Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Nanoparticles’ Characterization
2.3. Nanofluids’ Stability Characterization
2.4. Physical Properties of Base Fluid and Nanofluids
2.4.1. Mass Density Measurements
2.4.2. Isobaric Heat Capacity Measurements
2.4.3. Thermal Conductivity Measurements
2.4.4. Rheological Measurements
2.4.5. Surface Tension Measurements
2.4.6. DC Electrical Conductivity Measurements
2.4.7. Dielectric Properties’ Measurements
3. Results
3.1. Nanoparticles’ Morphology and Composition
3.2. Nanofluids’ Stability
3.3. Mass Density
3.4. Isobaric Heat Capacity
3.5. Thermal Conductivity
3.6. Rheological Behavior
3.7. Surface Tension
3.8. DC Electrical Conductivity
3.9. Dielectric Permittivity
3.10. AC Electrical Conductivity
3.11. Figures-of-Merit
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajeeb, W.; Murshed, S.S. Nanofluids in compact heat exchangers for thermal applications: A State-of-the-art review. Therm. Sci. Eng. Prog. 2022, 30, 101276. [Google Scholar] [CrossRef]
- Sreekumar, S.; Shah, N.; Mondol, J.D.; Hewitt, N.; Chakrabarti, S. Broadband absorbing mono, blended and hybrid nanofluids for direct absorption solar collector: A comprehensive review. Nano Futures 2022, 6, 022002. [Google Scholar] [CrossRef]
- Choi, S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl.-Non-Newton. Flow 1995, 231, 99–105. [Google Scholar]
- Traciak, J.; Fal, J.; Żyła, G. 3D printed measuring device for the determination the surface tension of nanofluids. Appl. Surf. Sci. 2021, 561, 149878. [Google Scholar] [CrossRef]
- Angayarkanni, S.; Philip, J. Review on thermal properties of nanofluids: Recent developments. Adv. Colloid Interface Sci. 2015, 225, 146–176. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 2017, 74, 638–670. [Google Scholar] [CrossRef]
- Philip, J.; Shima, P.D. Thermal properties of nanofluids. Adv. Colloid Interface Sci. 2012, 183, 30–45. [Google Scholar] [CrossRef]
- Sofiah, A.; Samykano, M.; Pandey, A.; Kadirgama, K.; Sharma, K.; Saidur, R. Immense impact from small particles: Review on stability and thermophysical properties of nanofluids. Sustain. Energy Technol. Assess. 2021, 48, 101635. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A.A.; Salehin, S.; Ehsan, M.M.; Khan, B.; Rahman, M.H. Synthesis, heat transport mechanisms and thermophysical properties of nanofluids: A critical overview. Int. J. Thermofluids 2021, 10, 100086. [Google Scholar] [CrossRef]
- Sujith, S.V.; Kim, H.; Lee, J. A review on thermophysical property assessment of metal oxide-based nanofluids: Industrial perspectives. Metals 2022, 12, 165. [Google Scholar] [CrossRef]
- Patra, A.; Nayak, M.; Misra, A. Viscosity of nanofluids-A Review. Int. J. Thermofluid Sci. Technol. 2020, 7, 070202. [Google Scholar] [CrossRef]
- Safiei, W.; Rahman, M.M.; Kulkarni, R.; Ariffin, M.N.; Abd Malek, Z.A. Thermal conductivity and dynamic viscosity of nanofluids: A review. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 74, 66–84. [Google Scholar] [CrossRef]
- Apmann, K.; Fulmer, R.; Soto, A.; Vafaei, S. Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials 2021, 14, 1291. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A. A brief review on viscosity of nanofluids. Int. Nano Lett. 2014, 4, 109–120. [Google Scholar] [CrossRef]
- Murshed, S.S.; Estellé, P. A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 2017, 76, 1134–1152. [Google Scholar] [CrossRef]
