Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of BiVO4 and Photomodification of Ag and Fe Species
2.2. Preparation of Immobilized BiVO4 Films
2.3. Photocatalytic Experiments
2.4. Characterization of the Photocatalysts
2.4.1. Identification of Crystalline Phases
2.4.2. Characterization of Surface Elemental Composition and Electronic States
2.4.3. Determination of Opto-Electronic Properties
3. Results and Discussion
3.1. Photocatalytic Effectiveness of Fe@BVO and Ag@BVO towards CIP Degradation
3.2. Characterization of the Fe@BVO and Ag@BVO Photocatalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, T.D.; Nguyen, V.-H.; Nanda, S.; Vo, D.-V.N.; Nguyen, V.H.; Van Tran, T.; Nong, L.X.; Nguyen, T.T.; Bach, L.-G.; Abdullah, B.; et al. BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review. Environ. Chem. Lett. 2020, 18, 1779–1801. [Google Scholar] [CrossRef]
- Hooda, A.; Rawat, P.; Vaya, D. Insight into the Synthesis and Photocatalytic Applications of Bismuth Vanadate-based Nanocomposites. Curr. Nanosci. 2023, 19, 697–714. [Google Scholar] [CrossRef]
- Monfort, O.; Plesch, G. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants. Environ. Sci. Pollut. Res. 2018, 25, 19362–19379. [Google Scholar] [CrossRef]
- Sudi, M.S.; Zhao, L.; Dou, Y.; Yang, X.; Wang, Q.; Wang, A.; Zhu, W. Enhanced photoelectrochemical water oxidation of a BiVO4/tetra(amino)phthalocyanine composite photoanode. J. Porphyr. Phthalocyanines 2023, 27, 1434–1440. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, D.; Zhai, J.; Huang, Y.; Ji, H. Charge separation via synergy of homojunction and electrocatalyst in BiVO4 for photoelectrochemical water splitting. Appl. Catal. B Environ. 2023, 334, 122865. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Jae Lee, Y.; Seo, H.; Pollet, B.G. Enhanced photoactivity towards bismuth vanadate water splitting through tantalum doping: An experimental and density functional theory study. J. Colloid Interface Sci. 2023, 650, 94–104. [Google Scholar] [CrossRef]
- Song, S.; Xing, Z.; Zhao, H.; Li, Z. Recent advances in bismuth-based photocatalysts: Environment and energy applications. Green Energy Environ. 2023, 8, 1232–1264. [Google Scholar] [CrossRef]
- Peng, X.; Liu, C.; Zhao, Z.; Hu, F.; Dai, H. Construction of a Z-scheme g-C3N4/NBGO/BiVO4 heterostructure with visible-light driven photocatalytic degradation of tetracycline: Efficiency, reaction pathway and mechanism. Catal. Sci. Technol. 2022, 12, 1339–1358. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Guo, Y.; Shen, M.; Wang, M.; Li, B.; Shi, J. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chem. Eng. J. 2020, 396, 125347. [Google Scholar] [CrossRef]
- Liu, B.; Fang, Y.; Li, Z.; Xu, S. Visible-light nanostructured photocatalysts—A review. J. Nanosci. Nanotechnol. 2015, 15, 889–920. [Google Scholar] [CrossRef]
- Zhou, W.; Xie, Q.; Lian, S. Photoelectrode materials for solar water splitting. Prog. Chem. 2013, 25, 1989–1998. [Google Scholar]
- Fan, H.; Jiang, T.; Li, H.; Wang, D.; Wang, L.; Zhai, J.; He, D.; Wang, P.; Xie, T. Effect of BiVO4 Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 2425–2430. [Google Scholar] [CrossRef]
- Tokunaga, S.; Kato, H.; Kudo, A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13, 4624–4628. [Google Scholar] [CrossRef]
- Kahraman, A.; Barzgar Vishlaghi, M.; Baylam, I.; Sennaroglu, A.; Kaya, S. Roles of Charge Carriers in the Excited State Dynamics of BiVO4 Photoanodes. J. Phys. Chem. C 2019, 123, 28576–28583. [Google Scholar] [CrossRef]
- Kodan, N.; Ahmad, M.; Mehta, B.R. Charge carrier separation and enhanced PEC properties of BiVO4 based heterojunctions having ultrathin overlayers. Int. J. Hydrogen Energy 2021, 46, 189–196. [Google Scholar] [CrossRef]
