Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study of Raw Materials
3.2. Selection of the Composition of the Refractory Binder
3.3. Obtaining Mullite–Silica Refractory
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sokov, V.N.; Sokova, S.D.; Sokov, V.V. Clinkerless Complex Binder from Refractory Waste and Objects Based on it. Refract. Ind. Ceram. 2016, 57, 407–409. [Google Scholar] [CrossRef]
- Sokov, V.N. Non-fire clay heat insulation from self-sealing masses based on burnable additives of plant origin. Part 1. The choice of burnable additives of plant origin for self-consolidation of masses in a hydraulically closed volume. Novye Ogneupory 2019, 7, 51–54. [Google Scholar] [CrossRef]
- Kashcheev, I.D.; Strelov, K.K.; Mamykin, P.S. Chemical Technology of Refractory; Intermet Engineering: Moscow, Russia, 2017; pp. 26–29. (In Russian) [Google Scholar]
- Biryukova, A.A.; Tikhonova, T.A.; Panichkin, A.V. Porous ceramics of aluminosilicate composition based on corundum. Complex Use Miner. Raw Mater. 2013, 4, 87–99. (In Russian) [Google Scholar]
- Vakalova, T.V.; Pogrebenkov, V.M.; Chernousova, O.A. A new raw material for aluminosilicate ceramics for refractory and engineering use. Refract. Ind. Ceram. 2002, 7, 54–58. [Google Scholar] [CrossRef]
- Tkach, E.V.; Nurbaturov, K.A. Study of the chemical and technological basis for the production of aluminosilicate refractories based on fly ash. Novye Ogneupory 2021, 1, 45–50. [Google Scholar] [CrossRef]
- Francis, A.; Vilminot, S. Crystallisation kinetics of mullite glass-ceramics obtained from alumina–silica wastes. Int. J. Sustain. Eng. 2012, 6, 74–81. [Google Scholar] [CrossRef]
- Jung, J.; Park, H.; Stevens, R. Mullite ceramics derived from coal fly ash. J. Mater. Sci. Lett. 2001, 20, 1089–1091. [Google Scholar] [CrossRef]
- Choo, T.F.; Mohd Salleh, M.A.; Kok, K.Y.; Matori, K.A. A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 39. [Google Scholar] [CrossRef]
- Dong, Y.; Feng, X.; Yanwei, D.; Liu, X.; Meng, G. Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash. J. Alloys Compd. 2008, 460, 599–606. [Google Scholar] [CrossRef]
- Martins, I.M.; Vieira, S.; Livramento, V.; Sousa, J.B.; Delmas, F.; Oliveira, M.; Vieira, M.T. Manufacture of Ceramic Products Using Inertized Aluminum Sludges. Mater. Sci. Forum 2004, 455, 822–826. [Google Scholar] [CrossRef]
- Torosyan, V.F.; Gorlov, D.S. Microsilica as a Modifying Component in Fired Ceramics. Appl. Mech. Mater. 2015, 770, 3–7. [Google Scholar] [CrossRef]
- Das, S.; Manam, J.; Sharma, S.K. Role of rhodamine-B dye encapsulated mesoporous SiO2 in color tuning of SrAl2O4:Eu2+, Dy3+ composite long lasting phosphor. J. Mater. Sci. Mater. Electron. 2016, 27, 13217. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Lv, C.; Chen, J.; Zhang, D.; Wu, Z.; Ding, D.; Xiao, G. Permeating behaviour of porous SiC ceramics fabricated with different SiC particle sizes. Ceram. Int. 2021, 47, 5610–5616. [Google Scholar] [CrossRef]
- Sree Manu, K.M.; Sreeraj, K.; Rajan, T.P.; Shereema, R.M.; Pai, B.C.; Arun, B. Structure and properties of modified compocast microsilica reinforced aluminum matrix composite. Mater. Des. 2015, 88, 294–301. [Google Scholar] [CrossRef]
- Cheng, B.; Guo, X.; Hui, Y. Effect of Microsilica Addition on the Properties of Mullite-Corundum Ceramic. China’s Refract. 2006, 2, 15–21. [Google Scholar]
