Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs
Abstract
:1. Introduction
2. Conductivity Models of Carbonate Reservoirs
2.1. Porous Reservoirs
- (1)
- Rock pores and throats are saturated with water.
- (2)
- Rock pores and throats are saturated with crude oil.
2.2. Fractured Reservoirs
- (1)
- When the fracture is saturated with water, the total rock resistance within the detection depth of the electrode is the parallel resistance of the upper matrix block Mu, fracture, and lower matrix block Ml (Figure 2a–c). Theoretical models were developed considering the following three geometric relationships:
- (i)
- The intersection of the fracture plane with the bottom plane of the electrode column is outside the radial detection depth of the electrode (Figure 2a). In this scenario, the rock resistance expression is given based on Ohm’s Law:Furthermore, the rock resistance can be obtained as follows:Substituting Equation (6) into Equation (7) gives the following expression for rock resistivity:
- (ii)
- The intersection is between the borehole radius and the radial detection depth (Figure 2b). In this scenario, the rock resistance is given by:In Equation (9) and subsequent references, r0 denotes the distance from the bottom center of the electrode column to the intersection line between the fracture surface and the bottom plane of the electrode column, which is calculated as:In Equation (9), β represents the inclination angle of r0 relative to the fracture within the integration radius rx, with the following mathematical expression:Substituting Equation (9) into Equation (7), the rock resistivity is obtained as:
- (iii)
- The intersection is within the borehole radius (Figure 2c). In this scenario, the rock resistance is:Substituting Equation (13) into Equation (7), the rock resistivity is obtained as:
- (2)
- When the fracture is saturated with oil, the total rock resistance within the detection depth of the electrode is the parallel resistance of the upper matrix block Mu, fracture w, and lower matrix block Ml (Figure 2d–f). Three theoretical models were developed, considering the following three different geometric relationships:
- (i)
- The intersection of the fracture plane with the bottom plane of the electrode column is outside the radial detection depth of the electrode (Figure 2d). In this scenario, the rock resistance is derived based on Ohm’s Law:The rock resistance can be obtained as follows:Substituting Equation (15) into Equation (16), the rock resistivity is obtained as:Since Ro is much larger than the resistivities of the formation water and rock matrix, it can be considered to be infinite. Thus, Equation (17) can be simplified as:
- (ii)
- The intersection is between the borehole radius and the radial detection depth (Figure 2e). In this scenario, the rock resistance is:Substituting Equation (19) into Equation (16), the rock resistivity is obtained as:
- (iii)
- The intersection is within the borehole radius (Figure 2f). In this scenario, the rock resistance is:Substituting Equation (21) into Equation (16), the rock resistivity is obtained as:
2.3. Rock Cementation Exponent
3. Univariate Analysis of the Theoretical Models
3.1. Pore Parameters
3.2. Fracture Parameters
4. Discussion
4.1. Changes in Rock Cementation Exponent
4.2. Effects of Fractured–Cavernous Structural Parameters on Resistivity
4.3. Causes of Anomalous Resistivity
