Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Activated Biochar Preparation
- Heating from room temperature to 105 °C in 15 min;
- Holding at 105 °C for 15 min;
- Heating to 400 °C (5 °C min−1 heating rate);
- Holding at 400 °C for 2 h;
- Cooling to room temperature;
- The argon flow was 50 L·h−1 in the 1st, 2nd and 5th stages, and 150 L·h−1 in the 3rd and 4th stages.
2.2. Activated Biochar Characterization
2.3. CPX Solutions’ Preparation and Analysis
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Activated Biochar Characterization and Adsorption Mechanism
3.2. Effect of pH and Temperature on CPX Adsorption
3.3. Adsorption Kinetics
3.4. Effect of Initial Concentration and Adsorption Isotherm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Serp, P.; Figueiredo, J.L. Comparison between Activated Carbon, Carbon Xerogel and Carbon Nanotubes for the Adsorption of the Antibiotic Ciprofloxacin. Catal. Today 2012, 186, 29–34. [Google Scholar] [CrossRef]
- Lillenberg, M.; Litvin, S.V.; Nei, L.; Roasto, M.; Sepp, K. Enrofloxacin and Ciprofloxacin Uptake by Plants from Soil. Agron. Res. 2010, 8, 807–814. [Google Scholar]
- Nguyen, T.T.; Bui, X.T.; Luu, V.P.; Nguyen, P.D.; Guo, W.; Ngo, H.H. Removal of Antibiotics in Sponge Membrane Bioreactors Treating Hospital Wastewater: Comparison between Hollow Fiber and Flat Sheet Membrane Systems. Bioresour. Technol. 2017, 240, 42–49. [Google Scholar] [CrossRef]
- González, J.A.; Bafico, J.G.; Villanueva, M.E.; Giorgieri, S.A.; Copello, G.J. Continuous Flow Adsorption of Ciprofloxacin by Using a Nanostructured Chitin/Graphene Oxide Hybrid Material. Carbohydr. Polym. 2018, 188, 213–220. [Google Scholar] [CrossRef]
- Mondal, S.K.; Saha, A.K.; Sinha, A. Removal of Ciprofloxacin Using Modified Advanced Oxidation Processes: Kinetics, Pathways and Process Optimization. J. Clean. Prod. 2018, 171, 1203–1214. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, X.; Li, Y.; Zhao, C.; Du, Q.; Sun, J.; Wang, Y.; Peng, X.; Xia, Y.; Wang, Z.; et al. Adsorption of Ciprofloxacin onto Biocomposite Fibers of Graphene Oxide/Calcium Alginate. Chem. Eng. J. 2013, 230, 389–395. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ngo, H.H.; Guo, W.S. Preparation of a Specific Bamboo Based Activated Carbon and Its Application for Ciprofloxacin Removal. Sci. Total Environ. 2015, 533, 32–39. [Google Scholar] [CrossRef]
- Carmalin, S.A.; Lima, E.C. Removal of Emerging Contaminants from the Environment by Adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Malakootian, M.; Faraji, M.; Malakootian, M.; Nozari, M. Ciprofloxacin Removal from Aqueous Media by Adsorption Process: A Systematic Review and Meta-Analysis. Desalin. Water Treat. 2021, 229, 252–282. [Google Scholar] [CrossRef]
- Jiang, W.T.; Chang, P.H.; Wang, Y.S.; Tsai, Y.; Jean, J.S.; Li, Z.; Krukowski, K. Removal of Ciprofloxacin from Water by Birnessite. J. Hazard. Mater. 2013, 250–251, 362–369. [Google Scholar] [CrossRef]
- Beaubien, A.; Jolicoeur, C. The Toxicity of Various Heavy Metals Salts, Alcohols and Surfactants to Microorganism in a Biodegradation Process: A Flow Microcalorimetry Investigation. In Toxicity Screening Procedure Using Bacterial Systems; Liu, D., Dutka, B.J., Eds.; Marcel Dekker: New York, NY, USA, 1984; pp. 261–281. [Google Scholar]
- Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-Enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci. Rep. 2015, 5, 13578. [Google Scholar] [CrossRef] [PubMed]
- Jaria, G.; Calisto, V.; Esteves, V.I.; Otero, M. Overview of Relevant Economic and Environmental Aspects of Waste-Based Activated Carbons Aimed at Adsorptive Water Treatments. J. Clean. Prod. 2022, 344, 130984. [Google Scholar] [CrossRef]
- Abukari, A.; Abukari Imoro, Z.; Zarouk Imoro, A.; Ballu Duwiejuah, A. Sustainable Use of Biochar in Environmental Management. In Environmental Health; IntechOpen: London, UK, 2021. [Google Scholar]