- Legrand, A.P. The Surface Properties of Silica; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Perepelitsyn, V.A.; Yukseeva, I.V.; Ostryakov, L.V. Mineral raw materials base for the production of modern refractories. Refract. Technol. Ceram. 2008, 6, 53–64. (In Russian) [Google Scholar]
- Potapov, V.V.; Gorev, D.S. Comparative results of increasing the strength of concrete by introducing nanosilica and microsilica. Mod. Sci.-Intensive Technol. 2018, 9, 98–102. (In Russian) [Google Scholar]
- Stonis, R.; Pundiene, I.; Antonoviè, V.; Kligis, M.; Spudulis, E. Study of the Effect of Replacing Microsilica in Heat-Resistant Concrete with Additive based on Metakaolin. Refract. Ind. Ceram. 2013, 54, 232–237. [Google Scholar] [CrossRef]
- Permyakov, M.B.; Voronin, K.M.; Trubkin, I.S.; Ilin, A.N.; Krasnova, T.V. Effect of microsilica supplement on workability and density of equally moveable flow concrete and concrete strength. Int. Res. J. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Pattem, H.K.; Abhinav, S.; Vijay, K.; Manas, R.M.; Vinay, K.S. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition. J. Asian Ceram. Soc. 2014, 2, 169–175. [Google Scholar] [CrossRef]
- Kuz’min, M.P.; Larionov, L.M.; Chu, P.K.; Abdul, M.Q.; Marina, Y.K.; Victor, V.K. New Methods of Obtaining Al–Si Alloys Using Amorphous Microsilica. Int. J. Met. 2020, 14, 207–217. [Google Scholar] [CrossRef]
- Ozaki, T.; Komiya, G.; Murayama, K.; Imai, T.; Sawa, F.; Shimizu, T.; Harada, M.; Ochi, M.; Ohki, Y.; Tanaka, T. Nano-clay and micro-silica mixed composites for insulating materials for environmentally-conscious switchgear. In Proceedings of the IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, 19–23 July 2009; pp. 864–867. [Google Scholar] [CrossRef]
- Baranova, A.; Bobrova, A. Heat-insulating foam concrete based on microsilica reinforced with fiber. IOP Conf. Ser. Mater. Sci. Eng. 2019, 667, 012009. [Google Scholar] [CrossRef]
- Primachenko, V.V.; Martynenko, V.V.; Babkina, L.A.; Saina, L.K.; Tingin, A.S.; Privalova, N.G. Study of the effect of the amount of microsilica on the properties of silicon carbide refractories based on an alumina-containing binder. In SSN 2225-7748 Collection of Scientific Works PJSC “Ukrndi Vognetriviv Named After A. S. Berezhnoi”; PAT UKRNDI: Kharkov, Ukraine, 2012; No. 112. [Google Scholar]
- Biryukova, A.A.; Tikonova, T.A.; Akchulakova, S.T.; Vakalova, T.V.; Govorova, L.P. The influence of fluorine-containing additives on the synthesis and properties of mullite ceramics based on aluminosilicate raw materials from Kazakhstan. Complex Use Miner. Raw Mater. 2016, 1, 80–87. [Google Scholar]
- Biryukova, A.A.; Tikonova, T.A.; Merkibayev, Y.S.; Khabas, T.A.; Pogrebenkov, V.M. Synthesis of cordierite-mullite ceramics with a given phase composition based on raw materials from Kazakhstan. Complex Use Miner. Raw Mater. 2016, 2, 88–94. [Google Scholar]
Raw Material | Content of Oxides, Mass. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | MgO | CaO | Al2O3 | Fe2O3 | K2O | Na2O | TiO2 | LOI | |
Refractory clay | 37.5 | 0.1 | 0.82 | 39.7 | 1.85 | 0.3 | 0.09 | 2.7 | 16.94 |
Alumina | 0.12 | - | - | 99.16 | 0.05 | 0.15 | 0.11 | 0.21 | 0.20 |
