Study on Influencing Factors of Nicotinamide Transdermal Absorption In Vitro and the Establishment of an Evaluation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Preparing Solutions
2.2.2. Instrument Box Parameter
2.2.3. In Vitro Skin Treatment
2.2.4. Transdermal Absorption
- We drew a graph with A to t.
- V is the volume of the receiving pool;
- Vi is the sampling volume;
- Qa is the total mass of nicotinamide.
2.2.5. Selection of Transdermal Conditions
2.2.6. Preparation of Nicotinamide Makeup: Water, Gel, and Oil-in-Water Emulsion
2.2.7. Data Analysis
3. Results
3.1. Drawing the Standard Curve
3.2. Transdermal Absorption In Vitro
3.2.1. The Influence of the Receiving Liquid
3.2.2. Effect of pH of the Receiving Solution
3.2.3. The Influence of Skin Type
3.2.4. The Influence of Diffusion Cell Temperature
3.2.5. Effect of Active Ingredient Concentration
3.2.6. The Effect of Administration Dose
3.3. The Influence of Product Dosage Form
3.3.1. The Effect of Administration Dose
3.3.2. Effects of Rheological Modifiers
3.3.3. Effect of Emulsifiers
3.3.4. The Effect of Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peltzer, K.; Pengpid, S.; James, C. The globalization of whitening: Prevalence of skin lighteners (or bleachers) use and its social correlates among university students in 26 countries. Int. J. Dermatol. 2016, 55, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Damian, D.L. Nicotinamide and the skin. Australas. J. Dermatol. 2014, 55, 169–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Kung, C.-P.; Iliopoulos, F.; Sil, B.C.; Hadgraft, J.; Lane, M.E. Dermal delivery of niacinamide—In Vivo studies. Pharmaceutics 2021, 13, 726. [Google Scholar] [CrossRef] [PubMed]
- Seiberg, M. Keratinocyte–melanocyte interactions during melanosome transfer. Pigment. Cell Res. 2001, 14, 236–242. [Google Scholar] [CrossRef]
- Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G.; Bissett, D.; Boissy, R. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 2002, 147, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Wohlrab, J.; Kreft, D. Niacinamide-mechanisms of action and its topical use in dermatology. Ski. Pharmacol. Physiol. 2014, 27, 311–315. [Google Scholar] [CrossRef]
- Tuncay, S.; Özer, Ö. Investigation of different emulsion systems for dermal delivery of nicotinamide. Pharm. Dev. Technol. 2013, 18, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Mechanistic basis and clinical evidence for the applications of nicotinamide (Niacinamide) to control skin aging and pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef]
- Yang, J.; Kim, B. Synthesis and characterization of ethosomal carriers containing cosmetic ingredients for enhanced transdermal delivery of cosmetic ingredients. Korean J. Chem. Eng. 2018, 35, 792–797. [Google Scholar] [CrossRef]
- Shi, C.; Cui, F.; Li, G. Study on the application of nicotinamide in skin whitening products. Deterg. Cosmet. 2005, 28, 25–26. [Google Scholar]
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef]
- Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro model for human skin. Ski. Res. Technol. 2007, 13, 19–24. [Google Scholar] [CrossRef]
- OECD. Guideline for the testing of chemicals-Skin absorption: In Vitro method. Adopted 2004, 13, 428. [Google Scholar]
- Liu, Y.; Liu, D.; Xie, Z. Transdermal absorption and safety assessment of six commonly used sunscreens. China Surfactant Deterg. Cosmet. 2021, 51, 1088–1094. [Google Scholar]
- Nowak, A.; Church, M.; Duchnik, W.; Różewicka-Czabańska, M.; Bielecka-Grzela, S.; Prowans, P.; Pietriczko, J.; Czapla, N.; Bargiel, P.; Klimowicz, A. Comparison of artificial hydrophilic and lipophilic membranes and human skin to evaluate niacinamide penetration in vitro. Acta Pol. Pharm.-Drug Res. 2020, 77, 271–279. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, D.; Li, X.; Tian, T.; Wang, Q. Effects of different animal skin and pH of receiving solution on in vitro percutaneous penetration of formoterol fumarate. Chin. J. Pharm. 2019, 50, 546–552. [Google Scholar]
- Van Gele, M.; Geusens, B.; Brochez, L.; Speeckaert, R.; Lambert, J. Three-dimensional skin models as tools for transdermal drug delivery: Challenges and limitations. Expert Opin. Drug Deliv. 2011, 8, 705–720. [Google Scholar] [CrossRef]
