Using Reduced Kinetic Model for the Multi-Objective Optimization of Thermal Section of the Claus Process Leading to a More Cost-Effective and Environmentally Friendly Operation
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Process
(x = 1, 2, 3, 4, 5, 6)
Thermal Section of Claus Process
2.2. Modeling and Simulation of Reaction Furnace
2.2.1. Process Specifications
2.2.2. Reduced Kinetic Model
2.2.3. Mathematical Modeling of Thermal Furnace
- If concentration and temperature gradients in the radial direction are neglected, one-direction plug flow can be assumed in thermal reaction furnace modeling;
- The reaction furnace is a plug flow reactor (PFR);
- The furnace is well insulated, conditions are adiabatic and pressure drop is neglected;
- The unit is in a steady-state operating condition;
- Due to the high temperature and low pressure, ideal gas assumption is valid;
- In turbulent flow, dispersion in the axial direction is neglected;
- In all kinetics stated, elemental sulfur is given as S2;
- Since the feed temperature is higher than the storage temperature, direct flow configuration was used.
2.3. Modeling and Simulation of Waste Heat Boiler
2.3.1. Process Specifications
2.3.2. Reduced Kinetic Model
2.3.3. Mathematical Modeling of Waste Heat Boiler
- Since the waste heat boiler is a multi-tube shell-and-tube heat exchanger and reactions continue to occur within the tubes, each tube is considered a plug flow reactor with heat transfer;
- Modeling is performed for a single tube;
- The unit is under steady-state operating conditions;
- Pressure drop is neglected;
- Due to the high temperature and low pressure, the ideal gas assumption is valid;
- In turbulent flow, dispersion in the axial direction is neglected;
- In all the kinetics stated, elemental sulfur is given as S2;
- It is assumed to be a fully developed flow;
- Fouling in the tubes is neglected;
- The total heat transfer coefficient is assumed to be constant (U = 35 W/m2/K);
- The cooling water temperature is assumed to be equal to the wall temperature and constant.
2.4. Optimization of Thermal Part of Claus Process
2.4.1. Objective Functions
2.4.2. Decision Variables
2.4.3. Constraints
2.4.4. Optimization Problem
2.4.5. Tools and Methods
3. Results
3.1. Validation of Reduced Kinetic Models
3.1.1. Validation of Reduced Kinetic Model for Thermal Furnace
3.1.2. Validation of Reduced Kinetic Model for Waste Heat Boiler
3.2. Simulation Results
3.2.1. Thermal Furnace Simulation
3.2.2. Waste Heat Boiler Simulation
3.3. Optimization Results
3.3.1. Taguchi Method
3.3.2. Single-Objective Optimization
3.3.3. Multi-Objective Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LaRue, K.; Grigson, S.G.; Hudson, H. Sulfur Plant Configurations for Weird Acid Gases. In Laurence Reid Gas Conditioning Conference; The University of Oklahoma: Norman, OK, USA, 2013; pp. 24–27. [Google Scholar]
- Gupta, A.K.; Ibrahim, S.; Al Shoaibi, A. Advances in Sulfur Chemistry for Treatment of Acid Gases. Prog. Energy Combust. Sci. 2016, 54, 65–92. [Google Scholar] [CrossRef]
- Kazempour, H.; Pourfayaz, F.; Mehrpooya, M. Modeling and Multi-Optimization of Thermal Section of Claus Process Based on Kinetic Model. J. Nat. Gas Sci. Eng. 2017, 38, 235–244. [Google Scholar] [CrossRef]
