Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning Model Framework
2.2. Dataset Establishment
2.3. Feature Construction and Selection
2.4. Machine Learning Model and Feature Analysis
2.5. Composition Optimization
3. Results
3.1. Classification Model Evaluation and Feature Selection
3.2. Regression Model Evaluation and Feature Selection
3.3. Analysis of Key Features
- (1)
- Feature importance analysis
- (2)
- Analysis of PDP and ICE plots
3.4. Composition Optimization Design
4. Conclusions
- (1)
- By developing a discriminative model based on alloy composition, the XGC model exhibits superior performance compared to the other three commonly employed classification models. With an impressive classification accuracy of 98%, it effectively determines GFA.
- (2)
- In the context of alloys capable of forming metallic glasses, the ETR algorithm is utilized to establish predictive models for Tl, Tx, and Tg. The R2 values associated with these models all exceed 0.91, thereby demonstrating their exceptional predictive accuracy.
- (3)
- To enhance the simplicity of the models, various feature selection techniques, including variance, correlation, embedding, recursive, and exhaustive methods, are employed. These techniques enable the identification of crucial features for Tl, Tx, and Tg. While ensuring the preservation of model accuracy, the dimensionality of the features is effectively reduced, resulting in the final selection of four key features for each property.
- (4)
- The interpretability analysis of the predictive models for Tl, Tx, and Tg is performed by employing feature importance, PDP, and ICE. Through this comprehensive analysis, the influence patterns of each key feature on the target variables are uncovered, offering valuable insights for future alloy design. These findings serve as crucial reference directions for subsequent endeavors in alloy design.
- (5)
- In the case of the Zr-Cu-Al-Ni system, the GFA of MGs is evaluated through the parameter γ(Tx/(Tl + Tg)). The primary goal is to maximize γ by extensively exploring the compositional space of the Zr-Cu-Al-Ni system using a genetic algorithm. This innovative approach is aimed at enhancing the efficiency of MG development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egami, T.; Iwashita, T.; Dmowski, W. Mechanical Properties of Metallic Glasses. Metals 2013, 3, 77–113. [Google Scholar] [CrossRef]
- Xu, D.; Lohwongwatana, B.; Duan, G.; Johnson, W.L.; Garland, C. Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 2004, 52, 2621–2624. [Google Scholar] [CrossRef]
- Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–656. [Google Scholar] [CrossRef]
- Peter, W.H.; Buchanan, R.A.; Liu, C.T.; Liaw, P.K.; Morrison, M.L.; Horton, J.A.; Carmichael, C.A.; Wright, J.L. Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 2002, 10, 1157–1162. [Google Scholar] [CrossRef]
- Jiao, Z.B.; Li, H.X.; Gao, J.E.; Wu, Y.; Lu, Z.P. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics 2011, 19, 1502–1508. [Google Scholar] [CrossRef]
- Reddy, G.J.; Kandavalli, M.; Saboo, T.; Rao, A.K.P. Prediction of Glass Forming Ability of Bulk Metallic Glasses Using Machine Learning. Integr. Mater. Manuf. Innov. 2021, 10, 610–626. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Sun, Y.; Zhu, S.; Zhang, T.; Guan, S. Prediction of glass-forming ability in ternary alloys based on machine learning method. J. Non-Cryst. Solids 2023, 616, 122476. [Google Scholar] [CrossRef]
