatsu, Y. Caprazamycins, novel lipo-nucleoside antibiotics, from Streptomyces sp. II. Structure elucidation of caprazamycins. J. Antibiot. 2005, 58, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Tousif, S.; Singh, D.K.; Mukherjee, S.; Ahmad, S.; Arya, R.; Nanda, R.; Ranganathan, A.; Bhattacharyya, M.; Van Kaer, L.; Kar, S.K.; et al. Nanoparticle-formulated curcumin prevents posttherapeutic disease reactivation and reinfection with Mycobacterium tuberculosis following isoniazid therapy. Front. Immunol. 2017, 8, 739. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.K.; Riwanto, M.; Sambandamurthy, V.; Roggo, S.; Miault, C.; Zwingelstein, C.; Krastel, P.; Noble, C.; Beer, D.; Rao, S.P.; et al. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. 2011, 50, 5889–5891. [Google Scholar] [CrossRef] [PubMed]
- Mullowney, M.W.; Hwang, C.H.; Newsome, A.G.; Wei, X.; Tanouye, U.; Wan, B.; Carlson, S.; Barranis, N.J.; hAinmhire, E.; Chen, W.L.; et al. Diaza-anthracene antibiotics from a freshwater-derived actinomycete with selective antibacterial activity toward Mycobacterium tuberculosis. ACS Infect. Dis. 2015, 1, 168–174. [Google Scholar] [CrossRef]
- Lee, H.; Suh, J.W. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J. Ind. Microbiol. Biotechnol. 2016, 43, 205–212. [Google Scholar] [CrossRef]
- Wang, G.; Dong, W.; Lu, H.; Lu, W.; Feng, J.; Wang, X.; Chen, H.; Liu, M.; Tan, C. Enniatin A1, a natural compound with bactericidal activity against Mycobacterium tuberculosis in vitro. Molecules 2019, 25, 38. [Google Scholar] [CrossRef]
- Lin, G.; Li, D.; Chidawanyika, T.; Nathan, C.; Li, H. Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome. Arch. Biochem. Biophys. 2010, 501, 214–220. [Google Scholar] [CrossRef]
- Pawar, A.; Jha, P.; Chopra, M.; Chaudhry, U.; Saluja, D. Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the anti-tubercular potential of flavonoids. Sci. Rep. 2020, 10, 949. [Google Scholar] [CrossRef]
- Kling, A.; Lukat, P.; Almeida, D.V.; Bauer, A.; Fontaine, E.; Sordello, S.; Zaburannyi, N.; Herrmann, J.; Wenzel, S.C.; König, C.; et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 2015, 348, 1106–1112. [Google Scholar] [CrossRef]
- Efremenko, Y.V.; Arjanova, O.V.; Prihoda, N.D.; Yurchenko, L.V.; Sokolenko, N.I.; Mospan, I.V.; Pylypchuk, V.S.; Rowe, J.; Jirathitikal, V.; Bourinbaiar, A.S.; et al. Clinical validation of sublingual formulations of Immunoxel (Dzherelo) as an adjuvant immunotherapy in treatment of TB patients. Immunotherapy 2012, 4, 273–282. [Google Scholar] [CrossRef]
- Ōmura, S.; Crump, A. Lactacystin: First-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J. Antibiot. 2019, 72, 189–201. [Google Scholar] [CrossRef]
- Intorasoot, S.; Intorasoot, A.; Tawteamwong, A.; Butr-Indr, B.; Phunpae, P.; Tharinjaroen, C.S.; Wattananandkul, U.; Sangboonruang, S.; Khantipongse, J. In vitro antimycobacterial activity of human lactoferrin-derived peptide, d-hlf 1-11, against susceptible and drug-resistant Mycobacterium tuberculosis and its synergistic effect with rifampicin. Antibiotics 2022, 11, 1785. [Google Scholar] [CrossRef]
- Gavrish, E.; Sit, C.S.; Cao, S.; Kandror, O.; Spoering, A.; Peoples, A.; Ling, L.; Fetterman, A.; Hughes, D.; Bissell, A.; et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 2014, 21, 509–518. [Google Scholar] [CrossRef]
- Hou, X.M.; Wang, C.Y.; Gerwick, W.H.; Shao, C.L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019, 165, 273–292. [Google Scholar] [CrossRef]
- Daniel, T.M. The history of tuberculosis. Respir. Med. 2006, 100, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect. Dis. 2010, 10, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Mazlun, M.H.; Sabran, S.F.; Mohamed, M.; Abu Bakar, M.F.; Abdullah, Z. Phenolic compounds as promising drug candidates in tuberculosis therapy. Molecules 2019, 24, 2449. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Jeong, M.C.; Jnawali, H.N.; Kwak, C.; Ryoo, S.; Jung, I.D.; Kim, Y. Phloretin exerts anti-tuberculosis activity and suppresses lung inflammation. Molecules 2017, 22, 183. [Google Scholar] [CrossRef]