- Bennett, H.A.; Meisen, A. Hydrogen Sulphide—Air Equilibria under Claus Furnace Conditions. Can. J. Chem. Eng. 1973, 51, 720–724. [Google Scholar] [CrossRef]
- Khudenko, B.M.; Gitman, G.M.; Wechsler, T.E.P. Oxygen Based Claus Process for Recovery of Sulfur from H2S Gases. J. Environ. Eng. 1993, 119, 1233–1251. [Google Scholar] [CrossRef]
- Monnery, W.D.; Svrcek, W.Y.; Behie, L.A. Modelling the Modified Claus Process Reaction Furnace and the Implications on Plant Design and Recovery. Can. J. Chem. Eng. 1993, 71, 711–724. [Google Scholar] [CrossRef]
- Selim, H.; Gupta, A.K.; Sassi, M. Acid Gas Composition Effects on the Optimum Temperature in Claus Reactor. In Proceedings of the 6th International Energy Conversion Engineering Conference (IECEC), Cleveland, OH, USA, 28 July 2008; American Institute of Aeronautics and Astronautics: Cleveland, OH, USA, 2008. [Google Scholar]
- ZareNezhad, B.; Hosseinpour, N. Evaluation of Different Alternatives for Increasing the Reaction Furnace Temperature of Claus SRU by Chemical Equilibrium Calculations. Appl. Therm. Eng. 2008, 28, 738–744. [Google Scholar] [CrossRef]
- Dowling, N.I.; Clark, P.D. Kinetic Modeling of the Reaction between Hydrogen and Sulfur and Opposing H 2 S Decomposition at High Temperatures. Ind. Eng. Chem. Res. 1999, 38, 1369–1375. [Google Scholar] [CrossRef]
- Pierucci, S.; Ranzi, E.; Molinari, L. Modeling a Claus Process Reaction Furnace via a Radical Kinetic Scheme. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2004; Volume 18, pp. 463–468. [Google Scholar]
- Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.E. Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO2 Capture. Ind. Eng. Chem. Res. 2012, 51, 2362–2375. [Google Scholar] [CrossRef]
- Manenti, G.; Papasidero, D.; Manenti, F.; Bozzano, G.; Pierucci, S. Design of SRU Thermal Reactor and Waste Heat Boiler Considering Recombination Reactions. Procedia Eng. 2012, 42, 376–383. [Google Scholar] [CrossRef]
- Manenti, F.; Papasidero, D.; Bozzano, G.; Pierucci, S.; Ranzi, E.; Buzzi-Ferraris, G. Total Plant Integrated Optimization of Sulfur Recovery and Steam Generation for Claus Processes Using Detailed Kinetic Schemes. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2013; Volume 32, pp. 811–816. [Google Scholar]
- Manenti, F.; Papasidero, D.; Ranzi, E. Revised Kinetic Scheme for Thermal Furnace of Sulfur Recovery Units. Chem. Eng. Trans. 2013, 32, 1285–1290. [Google Scholar]
- Zarei, S.; Ganji, H.; Sadi, M.; Rashidzadeh, M. Modeling the Reaction Furnace of Claus Process. In Proceedings of the 8th International Chemical Engineering Congress & Exhibition (IChEC 2014), Kish, Iran, 24–27 February 2014. [Google Scholar]
- Nabikandi, N.J.; Fatemi, S. Kinetic Modelling of a Commercial Sulfur Recovery Unit Based on Claus Straight through Process: Comparison with Equilibrium Model. J. Ind. Eng. Chem. 2015, 30, 50–63. [Google Scholar] [CrossRef]
- Zarei, S.; Ganji, H.; Sadi, M.; Rashidzadeh, M. Thermo-Kinetic Modeling and Optimization of the Sulfur Recovery Unit Thermal Stage. Appl. Therm. Eng. 2016, 103, 1095–1104. [Google Scholar] [CrossRef]
- Pahlavan, M.; Fanaei, M.A. Modeling and Simulation of Claus Unit Reaction Furnace. Iran. J. Oil Gas Sci. Technol. 2016, 5, 42–52. [Google Scholar]
- Adewale, R.; Salem, D.J.; Berrouk, A.S.; Dara, S. Simulation of Hydrogen Production from Thermal Decomposition of Hydrogen Sulfide in Sulfur Recovery Units. J. Clean. Prod. 2016, 112, 4815–4825. [Google Scholar] [CrossRef]