- Majid, A.; Ahsan, S.B.; Tariq, N.u.H. Modeling glass-forming ability of bulk metallic glasses using computational intelligent techniques. Appl. Soft Comput. 2015, 28, 569–578. [Google Scholar] [CrossRef]
- Peng, L.; Long, Z.; Zhao, M. Determination of glass forming ability of bulk metallic glasses based on machine learning. Comput. Mater. Sci. 2021, 195, 110480. [Google Scholar] [CrossRef]
- Xiong, J.; Shi, S.; Zhang, T. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 2020, 187, 108378. [Google Scholar] [CrossRef]
- Long, Z.; Liu, W.; Zhong, M.; Zhang, Y.; Zhao, M.; Liao, G.; Chen, Z. A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses. J. Therm. Anal. Calorim. 2018, 132, 1645–1660. [Google Scholar] [CrossRef]
- Mastropietro, D.G.; Moya, J.A. Design of Fe-based bulk metallic glasses for maximum amorphous diameter (Dmax) using machine learning models. Comput. Mater. Sci. 2021, 188, 110230. [Google Scholar] [CrossRef]
- Lu, F.; Liang, Y.; Wang, X.; Gao, T.; Chen, Q.; Liu, Y.; Zhou, Y.; Yuan, Y.; Liu, Y. Prediction of amorphous forming ability based on artificial neural network and convolutional neural network. Comput. Mater. Sci. 2022, 210, 111464. [Google Scholar] [CrossRef]
- Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 1969, 10, 473–488. [Google Scholar] [CrossRef]
- Chen, H.S. Thermodynamic considerations on the formation and stability of metallic glasses. Scr. Metall. 1974, 22, 1505–1511. [Google Scholar]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Lu, Z.P.; Liu, C.T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002, 50, 3501–3512. [Google Scholar] [CrossRef]
- Ward, L.; O’Keeffe, S.C.; Stevick, J.; Jelbert, G.R.; Aykol, M.; Wolverton, C. A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 2018, 159, 102–111. [Google Scholar] [CrossRef]
- Yu, J.Z. Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Huang, X.; Chang, C.; Chang, Z.; Wang, X.; Cao, Q.; Shen, B.; Inoue, A.; Jiang, J. Formation of bulk metallic glasses in the Fe–M–Y–B (M = transition metal) system. J. Alloys Compd. 2008, 460, 708–713. [Google Scholar] [CrossRef]
- Kato, H.; Chen, H.S.; Inoue, A. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses. Scr. Mater. 2008, 58, 1106–1109. [Google Scholar] [CrossRef]
- An, W.; Cai, A.; Li, J.; Luo, Y.; Li, T.; Xiong, X.; Liu, Y.; Pan, Y. Glass formation and non-isothermal crystallization of Zr62.5Al12.1Cu7.95Ni17.45 bulk metallic glass. J. Non-Cryst. Solids 2009, 355, 1703–1706. [Google Scholar] [CrossRef]
- González, S.; Figueroa, I.; Todd, I. Influence of minor alloying additions on the glass-forming ability of Mg–Ni–La bulk metallic glasses. J. Alloys Compd. 2009, 484, 612–618. [Google Scholar] [CrossRef]
- Long, Z.; Wei, H.; Ding, Y.; Zhang, P.; Xie, G.; Inoue, A. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloys Compd. 2009, 475, 207–219. [Google Scholar] [CrossRef]
- Huang, X.; Chang, C.; Chang, Z.; Inoue, A.; Jiang, J. Glass forming ability, mechanical and magnetic properties in Fe–W–Y–B alloys. Mater. Sci. Eng. A 2010, 527, 1952–1956. [Google Scholar] [CrossRef]
- Guo, S.-f.; Ye, S. Design of high strength Fe-(P, C)-based bulk metallic glasses with Nb addition. Trans. Nonferrous Met. Soc. China 2011, 21, 2433–2437. [Google Scholar] [CrossRef]
- Hua, N.; Li, R.; Wang, H.; Wang, J.; Li, Y.; Zhang, T. Formation and mechanical properties of Ni-free Zr-based bulk metallic glasses. J. Alloys Compd. 2011, 509, S175–S178. [Google Scholar] [CrossRef]