- Quan, D.; Nagalingam, G.; Payne, R.; Triccas, J.A. New tuberculosis drug leads from naturally occurring compounds. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2017, 56, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, R.; Ballini, A.; Topi, S.; Bottalico, L.; Jirillo, E.; Santacroce, L. Antibiotic resistance to Mycobacterium tuberculosis and potential use of natural and biological products as alternative anti-mycobacterial agents. Antibiotics 2022, 11, 1431. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R. InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994, 263, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P.J.; Stuitje, A.R.; Slabas, A.R.; Rice, D.W.; Rafferty, J.B. Molecular basis of triclosan activity. Nature 1999, 398, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Giddens, A.C.; Nielsen, L.; Boshoff, H.I.; Tasdemir, D.; Perozzo, R.; Kaiser, M.; Copp, B.R. Natural product inhibitors of fatty acid biosynthesis: Synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities. Tetrahedron 2008, 64, 1242–1249. [Google Scholar] [CrossRef]
- Safwat, N.A.; Kashef, M.T.; Aziz, R.K.; Amer, K.F.; Ramadan, M.A. Quercetin 3-O-glucoside recovered from the wild Egyptian Sahara plant, Euphorbia paralias L.; inhibits glutamine synthetase and has antimycobacterial activity. Tuberculosis 2018, 108, 106–113. [Google Scholar] [CrossRef]
- Chen, D.N.; Chen, H.; She, Z.G.; Lu, Y.J. Identification of bostrycin derivatives as potential inhibitors of Mycobacterium tuberculosis Protein Tyrosine Phosphatase (MptpB). Med. Chem. 2016, 12, 296–302. [Google Scholar] [CrossRef]
- Smolarz, H.D.; Swatko-Ossor, M.; Ginalska, G.; Medyńska, E. Antimycobacterial effect of extract and its components from Rheum rhaponticum. J. AOAC Int. 2013, 96, 155–160. [Google Scholar] [CrossRef]
- Qi, Y.K.; Tang, X.; Wei, N.N.; Pang, C.J.; Du, S.S.; Wang, K. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2022, 28, e3428. [Google Scholar] [CrossRef]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 520, 388. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Alhumaid, S.; Albayat, H.; Alsaeed, M.; Alofi, F.S.; Al-Howaidi, M.H.; Turkistani, S.A.; Alhajri, S.M.; Alahmed, H.E.; Alzahrani, A.B.; et al. Promising antimycobacterial activities of flavonoids against Mycobacterium sp. drug targets: A comprehensive review. Molecules 2022, 27, 5335. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Kaushik, A.C.; Bhatti, A.I.; Zhang, Y.J.; Zhang, S.; Wei, A.J.; Malik, S.I.; Wei, D.Q. Marine natural products and drug resistance in latent tuberculosis. Mar. Drugs 2019, 17, 549. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.S.; Costa, R.P.; Gomes, P.; Gomes, M.S.; Silva, T.; Teixeira, C. Antimicrobial peptides as potential anti-tubercular leads: A concise review. Pharmaceuticals 2021, 14, 323. [Google Scholar] [CrossRef]
- El Omari, K.; Hamze, M.; Alwan, S.; Osman, M.; Jama, C.; Chihib, N.E. In-vitro evaluation of the antibacterial activity of the essential oils of Micromeria barbata, Eucalyptus globulus and Juniperus excelsa against strains of Mycobacterium tuberculosis (including MDR-TB), Mycobacterium kansasii and Mycobacterium gordonae. J. Infect. Public Health 2019, 12, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kumar, G.; Kapoor, M.; Surolia, A. Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 2008, 368, 12–17. [Google Scholar] [CrossRef]