- Wang, X.; Liao, D.; Yu, H.; Yu, J. Highly efficient BiVO4 single-crystal photocatalyst with selective Ag2O-Ag modification: Orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Trans. 2018, 47, 6370–6377. [Google Scholar] [CrossRef] [PubMed]
- Aramugam, M.; Jagannathan, M.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen. 2018, 555, 47–74. [Google Scholar]
- Grushevskaya, S.; Belyanskaya, I.; Kozaderov, O. Approaches for Modifying Oxide-Semiconductor Materials to Increase the Efficiency of Photocatalytic Water Splitting. Materials 2022, 15, 4915. [Google Scholar] [CrossRef]
- Yin, D.; Ning, X.; Zhang, Q.; Du, P.; Lu, X. Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting. J. Colloid Interface Sci. 2023, 646, 238–244. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Deng, S.; Lin, S. Coupling surface modification with cocatalyst deposition on BiVO4 photoanode to enhance charge transfer for efficient solar-driven water splitting. Int. J. Hydrogen Energy 2023, 48, 24320–24327. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Zhang, J.; Liu, X.; Zhang, K.; Zhang, Y.; Song, X.M. Charge separation at BiVO4/Co3O4 and BiVO4/CoOOH interfaces: Differences between dense and permeable cocatalysts. Appl. Surf. Sci. 2023, 624, 156965. [Google Scholar] [CrossRef]
- Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef]
- Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M.K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. Tailored BiVO4 for enhanced visible-light photocatalytic performance. J. Environ. Chem. Eng. 2021, 9, 106025. [Google Scholar] [CrossRef]
- Sharifi, T.; Jozić, D.; Kovačić, M.; Kušić, H.; Lončarić Božić, A. In-situ high temperature XRD study on thermally induced phase changes of BiVO4: The formation of an iso-type heterojunction. Mater. Lett. 2021, 305, 130816. [Google Scholar] [CrossRef]
- Kohtani, S.; Hiro, J.; Yamamoto, N.; Kudo, A.; Tokumura, K.; Nakagaki, R. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catal. Commun. 2005, 6, 185–189. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Hao, H.; Zhu, Z. Silver-modified specific (040) facet of BiVO4 with enhanced photoelectrochemical performance. Mater. Lett. 2016, 170, 163–166. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liu, Z.; Yan, Y.; Zhu, Z. Preparation of noble metal Ag-modified BiVO4 nanosheets and a study on the degradation performance of tetracyclines. New J. Chem. 2020, 44, 13815–13823. [Google Scholar] [CrossRef]
- Booshehri, A.Y.; Chun-Kiat Goh, S.; Hong, J.; Jiang, R.; Xu, R. Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. J. Mater. Chem. A 2014, 2, 6209–6217. [Google Scholar] [CrossRef]
- Sánchez, O.A.; Rodríguez, J.L.; Barrera-Andrade, J.M.; Borja-Urby, R.; Valenzuela, M.A. High performance of Ag/BiVO4 photocatalyst for 2,4-Dichlorophenoxyacetic acid degradation under visible light. Appl. Catal. A Gen. 2020, 600, 117625. [Google Scholar] [CrossRef]
- Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z. New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts. RSC Adv. 2016, 6, 98788–98796. [Google Scholar] [CrossRef]
- Ma, C.; Lee, J.; Kim, Y.; Cheol Seo, W.; Jung, H.; Yang, W. Rational design of α-Fe2O3 nanocubes supported BiVO4 Z-scheme photocatalyst for photocatalytic degradation of antibiotic under visible light. J. Colloid Interface Sci. 2021, 581, 514–522. [Google Scholar] [CrossRef]
- Oharisi, O.O.L.; Ncube, S.; Nyoni, H.; Madikizela, M.L.; Olowoyo, O.J.; Maseko, B.R. Occurrence and prevalence of antibiotics in wastewater treatment plants and effluent receiving rivers in South Africa using UHPLC-MS determination. J. Environ. Manag. 2023, 345, 118621. [Google Scholar] [CrossRef]