Microsilica | 95.20 | - | - | - | - | - | - | - | 4.80 |
Composition # | Composition of Mixture, Material, Mass.% | Content of Oxides, Mass.% | |||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | MgO | CaO | Al2O3 | Fe2O3 | K2O | Na2O | TiO2 | ||
R10 | refractory clay—100 | 45.14 | 1.20 | 0.98 | 46.80 | 2.23 | 0.31 | 0.10 | 3.24 |
R9 | refractory clay—90 | 51.45 | 0.11 | 0.87 | 42.31 | 1.96 | 0.32 | 0.10 | 2.88 |
microsilica—10 | |||||||||
R8 | refractory clay—80 | 46.12 | 0.12 | 0.76 | 48.37 | 1.74 | 0.28 | 0.08 | 2.53 |
alumina—10 | |||||||||
microsilica—10 | |||||||||
R7 | refractory clay—70 | 40.98 | 0.13 | 0.65 | 54.20 | 1.53 | 0.24 | 0.07 | 2.20 |
alumina—20 | |||||||||
microsilica—10 | |||||||||
R6 | refractory clay—60 | 37.14 | 0.72 | 0.59 | 57.84 | 1.36 | 0.24 | 0.10 | 2.01 |
alumina—30 | |||||||||
microsilica—10 | |||||||||
R5 | refractory clay—50 | 32.64 | 0.60 | 0.50 | 63.08 | 1.15 | 0.22 | 0.10 | 1.71 |
alumina—40 | |||||||||
microsilica—10 |
Composition # | Firing t, °C | Open Porosity, % | Apparent Density, g/cm3 | Water Absorption, % | Compressive Strength, MPa |
---|---|---|---|---|---|
R10 | 1400 | 20.1 | 2.14 | 9.28 | - |
1500 | 11.2 | 2.23 | 5.75 | - | |
R9 | 1500 | 22.9 | 1.82 | 11.2 | 15.6 |
1600 | 20.5 | 1.97 | 9.1 | 24.3 | |
R6 | 1500 | 34.1 | 1.89 | 15.38 | 20.2 |
1600 | 32.2 | 1.98 | 14.00 | 27.0 | |
R5 | 1500 | 41.4 | 1.78 | 18.84 | 16.9 |
1600 | 38.5 | 1.88 | 17.13 | 13.1 |
Composition | Phase | Formula | Quantity, % |
---|---|---|---|
R9 | Mullite, syn | Al(Al1.272Si0.728O4.864) | 53.1 |
Cristobalite, syn | SiO2 | 38.3 | |
Quartz, syn | SiO2 | 8.5 | |
R6 | Mullite, syn | Al4.68Si1.32O9.66 | 98.8 |
Cristobalite, syn | SiO2 | 1.2 | |
R5 | Mullite, syn | Al4.68Si1.32O9.66 | 86.2 |
Corundum, syn | Al2O3 | 13.0 | |
Cristobalite, syn | SiO2 | 0.8 |
Compound | Material | Fraction, mm | Content, % |
---|---|---|---|
Filler | Fireclay | 3–1 | 20 |
1–0.5 | 30 | ||
0.5–0.063 | 10 | ||
Binding mass | Fireclay | ≤0.063 | 10 |
R6 | ≤0.063 | 30 |
Sample Pressing Pressure, MPa | Open Porosity, % | Apparent Density, g/cm3 | Water Absorption, % | Compressive Strength, MPa |
---|---|---|---|---|
40 | 22.73 | 2.12 | 9.70 | 32.6 |
60 | 21.29 | 2.16 | 8.98 | 42.1 |
80 | 24.12 | 2.08 | 10.38 | 36.7 |
100 | 25.17 | 2.05 | 10.94 | 32.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhaliyev, B.; Biryukova, A.; Dzhienalyev, T.; Panichkin, A.; Imbarova, A.; Uskenbaeva, A.; Yusoff, A.H. Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories. Processes 2024, 12, 200. https://doi.org/10.3390/pr12010200
Kenzhaliyev B, Biryukova A, Dzhienalyev T, Panichkin A, Imbarova A, Uskenbaeva A, Yusoff AH. Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories. Processes. 2024; 12(1):200. https://doi.org/10.3390/pr12010200
Chicago/Turabian StyleKenzhaliyev, Bagdaulet, Alla Biryukova, Tolebi Dzhienalyev, Alexander Panichkin, Akerke Imbarova, Alma Uskenbaeva, and Abdul Hafidz Yusoff. 2024. "Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories" Processes 12, no. 1: 200. https://doi.org/10.3390/pr12010200
APA StyleKenzhaliyev, B., Biryukova, A., Dzhienalyev, T., Panichkin, A., Imbarova, A., Uskenbaeva, A., & Yusoff, A. H. (2024). Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories. Processes, 12(1), 200. https://doi.org/10.3390/pr12010200