4.4. Implications for the Exploration and Development of Oil and Gas in Carbonate Reservoirs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bust, V.K.; Oletu, J.U.; Worthington, P.F. The challenges for carbonate petrophysics in petroleum resource estimation. SPE Reserv. Eval. Eng. 2011, 14, 25–34. [Google Scholar] [CrossRef]
- Xu, T.; Lindsay, G.; Zheng, W.; Baihly, J.; Ejofodomi, E.; Malpani, R.; Shan, D. Proposed refracturing-modeling methodology in the haynesville shale, a US unconventional basin. SPE Prod. Oper. 2019, 34, 725–734. [Google Scholar] [CrossRef]
- Organization of the Petroleum Exporting Countries. World Oil Outlook 2045; Organization of the Petroleum Exporting Countries: Vienna, Austria, 2022. [Google Scholar]
- Wang, D.B.; Zhou, F.J.; Li, Y.P.; Yu, B.; Martyushev, D.; Liu, X.F.; Wang, M.; He, C.M.; Han, D.X.; Sun, D.L. Numerical simulation of fracture propagation in Russia carbonate reservoirs during refracturing. Pet. Sci. 2022, 19, 2781–2795. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Liu, W.J.; Wang, B.W.; Tian, B.R.; Yang, X.Y.; Pan, C.C. Analysis and Prediction of Energy, Environmental and Economic Potentials in the Iron and Steel Industry of China. Processes 2023, 11, 3258. [Google Scholar] [CrossRef]
- Li, L.; Xiao, D.; Liu, R.; Zhang, Y.; Shan, S.J.; Liu, Y.; Zhong, J.Y.; Tan, X.C. Origin of breccia dolomites in the middle Devonian Guanwushan Formation, NW Sichuan Basin, China: Implications for ultra-deep carbonate reservoirs. Geoenergy Sci. Eng. 2023, 227, 211949. [Google Scholar] [CrossRef]
- Jia, C.Z.; Zheng, M.; Zhang, Y.F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 129–136. [Google Scholar] [CrossRef]
- Li, Y.; Hou, J.G.; Li, Y.Q. Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs. Pet. Explor. Dev. 2016, 43, 655–662. [Google Scholar] [CrossRef]
- Rashid, F.; Glover, P.; Lorinczi, P.; Hussein, D.; Lawrence, J. Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks. J. Pet. Sci. Eng. 2017, 156, 814–826. [Google Scholar] [CrossRef]
- Liu, S.X.; Xue, H.J.; Zhao, M.Y. Pore Structure and Fractal Characteristics of Coal Measure Shale in the Wuxiang Block in the Qinshui Basin. Processess 2023, 11, 3362. [Google Scholar] [CrossRef]
- Sharifi, J.; Moghaddas, N.H.; Saberi, M.R. A novel approach for fracture porosity estimation of carbonate reservoirs. Geophys. Prospect. 2023, 71, 664–681. [Google Scholar] [CrossRef]
- Choquette, P.A.; Pray, L.C. Geologic nomenclature and classification of porosity in sedimentary carbonate. AAPG Bull. 1970, 54, 207–250. [Google Scholar]
- Zhao, L.X. Study of the complex carbonate pore structures. World Well Logging Technol. 2014, 1, 20–22. (In Chinese) [Google Scholar]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Mohammed-Sajed, O.K.; Glover, P.W.; Al-Khatony, F.H.; Collier, R.E. Qualitative and quantitative diagenetic modelling in a tight carbonate reservoir in north-western Iraq. Geoenergy Sci. Eng. 2024, 232, 212450. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, C.S.; Liu, R.L.; Xiao, C.W. Production prediction for fracture-vug carbonate reservoirs using electric imaging logging data. Pet. Explor. Dev. 2018, 45, 349–356. [Google Scholar] [CrossRef]
- Ren, J. Conventional logging evaluation method for carbonate fractured reservoir. Lithol. Reserv. 2020, 32, 129–137. [Google Scholar]
- Rabaev, R.; Chibisov, A.; Kotenev, A.; Kotenev, M.; Dubinskiy, G.; Muhametshin, V.; Efimov, E. Mathematical modelling of carbonate reservoir dissolution and prediction of the controlled hydrochloric acid treatment efficiency. SOCAR Proc. 2021, 2, 40–46. [Google Scholar] [CrossRef]