- Maiolini, M.; Gause, S.; Taylor, J.; Steakin, T.; Shipp, G.; Lamichhane, P.; Deshmukh, B.; Shinde, V.; Bishayee, A.; Deshmukh, R.R. The war against tuberculosis: A review of natural compounds and their derivatives. Molecules 2020, 25, 3011. [Google Scholar] [CrossRef]
- Rodríguez-Flores, E.M.; Mata-Espinosa, D.; Barrios-Payan, J.; Marquina-Castillo, B.; Castañón-Arreola, M.; Hernández-Pando, R. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies. PLoS ONE 2019, 14, e0217457. [Google Scholar] [CrossRef]
- Arai, M.; Sobou, M.; Vilchéze, C.; Baughn, A.; Hashizume, H.; Pruksakorn, P.; Ishida, S.; Matsumoto, M.; Jacobs, W.R.; Kobayashi, M. Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. Bioorg. Med. Chem. 2008, 16, 6732–6736. [Google Scholar] [CrossRef]
- Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A.D.; Moodley, P.; Jacobs, W.R.; Kobayashi, M. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Med. Chem. Lett. 2010, 20, 3658–3663. [Google Scholar] [CrossRef]
- Sachdeva, A.; Dhawan, D.; Jain, G.K.; Yerer, M.B.; Collignon, T.E.; Tewari, D.; Bishayee, A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers 2022, 15, 268. [Google Scholar] [CrossRef]
- Frost, I.; Sati, H.; Garcia-Vello, P.; Hasso-Agopsowicz, M.; Lienhardt, C.; Gigante, V.; Beyer, P. The role of bacterial vaccines in the fight against antimicrobial resistance: An analysis of the preclinical and clinical development pipeline. Lancet. Microbe 2023, 4, e113–e125. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Preferred Product Characteristics for New Tuberculosis Vaccines; Licence: CC BY-NC-SA 3.0 IGO; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Gong, W.; Liang, Y.; Wu, X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum. Vaccines Immunother. 2018, 147, 1697–1716. [Google Scholar] [CrossRef] [PubMed]
- Brazier, B.; McShane, H. Towards new TB vaccines. Semin. Immunopathol. 2020, 42, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ye, Z.; Li, L.; Yang, L.; Gong, W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines 2023, 11, 1304. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.E.; Baldwin, S.L.; Coler, R.N. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? Int. J. Infect. Dis. 2023, 130, S47–S51. [Google Scholar] [CrossRef]
- Caminero, J.A.; García-García, J.M.; Cayla, J.A.; García-Pérez, F.J.; Palacios, J.J.; Ruiz-Manzano, J. Drug resistant tuberculosis: New WHO definitions and their implication in the SEPAR Guideline. Tuberculosis con resistencia a fármacos: Nuevas definiciones de la OMS y su implicación en la Normativa de SEPAR. Arch. De Bronconeumol. 2022, 58, 87–89. [Google Scholar] [CrossRef]
Name | Drug Type | Mechanism of Action | Reference |
---|---|---|---|
Approved Drugs | |||
Isoniazid | Antibiotic, highly specific against mycobacteria | Inhibits the biosynthesis of mycolic acids | [35] |
Ethambutol | Antibiotic | Blocks the arabinosyl transferases involved in cell wall biosynthesis | [36] |
Moxifloxacin | Third-generation quinolone | Inhibits the DNA gyrases | [37] |
Rifampicin | Antibiotic | Inhibits the DNA-dependent RNA polymerase of Mtb | [38] |
Alternative new drugs | |||
Bedaquiline | Diarylquinoline | Inhibits mycobacterial ATP synthase | [39] |
Delamanid | Nitro-dihydro-imidazooxadole derivative | Inhibits the synthesis of mycolic acids | [40] |
Macozinone (PBTZ1698) | Benzothiazinone | Inhibits cell wall synthesis; has synergic effect with first-line antibiotics | [41] |
Pretomanid | Nitroimidazo oxazin | Inhibits respiratory chain and synthesis of mycolic acids | [42] |
PNU-100480 | Oxazolidinones | Inhibits translation of the initiation phase of bacterial protein synthesis by selectively inhibiting ribosomal peptidyl transferase | [43] |
Pyrazinamide | Antiuricosuric drug | Targets the mycobacterial fatty acid synthase I gene | [44] |
R-207910 | Diarylquinolones | Inhibits mycobacterial ATP synthase | [45] |