- Li, F.; Feng, D.; Deng, H.; Yu, H.; Ge, C. Effects of Biochars Prepared from Cassava Dregs on Sorption Behavior of Ciprofloxacin. Procedia Environ. Sci. 2016, 31, 795–803. [Google Scholar] [CrossRef]
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Xie, S.; Wang, Y.; Ma, J.; Shang, X. Study of Ciprofloxacin Removal by Biochar Obtained from Used Tea Leaves. J. Environ. Sci. 2018, 73, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Z.; Guo, J.; Li, Y.; Zhang, H.; Zhu, J.; Xie, X. Enhanced Adsorption of Ciprofloxacin by KOH Modified Biochar Derived from Potato Stems and Leaves. Water Sci. Technol. 2018, 77, 1127–1136. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Zhao, X.; Li, X.; Xie, X. Magnetic Biochar-Based Manganese Oxide Composite for Enhanced Fluoroquinolone Antibiotic Removal from Water. Environ. Sci. Pollut. Res. 2018, 25, 31136–31148. [Google Scholar] [CrossRef]
- Singh, M.; Ahsan, M.; Pandey, V.; Singh, A.; Mishra, D.; Tiwari, N.; Singh, P.; Karak, T.; Khare, P. Comparative Assessment for Removal of Anionic Dye from Water by Different Waste-Derived Biochar Vis a Vis Reusability of Generated Sludge. Biochar 2022, 4, 13. [Google Scholar] [CrossRef]
- Mutavdžić Pavlović, D.; Ćurković, L.; Grčić, I.; Šimić, I.; Župan, J. Isotherm, Kinetic, and Thermodynamic Study of Ciprofloxacin Sorption on Sediments. Environ. Sci. Pollut. Res. 2017, 24, 10091–10106. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and Adsorption Capacities of Biochar for the Removal of Organic and Inorganic Pollutants from Industrial Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as Potential Sustainable Precursors for Activated Carbon Production: Multiple Applications in Environmental Protection and Energy Storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Xiong, Z.; Huanhuan, Z.; Jing, W.; Wei, C.; Yingquan, C.; Gao, X.; Haiping, Y.; Hanping, C. Physicochemical and Adsorption Properties of Biochar from Biomass-Based Pyrolytic Polygeneration: Effects of Biomass Species and Temperature. Biochar 2021, 3, 657–670. [Google Scholar] [CrossRef]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response Surface Methodology Approach for Optimization of Ciprofloxacin Adsorption Using Activated Carbon Derived from the Residue of Desilicated Rice Husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Zeng, Z.W.; Tian, S.R.; Liu, Y.G.; Tan, X.F.; Zeng, G.M.; Jiang, L.H.; Yin, Z.H.; Liu, N.; Liu, S.B.; Li, J. Comparative Study of Rice Husk Biochars for Aqueous Antibiotics Removal. J. Chem. Technol. Biotechnol. 2018, 93, 1075–1084. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, J. Removal of Ciprofloxacin from Aqueous Solution by Rabbit Manure Biochar. Environ. Technol. 2020, 41, 1380–1390. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, A.; Sarkar, B.; Adassooriya, N.; Walpita, J.; Rajapaksha, A.U.; Ok, Y.S.; Vithanage, M. Sorption Process of Municipal Solid Waste Biochar-Montmorillonite Composite for Ciprofloxacin Removal in Aqueous Media. Chemosphere 2019, 236, 124384. [Google Scholar] [CrossRef]
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Wang, Y. Ciprofloxacin Adsorption by Biochar Derived from Co-Pyrolysis of Sewage Sludge and Bamboo Waste. Environ. Sci. Pollut. Res. 2020, 27, 22806–22817. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Pittman, C.U.; Mohan, D. Ciprofloxacin and Acetaminophen Sorption onto Banana Peel Biochars: Environmental and Process Parameter Influences. Environ. Res. 2021, 201, 111218. [Google Scholar] [CrossRef]
- Sayin, F.; Akar, S.T.; Akar, T. From Green Biowaste to Water Treatment Applications: Utilization of Modified New Biochar for the Efficient Removal of Ciprofloxacin. Sustain. Chem. Pharm. 2021, 24, 100522. [Google Scholar] [CrossRef]
- Özer, Ç.; İmamoğlu, M. Removal of Ciprofloxacin from Aqueous Solutions by Pumpkin Peel Biochar Prepared Using Phosphoric Acid. Biomass Convers. Biorefinery 2022, 1, 3. [Google Scholar] [CrossRef]
- Kunze, W.; Manger, H.-J.; Pratt, S. Technology Brewing and Malting; VLB: Berlin, Germany, 2014; ISBN 9783921690772.