- Kucuk, I.; Aykol, M.; Uzun, O.; Yildirim, M.; Kabaer, M.; Duman, N.; Yilmaz, F.; Erturk, K.; Akdeniz, M.V.; Mekhrabov, A.O. Effect of (Mo, W) substitution for Nb on glass forming ability and magnetic properties of Fe–Co-based bulk amorphous alloys fabricated by centrifugal casting. J. Alloys Compd. 2011, 509, 2334–2337. [Google Scholar] [CrossRef]
- Sheng, G.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 2011, 21, 433–446. [Google Scholar]
- Samavatian, M.; Gholamipour, R.; Samavatian, V. Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 2021, 186, 110025. [Google Scholar] [CrossRef]
- Deshmukh, A.A.; Khond, A.A.; Bhatt, J.G.; Palikundwar, U.A. Understanding the role of Er on glass forming ability parameters and critical cooling rate in Fe–based multicomponent bulk metallic glasses. J. Alloys Compd. 2020, 819, 152938. [Google Scholar] [CrossRef]
- Li, B.; Sun, W.C.; Qi, H.N.; Lv, J.W.; Wang, F.L.; Ma, M.Z.; Zhang, X.Y. Effects of Ag substitution for Fe on glass-forming ability, crystallization kinetics, and mechanical properties of Ni-free Zr-Cu-Al-Fe bulk metallic glasses. J. Alloys Compd. 2020, 827, 154385. [Google Scholar] [CrossRef]
- Jia, H.; Xie, X.; Zhao, L.; Wang, J.; Gao, Y.; Dahmen, K.A.; Li, W.; Liaw, P.K.; Ma, C. Effects of similar-element-substitution on the glass-forming ability and mechanical behaviors of Ti-Cu-Zr-Pd bulk metallic glasses. J. Mater. Res. Technol. 2018, 7, 261–269. [Google Scholar] [CrossRef]
- Hu, F.; Yuan, C.; Luo, Q.; Yang, W.; Shen, B. Effects of heavy rare-earth addition on glass-forming ability, thermal, magnetic, and mechanical properties of Fe-RE-B-Nb (RE = Dy, Ho, Er or Tm) bulk metallic glass. J. Non-Cryst. Solids 2019, 525, 119681. [Google Scholar] [CrossRef]
- Hu, F.; Luo, Q.; Shen, B. Thermal, magnetic and magnetocaloric properties of FeErNbB metallic glasses with high glass-forming ability. J. Non-Cryst. Solids 2019, 512, 184–188. [Google Scholar] [CrossRef]
- Hasani, S.; Rezaei-Shahreza, P.; Seifoddini, A.; Hakimi, M. Enhanced glass forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu. J. Non-Cryst. Solids 2018, 497, 40–44. [Google Scholar] [CrossRef]
- Gu, J.-L.; Shao, Y.; Yao, K.-F. The novel Ti-based metallic glass with excellent glass forming ability and an elastic constant dependent glass forming criterion. Materialia 2019, 8, 100433. [Google Scholar] [CrossRef]
- Ge, J.; He, H.; Zhou, J.; Lu, C.; Dong, W.; Liu, S.; Lan, S.; Wu, Z.; Wang, A.; Wang, L.; et al. In-situ scattering study of a liquid-liquid phase transition in Fe-B-Nb-Y supercooled liquids and its correlation with glass-forming ability. J. Alloys Compd. 2019, 787, 831–839. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.; Han, J.; Yang, S.; Xie, G.; Jiang, H.; Chen, Y.; Liu, X. Formation of Zr-based bulk metallic glass with large amount of yttrium addition. Intermetallics 2018, 92, 55–61. [Google Scholar] [CrossRef]
- Yang, G.; Lian, J.; Wang, R.; Wu, N. Similar atom substitution effect on the glass forming ability in (La Ce) Al-(Ni Co) bulk metallic glasses using electron structure guiding. J. Alloys Compd. 2019, 786, 250–256. [Google Scholar] [CrossRef]
- Yang, Y.J.; Cheng, B.Y.; Lv, J.W.; Li, B.; Ma, M.Z.; Zhang, X.Y.; Li, G.; Liu, R.P. Effect of Ag substitution for Ti on glass-forming ability, thermal stability and mechanical properties of Zr-based bulk metallic glasses. Mater. Sci. Eng. A 2019, 746, 229–238. [Google Scholar] [CrossRef]
- Wada, T.; Jiang, J.; Yubuta, K.; Kato, H.; Takeuchi, A. Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability. Materialia 2019, 7, 100372. [Google Scholar] [CrossRef]
- Dong, Q.; Pan, Y.J.; Tan, J.; Qin, X.M.; Li, C.J.; Gao, P.; Feng, Z.X.; Calin, M.; Eckert, J. A comparative study of glass-forming ability, crystallization kinetics and mechanical properties of Zr55Co25Al20 and Zr52Co25Al23 bulk metallic glasses. J. Alloys Compd. 2019, 785, 422–428. [Google Scholar] [CrossRef]
- Xue, L.; Li, J.; Yang, W.; Yuan, C.; Shen, B. Effect of Fe substitution on magnetocaloric effects and glass-forming ability in Gd-based metallic glasses. Intermetallics 2018, 93, 67–71. [Google Scholar] [CrossRef]
- Cao, D.; Wu, Y.; Liu, X.J.; Wang, H.; Wang, X.Z.; Lu, Z.P. Enhancement of glass-forming ability and plasticity via alloying the elements having positive heat of mixing with Cu in Cu48Zr48Al4 bulk metallic glass. J. Alloys Compd. 2019, 777, 382–391. [Google Scholar] [CrossRef]
- Malekan, M.; Rashidi, R.; Shabestari, S.G. Mechanical properties and crystallization kinetics of Er-containing Cu-Zr-Al bulk metallic glasses with excellent glass forming ability. Vacuum 2020, 174, 109223. [Google Scholar] [CrossRef]
- Saini, S.; Srivastava, A.P.; Neogy, S. The effect of Ag addition on the crystallization kinetics and glass forming ability of Zr-(CuAg)-Al bulk metallic glass. J. Alloys Compd. 2019, 772, 961–967. [Google Scholar] [CrossRef]
- Liang, D.-d.; Wei, X.; Chang, C.; Li, J.; Wang, X.; Shen, J. Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass. J. Alloys Compd. 2018, 731, 1146–1150. [Google Scholar] [CrossRef]
- Rahvard, M.M.; Tamizifar, M.; Boutorabi, S.M.A. Zr-Co(Cu)-Al bulk metallic glasses with optimal glass-forming ability and their compressive properties. Trans. Nonferrous Met. Soc. China 2018, 28, 1543–1552. [Google Scholar] [CrossRef]
- Zhang, T.; Long, Z.; Peng, L.; Li, Z. Prediction of glass forming ability of bulk metallic glasses based on convolutional neural network. J. Non-Cryst. Solids 2022, 595, 121846. [Google Scholar] [CrossRef]
- Ma, S.; Ran, Y.; Liang, X.; Jiang, L.; Li, Y.; Wang, X.; Yao, M.; Zhang, W. Unveiling the role of Y content in glass-forming ability and soft magnetic properties of Co-Y-B metallic glasses by experiment and ab initio molecular dynamics simulations. J. Alloys Compd. 2022, 902, 163637. [Google Scholar] [CrossRef]
- Malekan, M.; Rashidi, R.; Shabestari, S.G.; Eckert, J. Thermodynamic and kinetic interpretation of the glass-forming ability of Y-containing Cu-Zr-Al bulk metallic glasses. J. Non-Cryst. Solids 2022, 576, 121266. [Google Scholar] [CrossRef]
- Wen, S.; Dai, C.; Mao, W.; Zhao, Y.; Han, G.; Wang, X. Effects of Ag and Co microalloying on glass-forming abilities and plasticity of Cu-Zr-Al based bulk metallic glasses. Mater. Des. 2022, 220, 110896. [Google Scholar] [CrossRef]
- Ren, J.; Li, Y.; Liang, X.; Kato, H.; Zhang, W. Role of Fe substitution for Co on thermal stability and glass-forming ability of soft magnetic Co-based Co-Fe-B-P-C metallic glasses. Intermetallics 2022, 147, 107598. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, J.; Wang, X.; Umetsu, R.Y.; Jiang, L.; Zhang, W.; Yao, M. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co–B Metallic Glasses with Y and Nb Addition. Acta Metall. Sin. (Engl. Lett.) 2023, 36, 962–972. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, W.; Cheng, S.; Liu, X.; Yang, X.; Tian, J.; Ma, J.; Shen, J. Improving the glass forming ability and plasticity of ZrCuNiAlTi metallic glass by substituting Zr with Sc. J. Alloys Compd. 2022, 909, 164679. [Google Scholar] [CrossRef]
- Ohashi, Y.; Wada, T.; Kato, H. High-entropy design and its influence on glass-forming ability in Zr–Cu-based metallic glass. J. Alloys Compd. 2022, 915, 165366. [Google Scholar] [CrossRef]