Telacebec | Anti-TB drug | Inhibits the mycobacterial cytochrome bc1 complex | [46] |
Repurposed drugs | |||
Artemisinin | Treatment against malaria | Isolated from the wormwood plant Artemisia annua; works by forming free radicals | [47] |
Biapenem | Carbapenem antibiotic used for Pseudomonas spp. | Inhibits cell wall synthesis | [48] |
Chloroquine | Antifungal | Inhibits efflux pump | [49] |
Clofazimine | Anti-leprosy | Binds to the guanine bases of bacterial DNA, blocking the template function of DNA | [50] |
Isoprinosine | Anti-viral | Stimulates host immune system | [51] |
Linezolid | Used to treat infections, including pneumonia, and infections of the skin | Inhibits protein synthesis by targeting the 50S ribosome; active against XDR-TB | [52] |
Meropen/Clavulanate | Riminophenazine | Inhibit the enzyme β-lactamase | [53] |
PA-824 and OPC-67683 (delamanid) | Derivative of metroniazole | Inhibit the synthesis of ketimycolates, component of mycobacterial cell wall | [54] |
Spectinamides | Treatment of gonorrhea in patients who are allergic (or resistant) to penicillin | Reduces susceptibility of the former to drug efflux; active against MDR-TB and XDR-TB clinical isolates | [55] |
Natural Product | Source | Mechanism of Action | Reference |
---|---|---|---|
Anthraquinone and polyacetylene | Plant-derived secondary metabolite | Inhibit Mtb at a level similar to the first-line anti-TB drug, rifampicin | [56] |
Caprazamycins | Liponucleoside antibiotics isolated from Streptomyces | Inhibition of the biosynthetic enzyme MraY (translocase I) | [57] |
Curcumin | Natural polyphenol derived from turmeric | Significantly decreases hepatotoxicity with INH and is used as an adjuvant therapy regimen; used also against MDR-TB and XDR-TB | [58] |
Cyclomarins | Cycloheptapeptides from marine streptomycete | Inhibit the ATPase ClpC1 | [59] |
Diazaquinomycins | Diaza-anthracene from Streptomyces | Inhibit thymidylate synthase | [60] |
Ecumicin | Cyclic tridecapeptide from Nonomuraea | Inhibits the ATPase ClpC1 | [61] |
Ennaitin A1 | Obtained from Quercus pathogen Gnomonia errabunda | Synergistic effects against Mtb with first and second-line anti-TB agents | [62] |
Fellutamide B | Peptide aldehydes from the marine fungus Penicillium fellutanum | Potent proteasome inhibitor of Mtb | [63] |
Flavonoids (naringenin and quercetin) | Citrus-derived flavonoids | Induce membrane damage of Mtb and decrease the functional activity of Mtb-MurI protein; activity against MDR-TB | [64] |
Griselimycins | Cyclic peptide from Streptomyces | Inhibit the DNA polymerase sliding clamp (DnaN). Shown to be equally effective as rifampicin | [65] |
Immunoxel (Dzherelo) | Extract of medicinal plants | Used in immunotherapy for TB and TB/HIV co-infection | [66] |
Lactacystin | Produced by Streptomyces | An irreversible proteasomal inhibitor (specifically at the 20S proteasome β-subunit) | [67] |
Lactoferrin | Human antimicrobial peptide | Additive effect with isoniazide and rifampin | [68] |
Lassomycin | Hexadecapeptide from actinomycetes | Inhibits the ATPase ClpC1; activity against MDR-TB and XDR-TB isolates | [69] |
Manzamines | Obtained from marine sponges | Insecticidal, cytotoxic, anti-inflammatory, antimicrobial, and anti-viral activities. | [70] |
Mycins | Sourced from actinobacteria | b-lactams, tetracylines, and aminoglycosides; exhibit potent activity against MDR-TB | [71] |
Phenazines | Aromatic compounds for many species of actinobacteria | Clofazimine is currently used for MDR-TB | [72] |
Phenolic compounds | Phytophenolic compounds | Efflux system inhibition, protease inhibition, and mycolic acid biosynthesis inhibition | [73] |
Phloretin | Polyphenolic compounds found in fruits, vegetables, legumes, etc. | Inhibits growth of Mtb H37Rv, MDR-TB, and XDR-TB isolates | [74] |