- Rong, Y.S.; Pu, W.F.; Zhao, J.Z.; Li, K.X.; Li, X.H.; Li, X.B. Experimental research of the tracer characteristic curves for fracture-cave structures in a carbonate oil and gas reservoir. J. Nat. Gas Sci. Eng. 2016, 31, 417–427. [Google Scholar] [CrossRef]
- Miller, K.; Vanorio, T.; Keehm, Y. Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution. J. Geophys. Res. Solid Earth 2017, 122, 4460–4474. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Gao, C.Q. Theoretical simulation of the resistivity and pore structure of hydrocarbon bearing rocks. Pet. Explor. Dev. 2000, 27, 87–90. [Google Scholar]
- Stadtműller, M.; Krakowska-Madejska, P.I.; Leśniak, G.; Jarzyna, J.A. Characterization of the carbonate formation fracture system based on well logging data and results of laboratory measurements. Energies 2021, 14, 6034. [Google Scholar] [CrossRef]
- Stadtműller, M.; Jarzyna, J.A. Estimation of petrophysical parameters of carbonates based on well logs and laboratory measurements, a review. Energies 2023, 16, 4215. [Google Scholar] [CrossRef]
- Rathinasamy, V.; Mohamad, E.T.; Komoo, I.; Legiman, M.K.A.; Amaniyah, N.; Bhatawdekar, R.M.; Hanapi, M.N.B.; Suparmanto, E.K.B. Fracture characterization using downhole camera in deep boreholes at Southern Johor Bahru, Malaysia. In Proceedings of the Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures; Lecture Notes in Civil Engineering; Springer: Singapore, 2022; Volume 228. [Google Scholar]
- Yang, Y.F.; Tao, L.; Yang, H.Y.; Iglauer, S.; Wang, X.; Askari, R.; Yao, J.; Zhang, K.; Zhang, L.; Sun, H. Stress Sensitivity of Fractured and Vuggy Carbonate: An X-Ray Computed Tomography Analysis. JGR Solid Earth 2020, 125, e2019JB018759. [Google Scholar] [CrossRef]
- Aguilera, R. Analysis of naturally fractured reservoirs from conventional well logs. J. Pet. Technol. 1976, 28, 764–772. [Google Scholar] [CrossRef]
- Bauer, D.; Youssef, S.; Fleury, M.; Bekri, S.; Rosenberg, E.; Vizika, O. Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed microtomography. Transp. Porous Media 2012, 94, 505–524. [Google Scholar] [CrossRef]
- He, J.H.; Li, M.; Zhou, K.M.; Yang, Y.; Xie, B.; Li, N.; Dang, L.R.; Tang, Y.B. Effects of vugs on resistivity of vuggy carbonate reservoirs. Pet. Explor. Dev. 2020, 47, 490–498. [Google Scholar] [CrossRef]
- Aguilera, M.S.; Aguilera, R. Improved models for petrophysical analysis of dual porosity reservoirs. Petrophysics 2003, 44, 21–35. [Google Scholar]
- Liu, R.L.; Li, N.; Feng, Q.F.; Hai, C.; Wang, K.W. Application of the triple porosity model in well-log effectiveness estimation of the carbonate reservoir in Tarim Oilfield. J. Pet. Sci. Eng. 2009, 68, 40–46. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325–1328. [Google Scholar] [CrossRef]
- Adler, P.M.; Thovert, J.-F. Fractal porous media. Transp. Porous Media 1993, 13, 41–78. [Google Scholar] [CrossRef]
- Berg, C.R. Dual-porosity equations from effective medium theory. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006; p. 101698. [Google Scholar]
- Leverett, M.C. Capillary behavior in porous solids. Trans. AIME 1940, 142, 159–172. [Google Scholar] [CrossRef]
- Yuan, H.H. Relationship between permeability and factors “A” “M” in Archie equation-capillary theory in the study of rock resistivity. Well Logging Technol. 1990, 14, 40–45. (In Chinese) [Google Scholar]
- Winsauer, W.O. Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull. 1952, 36, 230–252. [Google Scholar]