- Zagui, G.S.; Moreira, N.C.; Santos, D.V.; Paschoalato, C.F.P.R.; Sierra, J.; Nadal, M.; Domingo, J.L.; Darini, A.L.C.; Andrade, L.N.; Segura-Muñoz, S.I. Multidrug-resistant Enterobacter spp. in wastewater and surface water: Molecular characterization of β-lactam resistance and metal tolerance genes. Environ. Res. 2023, 233, 116443. [Google Scholar] [CrossRef]
- Kete, M.; Pavlica, E.; Fresno, F.; Bratina, G.; Štangar, U.L. Highly active photocatalytic coatings prepared by a low-temperature method. Environ. Sci. Pollut. Res. 2014, 21, 11238–11249. [Google Scholar] [CrossRef]
- Sharifi, T.; Kovačić, M.; Belec, M.; Perović, K.; Popović, M.; Radić, G.; Žener, B.; Pulitika, A.; Kraljić Roković, M.; Lavrenčič Štangar, U.; et al. Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 and rGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution. Molecules 2022, 27, 7806. [Google Scholar] [CrossRef]
- Radić, G.; Perović, K.; Sharifi, T.; Kušić, H.; Kovačić, M.; Kraljić Roković, M. Electrochemical Characterisation of the Photoanode Containing TiO2 and SnS2 in the Presence of Various Pharmaceuticals. Catalysts 2023, 13, 909. [Google Scholar] [CrossRef]
- Radić, G.; Šajnović, I.; Petrović, Ž.; Roković, M.K. Reduced graphene oxide/α-Fe2O3 fibres as active material for supercapacitor application. Croat. Chem. Acta 2018, 91, 481–490. [Google Scholar] [CrossRef]
- Torniainen, K.; Tammilehto, S.; Ulvi, V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int. J. Pharm. 1996, 132, 53–61. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, Y.; Liu, F.; Tian, Y.; Wang, Q.; Zeng, D.; Shen, T.; Song, J.; Guan, R.; Yuan, H. The {010} and {110} facets of BiVO4 were selectively modified by Cu and g-C3N4 to enhance its visible light photocatalytic performance. Sep. Purif. Technol. 2023, 323, 124471. [Google Scholar] [CrossRef]
- Talasila, G.; Sachdev, S.; Srivastva, U.; Saxena, D.; Ramakumar, S.S.V. Modified synthesis of BiVO4 and effect of doping (Mo or W) on its photoelectrochemical performance for water splitting. Energy Rep. 2020, 6, 1963–1972. [Google Scholar] [CrossRef]
- Tan, H.L.; Suyanto, A.; Denko, A.T.D.; Saputera, W.H.; Amal, R.; Osterloh, F.E.; Ng, Y.H. Enhancing the Photoactivity of Faceted BiVO4 via Annealing in Oxygen-Deficient Condition. Part. Part. Syst. Charact. 2017, 34, 1600290. [Google Scholar] [CrossRef]
- Dall’Antonia, L.H.; de Tacconi, N.R.; Chanmanee, W.; Timmaji, H.; Myung, N.; Rajeshwar, K. Electrosynthesis of Bismuth Vanadate Photoelectrodes. Electrochem. Solid-State Lett. 2010, 13, D29. [Google Scholar] [CrossRef]
- Kim, J.; Duy, L.T.; Ahn, B.; Seo, H. Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. J. Asian Ceram. Soc. 2020, 8, 211–221. [Google Scholar] [CrossRef]
- Kim, S.H.; Choi, W.I.; Kim, K.H.; Yang, D.J.; Heo, S.; Yun, D.-J. Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes. Sci. Rep. 2016, 6, 33074. [Google Scholar] [CrossRef]
- Sundaresan, V.; Monaghan, J.W.; Willets, K.A. Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution. J. Phys. Chem. C 2018, 122, 3138–3145. [Google Scholar] [CrossRef]
- Mallick, K.; Witcomb, M.; Scurrell, M. Silver nanoparticle catalysed redox reaction: An electron relay effect. Mater. Chem. Phys. 2006, 97, 283–287. [Google Scholar] [CrossRef]
- Ivanišević, I.; Kovačić, M.; Zubak, M.; Ressler, A.; Krivačić, S.; Katančić, Z.; Gudan Pavlović, I.; Kassal, P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. Nanomaterials 2022, 12, 4252. [Google Scholar] [CrossRef]
- Nikačević, P.; Hegner, F.S.; Galán-Mascarós, J.R.; López, N. Influence of Oxygen Vacancies and Surface Facets on Water Oxidation Selectivity toward Oxygen or Hydrogen Peroxide with BiVO4. ACS Catal. 2021, 11, 13416–13422. [Google Scholar] [CrossRef]
- Han, G.; Kim, J.Y.; Kim, K.-J.; Lee, H.; Kim, Y.-M. Controlling surface oxygen vacancies in Fe-doped TiO2 anatase nanoparticles for superior photocatalytic activities. Appl. Surf. Sci. 2020, 507, 144916. [Google Scholar] [CrossRef]
- Wang, W.; Strohbeen, P.J.; Lee, D.; Zhou, C.; Kawasaki, J.K.; Choi, K.-S.; Liu, M.; Galli, G. The Role of Surface Oxygen Vacancies in BiVO4. Chem. Mater. 2020, 32, 2899–2909. [Google Scholar] [CrossRef]
- Zhang, W.; Song, L.; Cen, J.; Liu, M. Mechanistic Insights into Defect-Assisted Carrier Transport in Bismuth Vanadate Photoanodes. J. Phys. Chem. C 2019, 123, 20730–20736. [Google Scholar] [CrossRef]
- Qiu, W.; Xiao, S.; Ke, J.; Wang, Z.; Tang, S.; Zhang, K.; Qian, W.; Huang, Y.; Huang, D.; Tong, Y.; et al. Freeing the Polarons to Facilitate Charge Transport in BiVO4 from Oxygen Vacancies with an Oxidative 2D Precursor. Angew. Chem. Int. Ed. 2019, 58, 19087–19095. [Google Scholar] [CrossRef]
- Fan, H.; Yi, G.; Zhang, Z.; Zhang, X.; Li, P.; Zhang, C.; Chen, L.; Zhang, Y.; Sun, Q. Fabrication of Ag particles deposited BiVO4 photoanode for significantly efficient visible-light driven photoelectrocatalytic degradation of β-naphthol. J. Environ. Chem. Eng. 2022, 10, 107221. [Google Scholar] [CrossRef]
- Chatchai, P.; Kishioka, S.-y.; Murakami, Y.; Nosaka, A.Y.; Nosaka, Y. Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochim. Acta 2010, 55, 592–596. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Sun, W.; Zhou, X. Research progress on the formation, detection methods and application in photocatalytic reduction of CO2 of oxygen vacancy. J. CO2 Util. 2023, 67, 102344. [Google Scholar] [CrossRef]
- Orimolade, B.O.; Zwane, B.N.; Koiki, B.A.; Tshwenya, L.; Peleyeju, G.M.; Mabuba, N.; Zhou, M.; Arotiba, O.A. Solar photoelectrocatalytic degradation of ciprofloxacin at a FTO/BiVO4/MnO2 anode: Kinetics, intermediate products and degradation pathway studies. J. Environ. Chem. Eng. 2020, 8, 103607. [Google Scholar] [CrossRef]
- Carrasco, E.; Stockert, J.C.; Juarranz, Á.; Blázquez-Castro, A. Plasmonic Hot-Electron Reactive Oxygen Species Generation: Fundamentals for Redox Biology. Front. Chem. 2020, 8, 591325. [Google Scholar] [CrossRef] [PubMed]
Spectra | Binding Energy in Sample, eV | |||||
---|---|---|---|---|---|---|
1% Ag@BVO | 8% Ag@BVO | 15% Ag@BVO | 5% Fe@BVO | 27.5% Fe@BVO | 50% Fe@BVO | |
O 1s | 531.87 | 531.96 | 531.77 | 532.21 | 531.62 | 531.99 |
Bi 4f5/2 | 163.87 | 163.56 | 163.97 | 163.81 | 163.42 | 163.99 |
Ag 3d | 367.27 | 367.16 | 366.97 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, M.; Sharifi, T.; Kraljić Roković, M.; Genorio, B.; Žener, B.; Peternel, I.; Lavrenčič Štangar, U.; Kušić, H.; Lončarić Božić, A.; Kovačić, M. Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification. Processes 2023, 11, 2803. https://doi.org/10.3390/pr11092803
Popović M, Sharifi T, Kraljić Roković M, Genorio B, Žener B, Peternel I, Lavrenčič Štangar U, Kušić H, Lončarić Božić A, Kovačić M. Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification. Processes. 2023; 11(9):2803. https://doi.org/10.3390/pr11092803
Chicago/Turabian StylePopović, Marin, Tayebeh Sharifi, Marijana Kraljić Roković, Boštjan Genorio, Boštjan Žener, Igor Peternel, Urška Lavrenčič Štangar, Hrvoje Kušić, Ana Lončarić Božić, and Marin Kovačić. 2023. "Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification" Processes 11, no. 9: 2803. https://doi.org/10.3390/pr11092803
APA StylePopović, M., Sharifi, T., Kraljić Roković, M., Genorio, B., Žener, B., Peternel, I., Lavrenčič Štangar, U., Kušić, H., Lončarić Božić, A., & Kovačić, M. (2023). Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification. Processes, 11(9), 2803. https://doi.org/10.3390/pr11092803