- Mussatto, S.I. Biotechnological Potential of Brewing Industry By-Products. In Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Dordrecht, The Netherlands, 2009; pp. 313–326. ISBN 9781402099410. [Google Scholar]
- de Araújo, T.P.; Quesada, H.B.; Bergamasco, R.; Vareschini, D.T.; de Barros, M.A.S.D. Activated Hydrochar Produced from Brewer’s Spent Grain and Its Application in the Removal of Acetaminophen. Bioresour. Technol. 2020, 310, 123399. [Google Scholar] [CrossRef]
- Sousa, A.F.C.; Gil, M.V.; Calisto, V. Upcycling Spent Brewery Grains through the Production of Carbon Adsorbents—Application to the Removal of Carbamazepine from Water. Environ. Sci. Pollut. Res. 2020, 27, 36463–36475. [Google Scholar] [CrossRef] [PubMed]
- Sousa, É.M.L.; Otero, M.; Rocha, L.S.; Gil, M.V.; Ferreira, P.; Esteves, V.I.; Calisto, V. Multivariable Optimization of Activated Carbon Production from Microwave Pyrolysis of Brewery Wastes—Application in the Removal of Antibiotics from Water. J. Hazard. Mater. 2022, 431, 128556. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate. ChemSusChem 2016, 9, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Phuong Nguyen, T.M.; Van, H.T.; Nguyen, Q.T.; Nguyen, T.H.; Lien Nguyen, T.B.; Hoang, L.P.; Van Thanh, D.; Nguyen, T.V.; Nguyen, V.Q.; et al. ZnO Nanoparticles Loaded Rice Husk Biochar as an Effective Adsorbent for Removing Reactive Red 24 from Aqueous Solution. Mater. Sci. Semicond. Process. 2022, 150, 106960. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Cayuela, M.L.; Rasse, D.P.; Sánchez-Monedero, M.A. Biochars from Mediterranean Agroindustry Residues: Physicochemical Properties Relevant for C Sequestration and Soil Water Retention. ACS Sustain. Chem. Eng. 2019, 7, 4724–4733. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Ayastuy, J.L.; Zudaire, L.; Sierra, I. An Insight into the Reactions Occurring during the Chemical Activation of Bone Char. Chem. Eng. J. 2014, 251, 217–227. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.C.; Ryu, C.; Jeon, J.K.; Shin, M.C.; Park, Y.K. Production and Utilization of Biochar: A Review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y. Structural and Adsorption Characteristics of Potassium Carbonate Activated Biochar. RSC Adv. 2018, 8, 21012–21019. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Bautista-Toledo, I.; Ferro-Garca, M.A.; Moreno-Castilla, C. Activated Carbon Surface Modifications by Adsorption of Bacteria and Their Effect on Aqueous Lead Adsorption. J. Chem. Technol. Biotechnol. 2001, 76, 1209–1215. [Google Scholar] [CrossRef]
- Fiol, N.; Villaescusa, I. Determination of Sorbent Point Zero Charge: Usefulness in Sorption Studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Yan, B.; Niu, C. Adsorption of Ciprofloxacin from Water by Pretreated Oat Hulls: Equilibrium, Kinetic, and Thermodynamic Studies. Ind. Crops Prod. 2019, 127, 237–250. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 7th ed.; Pearson Education Limited: London, UK, 2018; ISBN 9780273730422. [Google Scholar]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. International Union of Pure and Applied Chemistry. Analytical Chemistry Division Commission on Electroanalytical Chemistry A Statistical Overview of Standard (IUPAC and ACS) and New Procedures for Determining the Limits of Detection and Quantification: Ap. Pure Appl. Chern 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Barkakati, P.; Begum, A.; Das, M.L.; Rao, P.G. Adsorptive Separation of Ginsenoside from Aqueous Solution by Polymeric Resins: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2010, 161, 34–45. [Google Scholar] [CrossRef]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010−2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef] [PubMed]