- Fu, J.L.; Thomas, H.R.; Li, C.F. Tortuosity of porous media: Image analysis and physical simulation. Earth-Sci. Rev. 2021, 212, 103439. [Google Scholar] [CrossRef]
- Greenberg, R.J.; Brace, W.F. Archie’s law for rocks modeled by simple networks. J. Geophys. Res. 1969, 74, 2099–2102. [Google Scholar] [CrossRef]
- Xiong, Q.R.; Baychev, T.G.; Jivkov, A.P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 2016, 192, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.W.; Sun, J.M.; Guan, J.T.; Su, Y.D. Percolation network modeling of electrical properties of reservoir rock. Acta Pet. Sin. 2007, 28, 101–106. (In Chinese) [Google Scholar] [CrossRef]
- Kirkpatrick, S. Classical transport in disordered media: Scaling and effective-medium theories. Phys. Rev. Lett. 1977, 27, 1722–1728. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Daigle, H. Permeability in two component porous media: Effective-medium approximation compared with lattice-Boltzmann simulations. Vadose Zone J. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.M.; Sharma, M.M. A network model for the resistivity behavior of partially saturated rocks. In Proceedings of the 29th Annual Logging Symposium Transactions: Society of Professional Well Log Analysts, San Antonio, TX, USA, 5–8 June 1988. [Google Scholar]
- Yuan, C.; Li, C.L.; Zhou, C.C.; Xiao, Q.Y.; Li, X.; Fan, Y.R.; Yu, J.; Wang, L.; Xing, T. Forward simulation of array laterolog resistivity in anisotropic formation and its application. Pet. Explor. Dev. 2020, 47, 77–85. [Google Scholar] [CrossRef]
- Lai, Q.; Tang, J.; Wu, Y.Y.; Xu, W.; Xie, B.; Jin, Y. Numerical simulation and resistivity anisotropic correction method of dual laterolog response in highly deviated well. Oil Geophys. Prospect. 2022, 57, 706–712. [Google Scholar]
- Subbit, A.M.; Faivre, O. The Dual laterolog response in fractured rock. In Proceedings of the Dallas Texas: SPWLA 26th Annual Logging Symposium, Dallas, TX, USA, 17–20 June 1985; pp. 17–20. [Google Scholar]
- Wang, H.M.; Zhang, G.J.; Li, S.J.; Liu, F.P. The dual laterolog response of the single dipping fracture. J. Univ. Pet. 1995, 19, 21–24. [Google Scholar]
- Li, S.J.; Xiao, C.W.; Wang, H.M.; Zang, G.J. Mathematical model of dual laterolog response of fractures and quantitative interpretation of fracture porosity. J. Geophys. 1996, 39, 845–852. [Google Scholar] [CrossRef]
- Shi, G.; He, T.; Wu, Y.Q.; Liu, J.H.; Ma, Y. A study on the dual laterolog response to fractures using the forward numerical modeling. Chin. J. Geophys. 2004, 47, 359–363. [Google Scholar]
- Deng, S.G.; Mo, X.X.; Lu, C.L.; Zhang, Y.; Liu, L.L. Numerical simulation of the dual laterolog response to fractures and caves in fractured–cavernous formation. Pet. Explor. Dev. 2012, 39, 706–712. [Google Scholar] [CrossRef]
- Ge, X.M.; Fan, Y.R.; Li, J.; Tan, B.H.; Wang, L.; Wu, Z.G.; Wang, X.C. Experimental studies and investigations on the dual lateral log response of near borehole fractures. Chin. J. Geophys. 2019, 62, 354–360. [Google Scholar]
- Bai, Y.; Luo, P.; Wang, S.; Zhou, C.M.; Zhai, X.F.; Wang, S.; Yang, Z.Y. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Aksu area, Tarim Basin, NW China. Pet. Explor. Dev. 2017, 44, 349–358. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tan, F.; Qu, H.Z.; Zhong, Z.Q.; Liu, Y.; Luo, X.S.; Wang, Z.Y.; Qu, F. Karst monadnock fine characterization and reservoir control analysis: A case from Ordovician weathering paleokarst reservoirs in Lungu area, Tarim Basin, China. Pet. Explor. Dev. 2017, 44, 716–726. [Google Scholar] [CrossRef]