- Andoglu, E.M.; Dell’Angelo, A.; Ranzi, E.; Kaytakoglu, S.; Manenti, F. Reduced and Detailed Kinetic Models Comparison for Thermal Furnace of Sulfur Recovery Units. Chem. Eng. Trans. 2019, 74, 649–654. [Google Scholar]
- Fazlollahi, F.; Asadizadeh, S.; Khoshooei, M.A.; Birjandi, M.R.S.; Sarkari, M. Investigating Efficiency Improvement in Sulfur Recovery Unit Using Process Simulation and Numerical Modeling. Oil Gas Sci. Technol. D’IFP Energ. Nouv. 2021, 76, 18. [Google Scholar] [CrossRef]
- Mahmoodi, B.; Hosseini, S.H.; Raj, A.; Hooman, K. A New Acid Gas Destruction Kinetic Model for Reaction Furnace of an Industrial Sulfur Recovery Unit: A CFD Study. Chem. Eng. Sci. 2022, 256, 117692. [Google Scholar] [CrossRef]
- Dell’Angelo, A.; Andoglu, E.M.; Kaytakoglu, S.; Manenti, F. A Machine-Learning Reduced Kinetic Model for H 2 S Thermal Conversion Process. Chem. Prod. Process Model. 2023, 18, 117–133. [Google Scholar] [CrossRef]
- Ghahraloud, H.; Farsi, M.; Rahimpour, M.R. Modeling and Optimization of an Industrial Claus Process: Thermal and Catalytic Section. J. Taiwan Inst. Chem. Eng. 2017, 76, 1–9. [Google Scholar] [CrossRef]
- Zarei, S. Life Cycle Assessment and Optimization of Claus Reaction Furnace through Kinetic Modeling. Chem. Eng. Res. Des. 2019, 148, 75–85. [Google Scholar] [CrossRef]
- Doma, M.I. Particle Swarm Optimization in Comparison with Classical Optimization for GPS Network Design. J. Geod. Sci. 2013, 3, 250–257. [Google Scholar] [CrossRef]
- Zahid, M.A.; Ahsan, M.; Ahmad, I.; Khan, M.N.A. Process Modeling, Optimization and Cost Analysis of a Sulfur Recovery Unit by Applying Pinch Analysis on the Claus Process in a Gas Processing Plant. Mathematics 2021, 10, 88. [Google Scholar] [CrossRef]
- Johni, A.K.; OmidbakhshAmiri, E. Simulation and Multi-Objective Optimization of Claus Process of Sulfur Recovery Unit. J. Environ. Chem. Eng. 2023, 11, 110969. [Google Scholar] [CrossRef]
- Hawboldt, K.A. Kinetic Modelling of Key Reactions in the Modified Claus Plant Front End Furnace. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 1998. [Google Scholar]
- Monnery, W.D.; Hawboldt, K.A.; Pollock, A.; Svrcek, W.Y. New Experimental Data and Kinetic Rate Expression for the Claus Reaction. Chem. Eng. Sci. 2000, 55, 5141–5148. [Google Scholar] [CrossRef]
- Karan, K.; Behie, L.A. CS 2 Formation in the Claus Reaction Furnace: A Kinetic Study of Methane−Sulfur and Methane−Hydrogen Sulfide Reactions. Ind. Eng. Chem. Res. 2004, 43, 3304–3313. [Google Scholar] [CrossRef]
- Karan, K.; Mehrotra, A.K.; Behie, L.A. A High-Temperature Experimental and Modeling Study of Homogeneous Gas-Phase COS Reactions Applied to Claus Plants. Chem. Eng. Sci. 1999, 54, 2999–3006. [Google Scholar] [CrossRef]
- Karan, K.; Mehrotra, A.K.; Behie, L.A. COS-Forming Reaction between CO and Sulfur: A High-Temperature Intrinsic Kinetics Study. Ind. Eng. Chem. Res. 1998, 37, 4609–4616. [Google Scholar] [CrossRef]
- Dryer, F.L.; Glassman, I. High-Temperature Oxidation of CO and CH4. In Symposium (International) on Combustion; Elsevier: Amsterdam, The Netherlands, 1973; Volume 14, pp. 987–1003. [Google Scholar]
- Turns, S.R. Introduction to Combustion; McGraw-Hill Companies: New York, NY, USA, 1996; Volume 287. [Google Scholar]
- Peters, N. Premixed Burning in Diffusion Flames—The Flame Zone Model of Libby and Economos. Int. J. Heat Mass Transf. 1979, 22, 691–703. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Yan, H. Kinetic Model on Coke Oven Gas with Steam Reforming. J. Cent. South Univ. Technol. 2008, 15, 127–131. [Google Scholar] [CrossRef]
- Fogler, H.S. Elements of Chemical Reaction Engineering; Printice-Hall International: Hoboken, NJ, USA, 1999. [Google Scholar]
- Nasato, L.V.; Karan, K.; Mehrotra, A.K.; Behie, L.A. Modeling Reaction Quench Times in the Waste Heat Boiler of a Claus Plant. Ind. Eng. Chem. Res. 1994, 33, 7–13. [Google Scholar] [CrossRef]
- Ji, W.; Shao, T. Finite Element Model Updating for Improved Box Girder Bridges with Corrugated Steel Webs Using the Response Surface Method and Fmincon Algorithm. KSCE J. Civ. Eng. 2021, 25, 586–602. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Phadke, M.S. Quality Engineering Using Robust Design; Prentice Hall PTR: Hoboken, NJ, USA, 1995. [Google Scholar]
- Manenti, F.; Papasidero, D.; Bozzano, G.; Ranzi, E. Model-Based Optimization of Sulfur Recovery Units. Comput. Chem. Eng. 2014, 66, 244–251. [Google Scholar] [CrossRef]
- Andoğlu, E.M. Claus Prosesi Reaksiyon Fırını ve Atık Isı Kazanının Modellenmesi ve Optimizasyonu. Ph.D. Thesis, Bilecik Şeyh Edebali University, Bilecik, Turkey, 2022. [Google Scholar]
Acid Gas | Air | Fuel | |
---|---|---|---|
Pressure (Pa) | 177,000 | 168,000 | 600,000 |
Temperature (°C) | 218 | 220 | 40 |
Components | Mole% | Mole% | Mole% |
CO2 | 53.16 | 0.00 | 1.03 |
N2 | 0.00 | 73.00 | 3.68 |
CH4 | 0.90 | 0.00 | 89.46 |
H2S | 36.04 | 0.00 | 0.00 |
O2 | 0.00 | 19.50 | 0.00 |
H2O | 9.90 | 7.50 | 0.00 |
C2H6 | 0.00 | 0.00 | 5.66 |
C3H8 | 0.00 | 0.00 | 0.17 |
Molar flow rate (mol/s) | 171.11 | 181.50 | 3.24 |
Furnace specifications | |||
Furnace length (m) | 6.5 | ||
Furnace inside diameter (m) | 3.4 | ||
Residence time in furnace(s) | 2.0 | ||
Operating pressure (Pa) | 160,000 |
Reaction No. | Reaction Equation | Reaction Rate Expression | Ref. |
---|---|---|---|
RF-1 | H2S ↔ 1/2 S2 + H2 | [29] | |
RF-2 | 2H2S + SO2 ↔ 3/2 S2 + 2H2O | [30] | |
RF-3 | H2S + 3/2 O2 → SO2 + H2O | [29] | |
RF-4 | CH4 + 2S2 → CS2 + 2H2S | [31] | |
RF-5 | CO2 + H2 → CO + H2O | [32] | |
RF-6 | CO + 1/2 S2 ↔ COS | [33] | |
RF-7 | CH4 + 2O2 → CO + 2H2O | [34] | |
RF-8 | CO + 1/2 O2 ↔ CO2 | [35] | |
RF-9 | H2 + 1/2 O2 → H2O | [36] | |
RF-10 | CH4 + CO2 → 2CO + 2H2 | [37] | |
RF-11 | CH4 + H2O → CO + 3H2 | [37] |
Reaction No. | Af | Eaf (J/mol) | Ar | Ear (J/mol) |
---|---|---|---|---|
RF-1 | 5263 × 106 mol/(m3·s·atm1.5) | 1.88 × 105 | 13.6 × 106 mol/(m3·s·atm2) | 9.8 × 104 |
RF-2 | 15,762 × 106 mol/(m3·s·atm1.5) | 2.08 × 105 | 506 × 106 mol/(m3·s·atm1.75) | 1.879 × 105 |
RF-3 | 13.6 × 106 mol/(m3·s·atm2.5) | 4.60 × 104 | - | - |
RF-4 | 5.53 × 107 m3/(mol·s) | 1.6 × 105 | - | - |
RF-5 | 1.249 × 109 (m3/mol)0.5/s | 2.59 × 105 | - | - |
RF-6 | 3.18 × 102 m3/(mol·s) | 5.57 × 104 | 2.18 × 106 m3/(mol·s) | 1.8 × 105 |
RF-7 | 1.58 × 1010 (m3/mol)0.5/s | 2.2 × 105 | - | - |
RF-8 | 1.26 × 1010 | 1.67 × 105 | 5.0 × 108 1/s | 1.67 × 105 |
RF-9 | 1.08 × 1010 m3/(mol·s) | 1.25 × 105 | - | - |
RF-10 | 8.06 × 108 m3/(mol·s) | 2.084 × 104 | - | - |
RF-11 | 4.56 × 109 m3/(mol·s) | 2.137 × 104 | - | - |
Component | mol% | Component | mol% |
---|---|---|---|