- Liu, X.W.; Long, Z.L.; Zhang, W.; Yang, L.M. Key feature space for predicting the glass-forming ability of amorphous alloys revealed by gradient boosted decision trees model. J. Alloys Compd. 2022, 901, 163606. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Li, H.; Zhang, H.; Zhu, Z. The effect of minor alloying on the glass forming ability and crystallization reaction of Ti32.8Zr30.2Cu9M5.3Be22.7 (M = Fe, Co, and Ni) bulk metallic glass. J. Mater. Res. Technol. 2022, 18, 3035–3043. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, C.; Shi, Z.; Zhang, H.; Ma, M. Effect of Fe addition on the glass-forming ability, stability, and mechanical properties of Zr50Cu34-Fe Al8Ag8 metallic glasses. J. Alloys Compd. 2022, 929, 167334. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Qu, Y.; Hu, L.; Qi, L.; Qu, F.; He, S.; Liu, X. Effect of Yttrium Doping on Glass-Forming Ability, Thermal Stability, and Corrosion Resistance of Zr50.7Cu28Ni9Al12.3 Bulk Metallic Glass. Metals 2023, 13, 521. [Google Scholar] [CrossRef]
- Ma, X.; Li, Q.; Xie, L.; Chang, C.; Li, H. Effect of Ni addition on the properties of CoMoPB bulk metallic glasses. J. Non-Cryst. Solids 2022, 587, 121573. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Liang, X.; He, J.; Shao, W.; Li, K.; Chen, J. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr54Cu29Al10Ni7 Bulk Metallic Glass. Metals 2022, 15, 2516. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tao, P.; Long, Z.; Xiong, Z.; Zhu, X.; Xu, X.; Huang, Z.; Deng, H.; Lin, H.; Li, W.; et al. Effect of Ti addition on mechanical properties of Zr-based bulk metallic glasses. J. Non-Cryst. Solids 2023, 601, 122075. [Google Scholar] [CrossRef]
- Peng, J.; Tang, B.; Wang, Q.; Bai, C.; Wu, Y.; Chen, Q.; Li, D.; Ding, D.; Xia, L.; Guo, X.; et al. Effect of heavy rare-earth (Dy, Tb, Gd) addition on the glass-forming ability and magneto-caloric properties of Fe89Zr7B4 amorphous alloy. J. Alloys Compd. 2022, 925, 166707. [Google Scholar] [CrossRef]
- Diao, Y.; Yan, L.; Gao, K. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. Mater. Des. 2021, 198, 109326. [Google Scholar] [CrossRef]
- Lix, L.M.; Keselman, J.C.; Keselman, H.J. Consequences of Assumption Violations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test. Rev. Educ. Res. 1996, 66, 579–619. [Google Scholar]
- Sekeh, S.Y.; Hero, A.O. Feature Selection For Mutlti-Labeled Variables Via Dependency Maximization. In Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Brighton, UK, 12–17 May 2019; pp. 3127–3131. [Google Scholar]
- Louw, N.; Steel, S.J. Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination. Comput. Stat. Data Anal. 2005, 51, 2043–2055. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Chang, Q. Feature Selection Methods for Big Data Bioinformatics: A Survey from the Search Perspective. Methods 2016, 111, 21–31. [Google Scholar] [CrossRef]
- Islam, N.; Huang, W.; Zhuang, H.L. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 2018, 150, 230–235. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, T.; Yan, Z.; Yu, T.; Duan, J.; Xiao, Y.; Wu, K. The effect of element characteristics on bainite transformation start temperature using a machine learning approach. J. Mater. Sci. 2023, 58, 443–456. [Google Scholar] [CrossRef]
- Meredig, B.; Agrawal, A.; Kirklin, S.; Saal, J.E.; Doak, J.W.; Thompson, A.; Zhang, K.; Choudhary, A.; Wolverton, C. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 2014, 89, 094104. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef]
- Seibold, H.; Zeileis, A.; Hothorn, T. Model-Based Recursive Partitioning for Subgroup Analyses. Int. Stat. Rev. 2016, 12, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Li, L.; Cheng, L.; Chen, X.; Wu, K. New insight in predicting martensite start temperature in steels. J. Mater. Sci. 2022, 57, 11392–11410. [Google Scholar] [CrossRef]
- Chand, S.; Wagner, M. Evolutionary many-objective optimization: A quick-start guide. Surv. Oper. Res. Manag. Sci. 2015, 20, 35–42. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Cai, W.; Yang, J.; Su, H. Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm. Materials 2023, 16, 5633. [Google Scholar] [CrossRef]
- Lu, Z.P.; Tan, H.; Ng, S.C.; Li, Y. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scr. Mater. 2000, 42, 667–673. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, J.; Zhang, D.; Fan, H.; Sun, J.; McCartney, D.G. A new criterion for evaluating the glass-forming ability of bulk metallic glasses. Mater. Sci. Eng. A 2006, 433, 155–160. [Google Scholar] [CrossRef]
- Yuan, Z.-Z.; Bao, S.-L.; Lu, Y.; Zhang, D.-P.; Yao, L. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys. J. Alloys Compd. 2008, 459, 251–260. [Google Scholar] [CrossRef]
- Ji, X.-l.; Pan, Y. A thermodynamic approach to assess glass-forming ability of bulk metallic glasses. Trans. Nonferrous Met. Soc. China 2009, 19, 1271–1279. [Google Scholar] [CrossRef]
- Mondal, K.; Murty, B.S. On the parameters to assess the glass forming ability of liquids. J. Non-Cryst. Solids 2005, 351, 1366–1371. [Google Scholar] [CrossRef]
- Du, X.H.; Huang, J.C.; Liu, C.T.; Lu, Z.P. New criterion of glass forming ability for bulk metallic glasses. J. Appl. Phys. 2007, 101, 086108. [Google Scholar] [CrossRef]
- Błyskun, P.; Maj, P.; Kowalczyk, M.; Latuch, J.; Kulik, T. Relation of various GFA indicators to the critical diameter of Zr-based BMGs. J. Alloys Compd. 2015, 625, 13–17. [Google Scholar] [CrossRef]
- Deng, R.; Long, Z.; Peng, L.; Kuang, D.; Ren, B. A new mathematical expression for the relation between characteristic temperature and glass-forming ability of metallic glasses. J. Non-Cryst. Solids 2020, 533, 119829. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. New glass forming ability criterion derived from cooling consideration. Intermetallics 2010, 18, 2065–2068. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, T.-Y.; Shi, S.-Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 2019, 9, 576–585. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Ganguly, S.; Dey, P.; Chattopadhyay, P.P. Evolution of glass forming ability indicator by genetic programming. Comput. Mater. Sci. 2016, 118, 56–65. [Google Scholar] [CrossRef]
- Long, T.; Long, Z.; Pang, B.; Li, Z.; Liu, X. Overcoming the challenge of the data imbalance for prediction of the glass forming ability in bulk metallic glasses. Mater. Today Commun. 2023, 35, 105610. [Google Scholar] [CrossRef]
- Greer, A.L. Confusion by design. Nature 1993, 366, 303–304. [Google Scholar] [CrossRef]
- Qiang, J.-B.; Wang, D.-H.; Bao, C.-M.; Wang, Y.-M.; Xu, W.-P.; Song, M.-L.; Dong, C. Formation rule for Al-based ternary quasi-crystals: Example of Al–Ni–Fe decagonal phase. J. Mater. Res. 2001, 16, 2653–2660. [Google Scholar] [CrossRef]
- Wang, Y.M.; Qiang, J.B.; Wong, C.H.; Shek, C.H.; Dong, C. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion. J. Mater. Res. 2003, 18, 642–648. [Google Scholar] [CrossRef]
- Boer, F.R.d.; Mattens, W.C.M.; Boom, R.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals. Transition Metal Alloys; North-Holland: Amsterdam, The Netherlands, 1988; Volume 1. [Google Scholar]