- Liu, Y.M.; Hou, J.G.; Li, Y.Q.; Dong, Y.; Ma, X.Q.; Wang, X.X. Characterization of architectural elements of Ordovician Fractured–cavernous carbonate reservoirs, Tahe Oilfield, China. J. Geol. Soc. India 2018, 91, 315–322. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574–588. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–61. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yu, H.G.; Chen, H.Y.; Du, S.K.; Li, C. Quantitative characterization of fracture-pore distribution and effects on production capacity of weathered volcanic crust reservoirs: Insights from volcanic gas reservoirs of the Dixi area, Junggar Basin, Western China. Mar. Pet. Geol. 2022, 140, 105651. [Google Scholar] [CrossRef]
- Schmoker, J.W.; Hally, R.B. Carbonate porosity versus depth: A predictable relation for South Florida. AAPG Bull. 1988, 66, 2561–2570. [Google Scholar]
- Ehrenberg, S.N.; Nadeau, P.H.; Steen, Ø. Petroleum reservoir porosity versus depth: Influence of geological age. AAPG Bulletin 2009, 93, 1281–1296. [Google Scholar] [CrossRef]
- Ehrenberg, S.N. Factors controlling porosity in upper carboniferous–lower Permian carbonate strata of the barents sea. AAPG Bull. 2004, 88, 1653–1676. [Google Scholar] [CrossRef]
- Wennberg, O.P.; Casini, G.; Jonoud, S.; Peacock, D.C. The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow: A Discussion. Pet. Geosci. 2016, 22, 91–104. [Google Scholar] [CrossRef]
- Mohammed-Sajed, O.K.; Glover, P.W.J. Dolomitisation, cementation and reservoir quality in three Jurassic and Cretaceous carbonate reservoirs in north-western Iraq. Mar. Pet. Geol. 2020, 115, 104256. [Google Scholar] [CrossRef]
- de Lima, A.; Lopes, J.A.; Medeiros, W.E.; Schiozer, D.J.; La Bruna, V.; Bezerra, F.H. Impact of fracture set scales and aperture enlargement due to karstic dissolution on the fluid flow behavior of carbonate reservoirs: A workflow to include sub-seismic fractures in 3D simulation models. Geoenergy Sci. Eng. 2023, 221, 211374. [Google Scholar] [CrossRef]
- Tian, H.; Shen, A.J.; Zhang, J.Y.; Feng, Q.F.; Wang, H.; Xin, Y.G.; Li, W.Z.; Li, C.; Tian, M.Z.; Zhang, H. New calculation method of cementation exponent m for crack-vuggy carbonate reservoirs. Chin. J. Geophys. 2019, 62, 2276–2285. [Google Scholar]
- Lü, X.X.; Wang, Y.F.; Yu, H.F.; Bai, Z.K. Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation, A case study of Ordovician rocks on the northern slope of the Tazhong uplift in the Tarim Basin, western China. Mar. Pet. Geol. 2017, 83, 231–245. [Google Scholar] [CrossRef]
- Ouyang, S.Q.; Lü, X.X.; Quan, H.; Awan, R.S.; Zhou, J.X.; Wang, R. Evolution process and factors influencing the tight carbonate caprock: Ordovician Yingshan Formation from the northern slope of the Tazhong uplift, Tarim Basin, China. Mar. Pet. Geol. 2023, 147, 105998. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gao, C.; Gao, Y.; Niu, C.; Ma, S. Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs. Processes 2024, 12, 43. https://doi.org/10.3390/pr12010043
Zhang Z, Gao C, Gao Y, Niu C, Ma S. Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs. Processes. 2024; 12(1):43. https://doi.org/10.3390/pr12010043
Chicago/Turabian StyleZhang, Zhaohui, Chuqiao Gao, Yongde Gao, Chunzhen Niu, and Shenglun Ma. 2024. "Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs" Processes 12, no. 1: 43. https://doi.org/10.3390/pr12010043
APA StyleZhang, Z., Gao, C., Gao, Y., