Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses
Abstract
:1. Introduction
2. Project Overview
2.1. Background
2.2. Network Topology of the Microseismic System
2.3. Study Area
3. Fracture Nucleation Mechanism
3.1. Laboratory Test
3.2. In Situ Microseismic Monitoring
3.2.1. Evolution of MS Activity with Time
3.2.2. Spatial Distribution of MS Activity
3.2.3. Macroscopic Damage Risk Warning
4. Discussion
4.1. MS Sequences
4.2. Kinetic Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoek, E.; Brown, T. Underground Excavation in Rock; The Institute of Mining and Metallurgy: London, UK, 1980. [Google Scholar]
- Yang, K.; Wang, L.; Ge, J.; He, J.; Sun, T.; Wang, X.; Zhao, Y. Impact of formation dip angle and wellbore azimuth on fracture propagation for shale reservoir. Processes 2023, 11, 2419. [Google Scholar] [CrossRef]
- Gong, F.Q.; Yan, J.Y.; Li, X.B.; Luo, S. A peak-strength strain energy storage index for bursting proneness of rock materials. Int. J. Rock Mech. Min. Sci. 2019, 117, 76–89. [Google Scholar] [CrossRef]
- Xu, D.; Liu, X.; Jiang, Q.; Li, S.; Zhou, Y.; Qiu, S.; Yan, F.; Zheng, H.; Huang, X. A local homogenization approach for simulating the reinforcement effect of the fully grouted bolt in deep underground openings. Int. J. Min. Sci. Technol. 2022, 32, 247–259. [Google Scholar] [CrossRef]
- Konicek, P.; Soucek, K.; Stas, L.; Singh, R. Long-hole destress blasting for rockburst control during deep underground coal mining. Int. J. Rock Mech. Min. Sci. 2013, 61, 141–153. [Google Scholar] [CrossRef]
- Yan, P.; Zhao, Z.G.; Lu, W.B.; Fan, Y.; Chen, X.R.; Shan, Z.G. Mitigation of rock burst events by blasting techniques during deep-tunnel excavation. Eng. Geol. 2015, 188, 126–136. [Google Scholar] [CrossRef]
- Zhao, J.-S.; Chen, B.-R.; Jiang, Q.; Lu, J.-F.; Hao, X.-J.; Pei, S.-F.; Wang, F. Microseismic monitoring of rock mass fracture response to blasting excavation of large underground caverns under high geostress. Rock Mech. Rock Eng. 2022, 55, 733–750. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, W.B.; Zhou, Y.H.; Yan, P.; Leng, Z.D.; Chen, M. Influence of tunneling methods on the strainburst characteristics during the excavation of deep rock masses. Eng. Geol. 2016, 201, 85–95. [Google Scholar] [CrossRef]
- Li, A.; Dai, F.; Wu, W.; Liu, Y.; Liu, K.; Wang, K. Deformation characteristics of sidewall and anchorage mechanisms of prestressed cables in layered rock strata dipping steeply into the inner space of underground powerhouse cavern. Int. J. Rock Mech. Min. Sci. 2022, 159, 105234. [Google Scholar] [CrossRef]
- Zhao, J.S.; Jiang, Q.; Pei, S.F.; Chen, B.R.; Xu, D.P.; Song, L.B. Microseismicity and focal mechanism of blasting-induced block falling of intersecting chamber of large underground cavern under high geo-stress. J. Cent. South Univ. 2023, 30, 542–554. [Google Scholar] [CrossRef]
- Li, B.; Ding, Q.; Xu, N.; Lei, Y.; Xu, Y.; Zhu, Z.; Liu, J. Mechanical response and stability analysis of rock mass in high geostress underground powerhouse caverns subjected to excavation. J. Cent. South Univ. 2020, 27, 2971–2984. [Google Scholar] [CrossRef]
- Tang, Y.; Okubo, S.; Xu, J.; Peng, S. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation. Eng. Geol. 2019, 249, 172–185. [Google Scholar] [CrossRef]
- Zheng, Z.; Cai, Z.; Su, G.; Huang, S.; Wang, W.; Zhang, Q.; Wang, Y. A new fractional-order model for time-dependent damage of rock under true triaxial stresses. Int. J. Damage Mech. 2022, 32, 50–72. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Xu, D.; Huang, X.; Zheng, M.; He, J.; Zhao, K. Numerical back analysis method of three-dimensional in situ stress fields considering complex surface topography and variable collinearity. Int. J. Rock Mech. Min. Sci. 2023, 170, 105474. [Google Scholar] [CrossRef]
- Cai, M. Principles of rock support in burst-prone ground. Tunn. Undergr. Space Technol. 2013, 36, 46–56. [Google Scholar] [CrossRef]