- Miedema, A.R.; de Châtel, P.F.; de Boer, F.R. Cohesion in alloys—Fundamentals of a semi-empirical model. Physica B+C 1980, 100, 1–28. [Google Scholar] [CrossRef]
Feature Name | Description | Feature Name | Description |
---|---|---|---|
Number | Atomic number | N(s,p,d,f) valence | Number of electrons in (s,p,d,f) level |
Mendeleev number | Mendeleev number | N(s,p,d,f) unfilled | Number of unfilled electrons in (s,p,d,f) energy level |
Atomic weight | Atomic weight | N unfilled | Number of unfilled energy layer electrons |
Melting temperature | Melting point | GS volume_pa | Average volume of atoms |
Column | Column of the element | GS bandgap | Band gap of elements |
Row | Row of the element | GS magmom | Magnetic moment of element |
Covalent radius | Covalent bond radius | Space group number | Group serial number |
Electronegativity | Electronegativity of elements | N valence | Energy layer electron number |
Actual | Predicted | |
---|---|---|
Positive | Negative | |
Positive | TP | FN |
Negative | FP | TN |
No | Criteria | Formula | R2 | Ref. |
---|---|---|---|---|
1 | Trg | Trg = Tg/Tl | 0.24168 | [80] |
2 | δ | δ = Tx/(Tl − Tg) | 0.34638 | [81] |
3 | βr | βr = (TxTg)/(Tl − Tx)2 | 0.45692 | [82] |
4 | w | w = Tl(Tl + Tx)/[Tx(Tl − Tx)] | 0.48693 | [83] |
5 | ΔTx | ΔTx = Tx − Tg | 0.44805 | [16] |
6 | γ | γ = Tx/(Tg + Tl) | 0.50375 | [17] |
7 | βl | βl = Tx/Tg + Tg/Tl | 0.51967 | [84] |
8 | γm | γm = (2Tx − Tg)/Tl | 0.52861 | [85] |
9 | υ | υ = TxTg(Tx − Tg)/(Tl − Tx)3 | 0.59435 | [86] |
10 | wB | wB = (2Tx − Tg)/(Tl + Tx) | 0.53842 | [87] |
11 | γc | γc = (3Tx − 2Tg)/Tl | 0.55126 | [88] |
12 | γn | (5Tx − 3Tg)/Tl | 0.26394 | [89] |
13 | w1 | Tg/Tx − 2Tg/(Tg + Tl) | 0.24006 | [24] |
14 | χ | χ = [(Tx − Tg)/(Tl − Tx)][Tx/(Tl − Tx)]1.47 | 0.60217 | [90] |
15 | Gp | Gp = Tg(Tx − Tg)/(Tl − Tx)2 | 0.5999 | [6] |
16 | Dmax | - | 0.70566 | [9] |
17 | Dmax | - | 0.795 | [91] |
Key Feature | Description | |
---|---|---|
Tl | Mean GSvolume_pa | Mean atomic volume |
Mean Electronegativity | Average electronegativity of elements | |
Mean Gsmagmom | Average magnetic moment of elements | |
Avg_dev MendeleevNumber | Average deviation of Mendeleev number | |
Tx | Mean Electronegativity | Average electronegativity of elements |
Avg_dev MendeleevNumber | Average deviation of Mendeleev number | |
Mean GSvolume_pa | Mean atomic volume | |
Mean NdUnfilled | Average orbital number of electrons in d layer that are not filled | |
Tg | Mean MeltingT | Average melting point of elements |
Mean Column | Mean column of elements | |
Mean Gsmagmom | Average magnetic moment of elements | |
Mean NdUnfilled | Average orbital number of electrons in d layer that are not filled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, X.; Cai, W.; He, Y.; Su, H. Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass. Processes 2023, 11, 2806. https://doi.org/10.3390/pr11092806
Liu C, Wang X, Cai W, He Y, Su H. Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass. Processes. 2023; 11(9):2806. https://doi.org/10.3390/pr11092806
Chicago/Turabian StyleLiu, Chengcheng, Xuandong Wang, Weidong Cai, Yazhou He, and Hang Su. 2023. "Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass" Processes 11, no. 9: 2806. https://doi.org/10.3390/pr11092806
APA StyleLiu, C., Wang, X., Cai, W., He, Y., & Su, H. (2023). Machine Learning Aided Prediction of Glass-Forming Ability of Metallic Glass. Processes, 11(9), 2806. https://doi.org/10.3390/pr11092806