- Hadjiivanov, K. Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. In Advances in Catalysis; Elsevier: Amsterdam, The Netherlands, 2014; pp. 99–318. [Google Scholar]
- Shabanian, M.; Hajibeygi, M.; Raeisi, A. FTIR Characterization of Layered Double Hydroxides and Modified Layered Double Hydroxides. In Layered Double Hydroxide Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–101. [Google Scholar]
- Meseguer, V.F.; Ortuño, J.F.; Aguilar, M.I.; Pinzón-Bedoya, M.L.; Lloréns, M.; Sáez, J.; Pérez-Marín, A.B. Biosorption of Cadmium (II) from Aqueous Solutions by Natural and Modified Non-Living Leaves of Posidonia Oceanica. Environ. Sci. Pollut. Res. 2016, 23, 24032–24046. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liang, G.; Zhang, X.; Cai, X.; Li, R.; Xie, X.; Wang, Z. Coating Magnetic Biochar with Humic Acid for High Efficient Removal of Fluoroquinolone Antibiotics in Water. Sci. Total Environ. 2019, 688, 1205–1215. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Li, P.; Yang, L.; Wu, L.; Gao, F.; Qi, X.; Zhang, Z. Hydrothermal Synthesis of Magnetic Sludge Biochar for Tetracycline and Ciprofloxacin Adsorptive Removal. Bioresour. Technol. 2021, 319, 124199. [Google Scholar] [CrossRef]
- Egbedina, A.O.; Adebowale, K.O.; Olu-Owolabi, B.I.; Unuabonah, E.I.; Adesina, M.O. Green Synthesis of ZnO Coated Hybrid Biochar for the Synchronous Removal of Ciprofloxacin and Tetracycline in Wastewater. RSC Adv. 2021, 11, 18483–18492. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, S.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A Novel Fe3O4/Graphene Oxide/Citrus Peel-Derived Bio-Char Based Nanocomposite with Enhanced Adsorption Affinity and Sensitivity of Ciprofloxacin and Sparfloxacin. Bioresour. Technol. 2019, 292, 121951. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Zhang, Y.; Lin, T.; Zeng, G.; Zhang, S.; Wang, Y.; He, W.; Zhang, M.; Long, H. An Efficient Adsorbent: Simultaneous Activated and Magnetic ZnO Doped Biochar Derived from Camphor Leaves for Ciprofloxacin Adsorption. Bioresour. Technol. 2019, 288, 121511. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Equation | Parameters |
---|---|---|
Pseudo-first order | qe, amount of adsorbate sorbed at equilibrium (mg·g−1) | |
k’1, adsorption rate constant (min−1) | ||
Pseudo-second order | qe, amount of adsorbate sorbed at equilibrium (mg·g−1) | |
k’2, adsorption rate constant (g·mg−1·min−1) | ||
h = k’2·qe2, initial adsorption rate (mg·g−1·min−1) | ||
Elovich equation | α, initial adsorption rate (mg·g−1·min−1) | |
β, constant related to the extend of surface coverage and activation energy for chemisorption (g·mg−1) | ||
Intraparticle diffusion | kd, rate constant (mg·g−1·min−1/2) | |
C, constant related with the thickness of boundary layer (mg·g−1) | ||
Bangham | kB, constant parameter (L·g−1) | |
σ, constant parameter (<1) |
Isotherm Model | Equation | Parameter |
---|---|---|
Langmuir | qmL, maximum sorption capacity (mg·g−1) | |
KL, Langmuir isotherm constant (L·mg−1). | ||
Freundlich | KF, Freundlich isotherm constant ((mg·g−1)(mg·L−1)−1/n) | |
n, Freundlich isotherm exponent constant | ||
Sips | qmS, maximum sorption capacity (mg·g−1) | |
KS, Sips isotherm constant, (L1/nS·mg−1/nS) | ||
nS, Sips isotherm exponent | ||
Redlich–Peterson | KR, Redlich–Peterson isotherm constant (L·g−1) | |
aR, Redlich–Peterson isotherm constant (Lβ·mg−β) | ||
β, Redlich–Peterson isotherm exponent | ||
Toth | qmT, maximum sorption capacity (mg·g−1) | |
KT, constant that characterize the adsorptive potential ((L·g−1)TT) | ||
TT, Toth parameter related to the heterogeneity of the adsorbent (dimensionless) |
Pseudo-First Order | Pseudo-Second Order | Elovich | Intraparticle Diffusion | Bangham | |||||
---|---|---|---|---|---|---|---|---|---|
qe (mg·g−1) | 77.7 | qe (mg·g−1) | 82.92 | α (mg·g−1·min−1) | 5.50 | kd (mg·g−1·min−0.5) | 0.81 | kB (L·g−1) | 0.059 |
k’1 (min−1) | 0.0057 | k’2 (g·mg−1·min−1) | 0.0001 | β (g·mg−1) | 0.087 | C (mg·g−1) | 38.81 | σ | 0.21 |
ARE (%) | 12.40 | ARE (%) | 7.62 | ARE (%) | 2.52 | ARE (%) | 7.33 | ARE (%) | 3.17 |
Langmuir | Freundlich | Sips | Redlich–Peterson | Toth | |||||
---|---|---|---|---|---|---|---|---|---|
qmL (mg·g−1) | 104.9 | KF ((mg·g−1)(mg·L−1)−1/n) | 38.02 | qmS (mg·g−1) | 133.4 | KR (L·g−1) | 78.07 | qmT (mg·g−1) | 131.4 |
KL (L·mg−1) | 0.037 | n | 6.44 | KS (L1/ns·mg−1/ns) | 0.43 | aR (L·mg−1)ß | 1.98 | KT (L·mg−1)TT | 2.49 |
nS | 3.24 | β | 0.85 | TT | 0.27 | ||||
ARE (%) | 11.94 | ARE (%) | 2.44 | ARE (%) | 4.92 | ARE (%) | 3.31 | ARE (%) | 5.40 |
Adsorbent | qmax (mg·g−1) | Reference |
---|---|---|
Magnetic biochar-based manganese oxide composite | 8.3 | [18] |
KOH-activated potato stems and leaves biochar | 8.8 | [17] |
Banana peel biochar | 21.0 | [29] |
Rice husk biochar | 36.1 | [25] |
Sewage sludge biochar | 46.2 | [28] |
Rabbit manure biochar | 70.2 | [26] |
Fe/Zn magnetic sludge biochar | 74.2 | [55] |
K2CO3-activated barley bagasse biochar | 104.9 | This study |
HCl-activated clay/coconut husk | 139.9 | [56] |
Phosphoric acid-activated pumpkin peel biochar | 153.9 | [31] |
Municipal solid waste biochar–montmorillonite composite | 167.4 | [27] |
KOH-activated clay/coconut husk | 228.7 | [56] |
Graphene hydrogel | 235.7 | [12] |
Tea leaf biochar | 238.1 | [16] |
Fe3O4/graphene oxide/citrus peel-derived biochar-based nanocomposite | 283.4 | [57] |
Magnetic ZnO-doped camphor leaf biochar | 449.4 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meseguer, V.F.; Ortuño, J.F.; Aguilar, M.I.; Lloréns, M.; Pérez-Marín, A.B.; Fuentes, E. Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse. Processes 2024, 12, 199. https://doi.org/10.3390/pr12010199
Meseguer VF, Ortuño JF, Aguilar MI, Lloréns M, Pérez-Marín AB, Fuentes E. Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse. Processes. 2024; 12(1):199. https://doi.org/10.3390/pr12010199
Chicago/Turabian StyleMeseguer, Víctor Francisco, Juan Francisco Ortuño, María Isabel Aguilar, Mercedes Lloréns, Ana Belén Pérez-Marín, and Emmanuel Fuentes. 2024. "Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse" Processes 12, no. 1: 199. https://doi.org/10.3390/pr12010199
APA StyleMeseguer, V. F., Ortuño, J. F., Aguilar, M. I., Lloréns, M., Pérez-Marín, A. B., & Fuentes, E. (2024). Ciprofloxacin Uptake from an Aqueous Solution via Adsorption with K2CO3-Activated Biochar Derived from Brewing Industry Bagasse. Processes, 12(1), 199. https://doi.org/10.3390/pr12010199