- Ma, T.H.; Tang, C.A.; Tang, L.X.; Zhang, W.D.; Wang, L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II hydropower station. Tunn. Undergr. Space Technol. 2015, 49, 345–368. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Jiang, Q.; Zhou, Y. Microseismicity monitoring and failure mechanism analysis of rock masses with weak interlayer zone in underground intersecting chambers: A case study from the Baihetan hydropower station, China. Eng. Geol. 2018, 245, 44–60. [Google Scholar] [CrossRef]
- Li, P.X.; Chen, B.R.; Xiao, Y.X.; Feng, G.L.; Zhou, Y.Y.; Zhao, J.S. Rockburst and microseismic activity in a lagging tunnel as the spacing between twin TBM excavated tunnels changes: A case from the Neelum-Jhelum hydropower project. Tunn. Undergr. Space Technol. 2023, 132, 104884. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Feng, X.T.; Zhou, H.; Qiu, S.L.; Wu, W.P. A top pilot tunnel preconditioning method for the prevention of extremely intense rockbursts in deep tunnels excavated by TBMs. Rock Mech. Rock Eng. 2012, 45, 289–309. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.W.; Fan, Y.L.; Zhang, C.Q. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring. Int. J. Rock Mech. Min. Sci. 2016, 86, 269–281. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.A.; Ma, T.H.; Tang, L.X. Characterizing rockbursts along a structural plane in a tunnel of the Hanjiang-to-Weihe river diversion project by microseismic monitoring. Rock Mech. Rock Eng. 2019, 52, 1835–1856. [Google Scholar] [CrossRef]
- Cao, A.Y.; Dou, L.M.; Wang, C.B.; Yao, X.X.; Dong, J.Y.; Gu, Y. Microseismic precursory characteristics of rock burst hazard in mining areas near a large residual coal pillar: A case study from Xuzhuang coal mine, Xuzhou, China. Rock Mech. Rock Eng. 2016, 49, 4407–4422. [Google Scholar] [CrossRef]
- Mazaira, A.; Konicek, P. Intense rockburst impacts in deep underground construction and their prevention. Can. Geotech. J. 2015, 52, 1426–1439. [Google Scholar] [CrossRef]
- Xu, H.; Xu, D.; Li, S.; Zheng, M.; Huang, X.; Chen, B.; Feng, G.; Xu, Y. Stress tensor similarity index based on Euclidean distance for numerical back analysis of in situ stress fields. Comput. Geotech. 2023, 159, 105457. [Google Scholar] [CrossRef]
- Li, Z.-W.; Long, M.-C.; Xu, P.; Huang, C.-Y.; Wang, Y.-S. Thermal contact resistance of granite joints under normal stress. Rock Mech. Rock. Eng. 2023, online. [Google Scholar] [CrossRef]
- Li, Z.-W.; Huang, C.-Y.; Wang, H.-X.; Xing, S.-C.; Long, M.-C.; Liu, Y. Determination of heat transfer representative element volume and three-dimensional thermal conductivity tensor of fractured rock masses. Int. J. Rock Mech. Min. Sci. 2023, 170, 105528. [Google Scholar] [CrossRef]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Feng, F.; Chen, S.; Wang, Y.; Huang, W.; Han, Z. Cracking mechanism and strength criteria evaluation of granite affected by intermediate principal stresses subjected to unloading stress state. Int. J. Rock Mech. Min. Sci. 2021, 143, 10473. [Google Scholar] [CrossRef]
- Chen, S.; Feng, F.; Wang, Y.; Li, D.; Huang, W.; Zhao, X.; Jiang, N. Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in-situ stress. J. Cent. South Univ. 2020, 27, 2864–2882. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Liu, J. Effect of fracture geometry parameters on the permeability of a random three-dimensional fracture network. Processes 2023, 11, 2237. [Google Scholar] [CrossRef]
- Feng, F.; Chen, S.; Han, Z.; Golsanami, N.; Liang, P.; Xie, Z. Influence of moisture content and intermediate principal stress on cracking behavior of sandstone subjected to true triaxial unloading conditions. Eng. Fract. Mech. 2023, 284, 109265. [Google Scholar] [CrossRef]
- Kumar, V.; Gopalakrishnan, N.; Singh, N.P.; Cherukuri, S. Microseismic monitoring application for primary stability evaluation of the powerhouse of the Tapovan Vishnugad Hydropower Project. J. Earth. Syst. Sci. 2019, 128, 169. [Google Scholar] [CrossRef]
- Cook, N.G.W.; Hoek, E.; Pretorius, J.P.G.; Ortlepp, W.D.; Salamon, M.D.G. Rock mechanics applied to the study of rockbursts. J. South Afr. Inst. Min. Metall. 1966, 66, 435–528. [Google Scholar]