- Huang, X.; Wan, X.; Wang, Z. Comparison of pig skins of different position with human skin in skin permeability of drugs. Chin. J. Hosp. Pharm. 1997, 17, 309. [Google Scholar]
- Zhang, Y.; Kung, C.P.; Sil, B.C.; Lane, M.E.; Hadgraft, J.; Heinrich, M.; Sinko, B. Topical delivery of niacinamide: Influence of binary and ternary solvent systems. Pharmaceutics 2019, 11, 668. [Google Scholar] [CrossRef]
- Jung, E.C.; Maibach, H.I. Animal models for percutaneous absorption. In Topical Drug Bioavailability, Bioequivalence, and Penetration; Springer: Berlin/Heidelberg, Germany, 2014; pp. 21–40. [Google Scholar]
- Shin, S.H.; Srivilai, J.; Ibrahim, S.A.; Strasinger, C.; Hammell, D.C.; Hassan, H.E.; Stinchcomb, A.L. The sensitivity of in vitro permeation tests to chemical penetration enhancer concentration changes in fentanyl transdermal delivery systems. AAPS PharmSciTech 2018, 19, 2778–2786. [Google Scholar] [CrossRef]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef]
- Arce, F.J.; Asano, N.; See, G.L.; Itakura, S.; Todo, H.; Sugibayashi, K. Usefulness of artificial membrane, Strat-M®®, in the assessment of drug permeation from complex vehicles in finite dose conditions. Pharmaceutics 2020, 12, 173. [Google Scholar] [CrossRef]
- Zghoul, N.; Fuchs, R.; Lehr, C.M.; Schaefer, U.F. Reconstructed skin equivalents for assessing percutaneous drug absorption from pharmaceutical formulations. ALTEX-Altern. Anim. Exp. 2001, 18, 103–106. [Google Scholar]
- Pulsoni, I.; Lubda, M.; Aiello, M.; Fedi, A.; Marzagalli, M.; von Hagen, J.; Scaglione, S. Comparison between Franz diffusion cell and a novel micro-physiological system for in vitro penetration assay using different skin models. SLAS Technol. 2022, 27, 161–171. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, X.; Wang, X.; Liu, X.; Liu, Y.; Li, Y. Experimental study on the transdermal absorption characteristics and skin irritation of fluorescent whitening agents in facial mask. China Surfactant Deterg. Cosmet. 2022, 52, 322–327. [Google Scholar]
- Zhang, Y.; Lane, M.E.; Hadgraft, J.; Heinrich, M.; Chen, T.; Lian, G.; Sinko, B. A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int. J. Pharm. 2019, 556, 142–149. [Google Scholar] [CrossRef] [PubMed]
- GB/T 27818-2011; Chemicals—Testing Method for Skin Absorption—In Vitro. China Standards Press: Beijing, China, 2011.
- Organization for Economic Cooperation and Development. Guideline for the testing of chemicals. In Skin Absorption: In Vitro Method 428; OECD: Paris, France, 2004. [Google Scholar]
- López-Sánchez, L.; Miralles, P.; Salvador, A.; Merino-Sanjuán, M.; Merino, V. In Vitro skin penetration of bronidox, bronopol and formaldehyde from cosmetics. Regul. Toxicol. Pharmacol. 2021, 122, 104888. [Google Scholar] [CrossRef]
- Nabiee, R.; Dubois, B.; Green, L.; Sharma, A.; Wong, S.F.; Aliabadi, H.M. In Vitro and ex-vivo evaluation of topical formulations designed to minimize transdermal absorption of Vitamin K1. PLoS ONE 2018, 13, e0204531. [Google Scholar] [CrossRef] [PubMed]
Sample | Linear Equation | Linearity Range/(μg/mL) | Correlation Coefficient |
---|---|---|---|
Nicotinamide solution | y = 225,059.50317x + 6,948,230 | 2~1500 | 0.99602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Shi, X.; Zheng, S. Study on Influencing Factors of Nicotinamide Transdermal Absorption In Vitro and the Establishment of an Evaluation Method. Processes 2024, 12, 202. https://doi.org/10.3390/pr12010202
Zhang W, Shi X, Zheng S. Study on Influencing Factors of Nicotinamide Transdermal Absorption In Vitro and the Establishment of an Evaluation Method. Processes. 2024; 12(1):202. https://doi.org/10.3390/pr12010202
Chicago/Turabian StyleZhang, Wanping, Xuefang Shi, and Shilian Zheng. 2024. "Study on Influencing Factors of Nicotinamide Transdermal Absorption In Vitro and the Establishment of an Evaluation Method" Processes 12, no. 1: 202. https://doi.org/10.3390/pr12010202
APA StyleZhang, W., Shi, X., & Zheng, S. (2024). Study on Influencing Factors of Nicotinamide Transdermal Absorption In Vitro and the Establishment of an Evaluation Method. Processes, 12(1), 202. https://doi.org/10.3390/pr12010202