Piperidines | Heterocycline amines extracted from black pepper | Vasodilators, antipsychotics, neuroleptics, and opioids, active against MDR-TB and XDR-TB; work synergistically with bedaquiline, pretomanid, and moxifloxacin | [75] |
Polyphenols | Contained in fruits, vegetables, cereals, red wine, and extra virgin olive oil | Antioxidant, anti-inflammatory, and microbicidal activities | [76] |
Polyphenols | Isolated from tea plant Camellia sinensis | Inhibition of InhA | [77] |
Pyridomycin | Isolated from Streptomyces | Inhibition of NADH-dependent enoyl-[acyl-carrier-protein] reductase InhA | [78] |
Pyrones | Obtained from the bacterium Pseudomonas sediment | Inhibition of InhA (enoyl-ACP-reductase, related to the synthesis of cell wall) | [79] |
Quercetin | Flavanols, isolated from apples, berries, capers, grapes, and tea | Inhibit Mtb growth by blocking isocitrate lyase and exhibit hepatoprotective effects | [80] |
Quinones | Obtained from fungi like Bostrichonema and Nigrospora | Inhibit MptpB and impair mycobacterial survival in macrophages | [81] |
Resveratrol | Stilbenoid polyphenol, found in peanuts, wine, and cranberries. | Activates abyssinone II, possible target for therapy or prevention of TB | [82] |
Sequanamycin A | Macrolide produced by Allokutzneria albata (actinomycete) | Inhibits bacterial ribosome; derived macrolide antibiotic active on MDR-TB | [52] |
Teixobactin | Cyclic depsipeptide obtained from uncultured soil bacteria | Blocks cell wall biosynthesis; activity against TB, including drug-resistant strains | [83] |
Tiacumicin B | Glycosylated macrolide tiacumicin from the soil bacterium Dactylosporangium | Bacterial RNA polymerase inhibitor | [84] |
Vaccine Category | Main Group Type | Main Features |
---|---|---|
Whole cell: inactivated | ||
RUTI® | Therapeutic | Detoxified and fragmented Mtb cells delivered in liposomes |
Immuvac/MIP | Therapeutic | Heat-killed Mycobacterium indicus pranii |
Whole cell: live attenuated | ||
MTBVAC | Pre- and post-exposure | Attenuated Mtb |
Whole cell: recombinant live | ||
VPM1002 | Three types (pre-exposure, post-exposure, and therapeutic) | Recombinant BCG (rBCG) expressing listeriolysin gene for lysosome escape and lacking urease gene |
Adjuvant protein subunit | ||
M72/AS01E or Mtb72F | Booster, pre-, and post-exposure | Immunogenic fusion protein (M72) derived from Mtb antigens Mtb32A and Mtb39A, and AS01E adjuvant |
Viral-based (recombinant) | ||
Ad5Ag85A | Pre- and post-exposure | Recombinant adenovirus |
MVA85A | Recombinant vaccinia virus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Bustamante, E.; Gómez-Manzo, S.; De Obeso Fernández del Valle, A.; Arreguín-Espinosa, R.; Espitia-Pinzón, C.; Rodríguez-Flores, E. New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria. Processes 2023, 11, 2793. https://doi.org/10.3390/pr11092793
Rodríguez-Bustamante E, Gómez-Manzo S, De Obeso Fernández del Valle A, Arreguín-Espinosa R, Espitia-Pinzón C, Rodríguez-Flores E. New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria. Processes. 2023; 11(9):2793. https://doi.org/10.3390/pr11092793
Chicago/Turabian StyleRodríguez-Bustamante, Eduardo, Saúl Gómez-Manzo, Alvaro De Obeso Fernández del Valle, Roberto Arreguín-Espinosa, Clara Espitia-Pinzón, and Eden Rodríguez-Flores. 2023. "New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria" Processes 11, no. 9: 2793. https://doi.org/10.3390/pr11092793
APA StyleRodríguez-Bustamante, E., Gómez-Manzo, S., De Obeso Fernández del Valle, A., Arreguín-Espinosa, R., Espitia-Pinzón, C., & Rodríguez-Flores, E. (2023). New Alternatives in the Fight against Tuberculosis: Possible Targets for Resistant Mycobacteria. Processes, 11(9), 2793. https://doi.org/10.3390/pr11092793