- Tang, Z.L.; Liu, X.L.; Xu, Q.J.; Li, C.Y.; Qin, P.X. Stability evaluation of deep-buried TBM construction tunnel based on microseismic monitoring technology. Tunn. Undergr. Space Technol. 2018, 81, 512–524. [Google Scholar] [CrossRef]
- Chen, B.-R.; Feng, X.-T.; Li, Q.-P.; Luo, R.-Z.; Li, S.-J. Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II Hydropower Station, China. Rock Mech. Rock Eng. 2015, 48, 289–303. [Google Scholar] [CrossRef]
- Xu, N.W.; Li, T.B.; Dai, F.; Li, B.; Zhu, Y.G.; Yang, D.S. Microseismic monitoring and stability evaluation for the large scale underground caverns at the Houziyan hydropower station in Southwest China. Eng. Geol. 2015, 188, 48–67. [Google Scholar] [CrossRef]
- Zhao, J.S.; Jiang, Q.; Lu, J.F.; Chen, B.R.; Pei, S.F.; Wang, Z.L. Rock fracturing observation based on microseismic monitoring and borehole imaging: In situ investigation in a large underground cavern under high geo-stress. Tunn. Undergr. Space Technol. 2022, 126, 104549. [Google Scholar] [CrossRef]
- Li, F.; Cheng, Y.; Zhang, X.; Huang, S.; Li, D. Change characteristics of the advance stress and strata fracture structure of spatial isolated island formed by roof drainage. Processes 2023, 11, 246. [Google Scholar] [CrossRef]
- Zheng, Z.; Tang, H.; Zhang, Q.; Pan, P.; Zhang, X.; Mei, G.; Liu, Z.; Wang, W. True triaxial test and PFC3D-GBM simulation study on mechanical properties and fracture evolution mechanisms of rock under high stresses. Comput. Geotech. 2023, 154, 105136. [Google Scholar] [CrossRef]
- Hudyma, M.; Potvin, Y.H. An engineering approach to seismic risk management in hardrock mines. Rock Mech. Rock Eng. 2009, 43, 891–906. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, H.; Mei, G.; Wang, W.; Liu, H.; Zhang, Q.; Wang, Y. A thermodynamic damage model for 3D stress-induced mechanical characteristics and brittle–ductile transition of rock. Int. J. Damage Mech. 2023, 32, 623–648. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.B.; Mitri, H.S. Evaluation method of rockburst: State-of-the-art literature review. Tunn. Undergr. Space Technol. 2018, 81, 632–659. [Google Scholar] [CrossRef]
- Hoek, E.; Martin, C.D. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Mechanism of brittle fracture of rock, Parts II and III. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1967, 4, 395–430. [Google Scholar] [CrossRef]
- Mendecki, A.J. Seismic Monitoring in Mines; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Mogi, K. Study of elastic shocks caused by the fracture of heterogonous materials, and its relation to the earthquake phenomena. Bull. Earth. Res. Inst. 1962, 40, 125–173. [Google Scholar]
- Kuksenko, V.; Tomilin, N.; Damaskinskaya, E.; Lockner, D. A two-stage model of fracture of rocks. Pure. Appl. Geophys. 1996, 146, 253–263. [Google Scholar] [CrossRef]
- Brune, J. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef]
- Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 1976, 66, 639–666. [Google Scholar] [CrossRef]
Sensor | Orientation | Natural Frequency | Response Range |
---|---|---|---|
Geophone | Uniaxial | 10 Hz | 10~2000 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.-S.; Zhao, Y.-M.; Li, P.-X.; Chen, C.-F.; Zhang, J.-C.; Chen, J.-H. Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses. Processes 2023, 11, 2800. https://doi.org/10.3390/pr11092800
Zhao J-S, Zhao Y-M, Li P-X, Chen C-F, Zhang J-C, Chen J-H. Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses. Processes. 2023; 11(9):2800. https://doi.org/10.3390/pr11092800
Chicago/Turabian StyleZhao, Jin-Shuai, Yue-Mao Zhao, Peng-Xiang Li, Chong-Feng Chen, Jian-Cong Zhang, and Jiang-Hao Chen. 2023. "Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses" Processes 11, no. 9: 2800. https://doi.org/10.3390/pr11092800
APA StyleZhao, J. -S., Zhao, Y. -M., Li, P. -X., Chen, C. -F., Zhang, J. -C., & Chen, J. -H. (2023). Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses. Processes, 11(9), 2800. https://doi.org/10.3390/pr11092800