- Murshed, S.S.; de Castro, C.N. Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids—A review. Appl. Energy 2016, 184, 681–695. [Google Scholar] [CrossRef]
- Akilu, S.; Sharma, K.; Baheta, A.T.; Mamat, R. A review of thermophysical properties of water based composite nanofluids. Renew. Sustain. Energy Rev. 2016, 66, 654–678. [Google Scholar] [CrossRef]
- Azmi, W.; Hamid, K.A.; Usri, N.; Mamat, R.; Sharma, K. Heat transfer augmentation of ethylene glycol: Water nanofluids and applications—A review. Int. Commun. Heat Mass Transf. 2016, 75, 13–23. [Google Scholar] [CrossRef]
- Suganthi, K.; Rajan, a.S. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew. Sustain. Energy Rev. 2017, 76, 226–255. [Google Scholar] [CrossRef]
- Saidina, D.; Abdullah, M.; Hussin, M. Metal oxide nanofluids in electronic cooling: A review. J. Mater. Sci. Mater. Electron. 2020, 31, 4381–4398. [Google Scholar] [CrossRef]
- Yasmin, H.; Giwa, S.O.; Noor, S.; Sharifpur, M. Thermal conductivity enhancement of metal oxide nanofluids: A critical review. Nanomaterials 2023, 13, 597. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.E.; Sundararajan, T.; Das, S.K. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J. Nanoparticle Res. 2010, 12, 1015–1031. [Google Scholar] [CrossRef]
- Godson, L.; Lal, D.M.; Wongwises, S. Measurement of thermo physical properties of metallic nanofluids for high temperature applications. Nanoscale Microscale Thermophys. Eng. 2010, 14, 152–173. [Google Scholar] [CrossRef]
- Vital, C.V.; Farooq, S.; de Araujo, R.E.; Rativa, D.; Gómez-Malagón, L.A. Numerical assessment of transition metal nitrides nanofluids for improved performance of direct absorption solar collectors. Appl. Therm. Eng. 2021, 190, 116799. [Google Scholar] [CrossRef]
- Wanic, M.; Cabaleiro, D.; Hamze, S.; Fal, J.; Estellé, P.; Żyła, G. Surface tension of ethylene glycol-based nanofluids containing various types of nitrides: An experimental study. J. Therm. Anal. Calorim. 2020, 139, 799–806. [Google Scholar] [CrossRef]
- Murshed, S.S.; De Castro, C.N. Superior thermal features of carbon nanotubes-based nanofluids–A review. Renew. Sustain. Energy Rev. 2014, 37, 155–167. [Google Scholar] [CrossRef]
- Mesgari, S.; Taylor, R.A.; Hjerrild, N.E.; Crisostomo, F.; Li, Q.; Scott, J. An investigation of thermal stability of carbon nanofluids for solar thermal applications. Sol. Energy Mater. Sol. Cells 2016, 157, 652–659. [Google Scholar] [CrossRef]
- Bellusci, M.; La Barbera, A.; Padella, F.; Mancuso, M.; Pasquo, A.; Grollino, M.G.; Leter, G.; Nardi, E.; Cremisini, C.; Giardullo, P.; et al. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int. J. Nanomed. 2014, 9, 1919–1929. [Google Scholar]
- Pereira, J.E.; Moita, A.S.; Moreira, A.L. The pressing need for green nanofluids: A review. J. Environ. Chem. Eng. 2022, 10, 107940. [Google Scholar] [CrossRef]
- Saulat, H.; Cao, M.; Khan, M.M.; Khan, M.; Khan, M.M.; Rehman, A. Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Constr. Build. Mater. 2020, 236, 117613. [Google Scholar] [CrossRef]
- Barhoum, A.; Rahier, H.; Abou-Zaied, R.E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl. Mater. Interfaces 2014, 6, 2734–2744. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The processing of calcium rich agricultural and industrial waste for recovery of calcium carbonate and calcium oxide and their application for environmental cleanup: A review. Appl. Sci. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.K.; Liu, J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J. Mater. Chem. A 2014, 2, 14270–14288. [Google Scholar] [CrossRef]
- Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv. 2015, 12, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V. A Study on CaCO3-Water Nano Fluid Properties as a Heat Transfer Fluid. Int. J. Eng. Innov. Technol. 2016, 6, 26–31. [Google Scholar]
- Zhao, M.; Zou, C. An investigation into the influence of particle size of CaCO3 on Flue Gas desulfurization process. Int. J. Energy Res. 2021, 45, 9295–9305. [Google Scholar] [CrossRef]
- Ahmadi, R.; Osfouri, S.; Azin, R.; Farmani, Z. Adsorption of natural CaCO3 nanoparticles on the reservoir rock surfaces in the enhanced oil recovery process: Equilibrium, thermodynamics, and kinetics study. J. Dispers. Sci. Technol. 2020, 42, 1963–1976. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, H.; Zhang, J. Design and development of CaCO3 nanoparticles enhanced fracturing fluids for effective control of leak-off during hydraulic fracturing of shale reservoirs. Nanotechnology 2021, 32, 375401. [Google Scholar] [CrossRef]
- Villada, Y.; Busatto, C.; Casis, N.; Estenoz, D. Use of synthetic calcium carbonate particles as an additive in water-based drilling fluids. Colloids Surfaces Physicochem. Eng. Asp. 2022, 652, 129801. [Google Scholar] [CrossRef]
- Chimankar, O.; Padole, N.; Pawar, N.; Dhoble, S. Acoustic wave propagation in CaCO3 nanofluids. J. Nanofluids 2015, 4, 151–156. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Wu, D.; Zhang, C.; Yin, Y. Preparation, characterization, viscosity and thermal conductivity of CaCO 3 aqueous nanofluids. Sci. China Technol. Sci. 2010, 53, 360–368. [Google Scholar] [CrossRef]
- Mansourian, R.; Mousavi, S.M.; Mohammadpoor, M.; Sabbaghi, S. Evaluation of heat transfer augmentation and pressure drop by water/ethylene glycol nanofluid. Int. J. Refrig. 2021, 131, 459–472. [Google Scholar] [CrossRef]
- Öcal, S.; Gökçek, M.; Çolak, A.B.; Korkanç, M. A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization. Heat Transf. Res. 2021, 52, 55–79. [Google Scholar] [CrossRef]
- del Río, J.M.L.; Alba, A.; Guimarey, M.J.; Prado, J.I.; Amigo, A.; Fernández, J. Surface tension, wettability and tribological properties of a low viscosity oil using CaCO3 and CeF3 nanoparticles as additives. J. Mol. Liq. 2023, 391, 123188. [Google Scholar] [CrossRef]
- Padole, N.N.; Chimankar, O.P.; Pawar, N.R.; Tabhane, V.A. Effect of particle size on rheological properties of methanol based SnO2, CaCO3, CaF2, ZnS and silver nanofluids at 298K. In Proceedings of the ICEPMU, Gurgaon, India, 3–4 June 2016; Volume 172. [Google Scholar]
- Padole, N.N.; Chimankar, O.P. Effect of particle size, shape upon rheological properties of methanol based nanofluids at 303K. Int. Res. J. Sci. Eng. 2020, 326–330. [Google Scholar]
- Wang, X.; Shi, L.; Zhang, J.; Cheng, J.; Wang, X. In situ formation of surface-functionalized ionic calcium carbonate nanoparticles with liquid-like behaviours and their electrical properties. R. Soc. Open Sci. 2018, 5, 170732. [Google Scholar] [CrossRef]
- Fedele, L.; Colla, L.; Bobbo, S.; Barison, S.; Agresti, F. Experimental stability analysis of different water-based nanofluids. Nanoscale Res. Lett. 2011, 6, 300. [Google Scholar] [CrossRef] [PubMed]
- Fedele, L.; Colla, L.; Minetto, S.; Scattolini, M.; Bellomare, F.; Bobbo, S.; Zin, V. Nanofluids characterization and application as nanolubricants in heat pump systems. Sci. Technol. Built Environ. 2015, 21, 621–630. [Google Scholar] [CrossRef]
- Steckel, F.; Szapiro, S. Physical properties of heavy oxygen water. Part 1. Density and thermal expansion. Trans. Faraday Soc. 1963, 59, 331–343. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Gracia-Fernández, C.; Lugo, L. (Solid+ liquid) phase equilibria and heat capacity of (diphenyl ether+ biphenyl) mixtures used as thermal energy storage materials. J. Chem. Thermodyn. 2014, 74, 43–50. [Google Scholar] [CrossRef]
- Lozano-Steinmetz, F.; Martínez, V.A.; Vasco, D.A.; Sepúlveda-Mualin, A.; Singh, D.P. The Effect of Ag-Decoration on rGO/Water Nanofluid Thermal Conductivity and Viscosity. Nanomaterials 2022, 12, 1095. [Google Scholar] [CrossRef]
- Azizian, S.; Bashavard, N. Equilibrium surface tensions of benzyl alcohol+ ethylene glycol mixtures. J. Chem. Eng. Data 2005, 50, 709–712. [Google Scholar] [CrossRef]
- Rafati, A.A.; Ghasemian, E.; Abdolmaleki, M. Surface properties of binary mixtures of ethylene glycol with a series of aliphatic alcohols (1-pentanol, 1-hexanol, and 1-heptanol). J. Chem. Eng. Data 2008, 53, 1944–1949. [Google Scholar] [CrossRef]
- Traciak, J.; Sobczak, J.; Vallejo, J.P.; Lugo, L.; Fal, J.; Żyła, G. Experimental study on the density, surface tension and electrical properties of ZrO2–EG nanofluids. Phys. Chem. Liq. 2022, 61, 14–24. [Google Scholar] [CrossRef]
- Colla, L.; Marinelli, L.; Fedele, L.; Bobbo, S.; Manca, O. Characterization and simulation of the heat transfer behaviour of water-based ZnO nanofluids. J. Nanosci. Nanotechnol. 2015, 15, 3599–3609. [Google Scholar] [CrossRef]
- Marcos, M.A.; Cabaleiro, D.; Hamze, S.; Fedele, L.; Bobbo, S.; Estellé, P.; Lugo, L. NePCM based on silver dispersions in poly (ethylene glycol) as a stable solution for thermal storage. Nanomaterials 2019, 10, 19. [Google Scholar] [CrossRef]
- Colla, L.; Fedele, L.; Buschmann, M. Laminar mixed convection of TiO2–Water nanofluid in horizontal uniformly heated pipe flow. Int. J. Therm. Sci. 2015, 97, 26–40. [Google Scholar] [CrossRef]
- Souza, T.G.; Ciminelli, V.S.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Colla, L.; Agresti, F.; Lugo, L.; Fedele, L. Transport properties and heat transfer coefficients of ZnO/(ethylene glycol+ water) nanofluids. Int. J. Heat Mass Transf. 2015, 89, 433–443. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Nan, Z.; Liu, B.; Tan, Z. Calorimetric investigation of excess molar heat capacities for water+ ethylene glycol from T = 273.15 to T = 373.15 K. J. Chem. Thermodyn. 2002, 34, 915–926. [Google Scholar] [CrossRef]
- Góralski, P.; Tkaczyk, M. Heat Capacities of Some Liquid α, ω-Alkanediols within the Temperature Range between (293.15 and 353.15) K. J. Chem. Eng. Data 2008, 53, 1932–1934. [Google Scholar] [CrossRef]
- Zemánková, K.; Troncoso, J.; Romaní, L. Excess volumes and excess heat capacities for alkanediol+ water systems in the temperature interval (283.15–313.15) K. Fluid Phase Equilibria 2013, 356, 1–10. [Google Scholar] [CrossRef]
- Żyła, G.; Vallejo, J.P.; Lugo, L. Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types: An experimental study. J. Mol. Liq. 2018, 261, 530–539. [Google Scholar] [CrossRef]
- Riazi, H.; Murphy, T.; Webber, G.B.; Atkin, R.; Tehrani, S.S.M.; Taylor, R.A. Specific heat control of nanofluids: A critical review. Int. J. Therm. Sci. 2016, 107, 25–38. [Google Scholar] [CrossRef]
- Akilu, S.; Baheta, A.T.; Minea, A.A.; Sharma, K. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int. Commun. Heat Mass Transf. 2017, 88, 245–253. [Google Scholar] [CrossRef]
- Huang, A.; Bao, Y.; Li, H.; Liu, Y.; Zheng, X.; Qin, G. Thermal conductivity of ethylene glycol and water binary mixtures at evaluated temperature and pressure. J. Chem. Thermodyn. 2022, 175, 106900. [Google Scholar] [CrossRef]
- Lenin, R.; Joy, P.A.; Bera, C. A review of the recent progress on thermal conductivity of nanofluid. J. Mol. Liq. 2021, 338, 116929. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Nimo, J.; Pastoriza-Gallego, M.; Piñeiro, M.; Legido, J.; Lugo, L. Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids. J. Chem. Thermodyn. 2015, 83, 67–76. [Google Scholar] [CrossRef]
- Dobersek, D.; Goricanec, D. Influence of water scale on thermal flow losses of domestic appliances. Int. J. Math. Model. Methods Appl. Sci. 2007, 1, 55–61. [Google Scholar]
- Zubair, S.; Sheikh, A.; Budair, M.; Haq, M.; Quddus, A.; Ashiru, O. Statistical aspects of CaCO3 fouling in AISI 316 stainless-steel tubes. J. Heat Transfer. 1997, 119, 581–588. [Google Scholar] [CrossRef]
- Roussel, M.; Guy, A.; Shaw, L.; Cara, J. The use of calcium carbonate in polyolefins offers significant improvement in productivity. Target 2005, 300, 350. [Google Scholar]
- Tsierkezos, N.G.; Molinou, I.E. Thermodynamic properties of water+ ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data 1998, 43, 989–993. [Google Scholar] [CrossRef]
- Zeroual, S.; Estellé, P.; Cabaleiro, D.; Vigolo, B.; Emo, M.; Halim, W.; Ouaskit, S. Ethylene glycol based silver nanoparticles synthesized by polyol process: Characterization and thermophysical profile. J. Mol. Liq. 2020, 310, 113229. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Lai, H.; Ma, P. Excess molar volumes and viscosities of binary mixtures of p-cresol with ethylene glycol and methanol at different temperature and atmospheric pressure. J. Chem. Eng. Data 2006, 51, 457–461. [Google Scholar] [CrossRef]
- Lee, R.J.; Teja, A.S. Viscosities of poly (ethylene glycols). J. Chem. Eng. Data 1990, 35, 385–387. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367. [Google Scholar] [CrossRef]
- Sillick, M.; Gregson, C. Viscous fragility of concentrated maltopolymer/sucrose mixtures. Carbohydr. Polym. 2009, 78, 879–887. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.; Lugo, L.; Cabaleiro, D.; Legido, J.; Piñeiro, M. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodyn. 2014, 73, 23–30. [Google Scholar] [CrossRef]
- Einstein, A. Eine neue Bestimmung der Moleküldimensionen. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1905. [Google Scholar]
- Chow, T. Viscosities of concentrated dispersions. Phys. Rev. E 1993, 48, 1977. [Google Scholar] [CrossRef]
- Traciak, J.; Żyła, G. Effect of nanoparticles saturation on the surface tension of nanofluids. J. Mol. Liq. 2022, 363, 119937. [Google Scholar] [CrossRef]
- Adio, S.A.; Sharifpur, M.; Meyer, J.P. Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Transf. Eng. 2015, 36, 1241–1251. [Google Scholar] [CrossRef]
- Cieśliński, J.T.; Ronewicz, K.; Smoleń, S. Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids. Arch. Thermodyn. 2015, 36, 35–47. [Google Scholar] [CrossRef]
- Angayarkanni, S.; Mishra, A.K.; Philip, J. Effect of polymeric additives on thermal and electrical conductivity of nanofluids. J. Nanofluids 2016, 5, 661–668. [Google Scholar] [CrossRef]