S2 | 0.09200 | CO | 0.00019 |
COS | 0.00028 | CO2 | 0.00604 |
H2S | 0.06023 | N2 | 0.53539 |
SO2 | 0.03025 | H2 | 0.01899 |
H2O | 0.25664 | ||
Flow rate (kg/s) (/tube) | 0.0361 | ||
Temperature (°C) | 1351 | ||
Pressure (atm) | 1.6 | ||
WHB tube diameter (m) | 0.048 | ||
WHB tube length (m) | 9.15 | ||
Number of tubes | 470 | ||
Cooling water temperature (°C) | 201.2 |
Reaction No. | Reaction Equation | Reaction Rate Expression | Ref. |
---|---|---|---|
RW.1 | 1/2 S2 + H2 ↔ H2S | [29] | |
RW.2 | CO + 1/2 S2 ↔ COS | , | [33] |
Reaction No. | Af | Ef (kcal/kmol) | Ar | Er (kcal/kmol) |
---|---|---|---|---|
RF-1 | 5263 × 106 mol/(m3·s·atm1.5) | 1.88 × 105 | 13.6 × 106 mol/(m3·s·atm2) | 9.8 × 104 |
RF-2 | 15,762 × 106 mol/(m3·s·atm1.5) | 2.08 × 105 | 506 × 106 mol/(m3·s·atm1.75) | 1.879 × 105 |
Parameter/Level | 1 | 2 | 3 | 4 |
---|---|---|---|---|
A: Temperature (K) | 420 | 470 | 520 | 570 |
B: Air (mol/s) | 150 | 200 | 250 | 300 |
C: Fuel (mol/s) | 2 | 3 | 4 | 5 |
D: Acid gas (mol/s) | 150 | 185 | 220 | 255 |
GA Solver Results | Industrial Data | |
---|---|---|
Furnace inlet temperature (K) | 569.9997 | 513.00 |
Air molar flow rate (mol/s) | 196.0000 | 181.50 |
Fuel molar flow rate (mol/s) | 4.9999 | 3.24 |
Acid gas molar flow rate (mol/s) | 254.7070 | 171.11 |
Produced S2 (mol/s) | 14.3359 | 12.5533 |
Hotspot (m) | 0.26 | 0.975 |
Point | R | Sulfur Production (mol/s) | Improvement on Sulfur Production (%) | Steam Production (mol/s) | Improvement in Steam Production (%) |
---|---|---|---|---|---|
a | 1.99788 | 10.7260 | −14.5 | 510.794 | 36.7 |
b | 1.73397 | 14.1524 | 12.7 | 514.795 | 37.8 |
c | 1.00409 | 16.3175 | 30.0 | 528.036 | 41.3 |
Point | Furnace Inlet Temperature (K) | Air Molar Flow Rate (mol/s) | Fuel Molar Flow Rate (mol/s) | Acid Gas Molar Flow Rate (mol/s) |
---|---|---|---|---|
a | 430.0150 | 258.1191 | 4.9800 | 254.9963 |
b | 529.3669 | 296.1340 | 4.9779 | 254.6409 |
c | 441.6331 | 286.2771 | 4.9788 | 254.4132 |
Industrial data | 513.0000 | 181.50000 | 3.2400 | 171.1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andoglu Coskun, E.M.; Kaytakoglu, S.; Manenti, F.; Di Pretoro, A. Using Reduced Kinetic Model for the Multi-Objective Optimization of Thermal Section of the Claus Process Leading to a More Cost-Effective and Environmentally Friendly Operation. Processes 2024, 12, 197. https://doi.org/10.3390/pr12010197
Andoglu Coskun EM, Kaytakoglu S, Manenti F, Di Pretoro A. Using Reduced Kinetic Model for the Multi-Objective Optimization of Thermal Section of the Claus Process Leading to a More Cost-Effective and Environmentally Friendly Operation. Processes. 2024; 12(1):197. https://doi.org/10.3390/pr12010197
Chicago/Turabian StyleAndoglu Coskun, Ecem Muge, Suleyman Kaytakoglu, Flavio Manenti, and Alessandro Di Pretoro. 2024. "Using Reduced Kinetic Model for the Multi-Objective Optimization of Thermal Section of the Claus Process Leading to a More Cost-Effective and Environmentally Friendly Operation" Processes 12, no. 1: 197. https://doi.org/10.3390/pr12010197
APA StyleAndoglu Coskun, E. M., Kaytakoglu, S., Manenti, F., & Di Pretoro, A. (2024). Using Reduced Kinetic Model for the Multi-Objective Optimization of Thermal Section of the Claus Process Leading to a More Cost-Effective and Environmentally Friendly Operation. Processes, 12(1), 197. https://doi.org/10.3390/pr12010197