- Zawrah, M.; Khattab, R.; Girgis, L.; El Daidamony, H.; Aziz, R.E.A. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016, 12, 227–234. [Google Scholar] [CrossRef]
- Shukla, G.; Aiyer, H. Thermal conductivity enhancement of transformer oil using functionalized nanodiamonds. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2185–2190. [Google Scholar] [CrossRef]
- Rajnak, M.; Dolnik, B.; Kurimsky, J.; Cimbala, R.; Kopcansky, P.; Timko, M. Electrode polarization and unusual magnetodielectric effect in a transformer oil-based magnetic nanofluid thin layer. J. Chem. Phys. 2017, 146, 014704. [Google Scholar] [CrossRef] [PubMed]
- Żyła, G.; Fal, J.; Estellé, P. Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles. Int. J. Heat Mass Transf. 2017, 113, 1189–1199. [Google Scholar] [CrossRef]
- Żyła, G.; Vallejo, J.P.; Fal, J.; Lugo, L. Nanodiamonds–Ethylene glycol nanofluids: Experimental investigation of fundamental physical properties. Int. J. Heat Mass Transf. 2018, 121, 1201–1213. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Febrero-Garrido, L.; Cacabelos, A.; González-Gil, A.; Lugo, L. Influence of crystal structure on the thermophysical properties and figures-of-merit of propylene glycol: Water-based SiC nanofluids. Powder Technol. 2024, 433, 119299. [Google Scholar] [CrossRef]
- Simons, R.E. Calculation corner: Comparing heat transfer rates of liquid coolants using the Mouromtseff number. Electron. Cool. 2006, 12, 10. [Google Scholar]
- Yu, W.; France, D.M.; Smith, D.S.; Singh, D.; Timofeeva, E.V.; Routbort, J.L. Heat transfer to a silicon carbide/water nanofluid. Int. J. Heat Mass Transf. 2009, 52, 3606–3612. [Google Scholar] [CrossRef]
- Żyła, G.; Fal, J. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies. Thermochim. Acta 2017, 650, 106–113. [Google Scholar] [CrossRef]
- Sundar, L.S.; Hortiguela, M.J.; Singh, M.K.; Sousa, A.C. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat Mass Transf. 2016, 76, 245–255. [Google Scholar] [CrossRef]
/– | /mN m |
---|---|
0.000 | 48.0 |
0.001 | 48.1 |
0.002 | 48.2 |
0.003 | 48.4 |
0.004 | 48.5 |
0.005 | 48.5 |
0.010 | 48.5 |
0.020 | 48.4 |
0.030 | 48.5 |
Temperature/K | CaCO-EG-1% | CaCO-EG-2% | CaCO-EG-3% | |
---|---|---|---|---|
283.15 | 1.025 | 1.064 | 1.144 | |
293.15 | 1.024 | 1.065 | 1.154 | |
303.15 | 1.020 | 1.067 | 1.146 | |
313.15 | 1.019 | 1.073 | 1.147 | |
283.15 | 1.011 | 1.028 | 1.064 | |
293.15 | 1.007 | 1.028 | 1.071 | |
303.15 | 1.002 | 1.027 | 1.064 | |
313.15 | 1.004 | 1.030 | 1.067 | |
283.15 | 1.012 | 1.031 | 1.070 | |
293.15 | 1.007 | 1.030 | 1.078 | |
303.15 | 1.002 | 1.029 | 1.071 | |
313.15 | 1.003 | 1.033 | 1.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traciak, J.; Cabaleiro, D.; Vallejo, J.P.; Fal, J. Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3. Processes 2024, 12, 172. https://doi.org/10.3390/pr12010172
Traciak J, Cabaleiro D, Vallejo JP, Fal J. Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3. Processes. 2024; 12(1):172. https://doi.org/10.3390/pr12010172
Chicago/Turabian StyleTraciak, Julian, David Cabaleiro, Javier P. Vallejo, and Jacek Fal. 2024. "Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3" Processes 12, no. 1: 172. https://doi.org/10.3390/pr12010172
APA StyleTraciak, J., Cabaleiro, D., Vallejo, J. P., & Fal, J. (2024). Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3. Processes, 12(1), 172. https://doi.org/10.3390/pr12010172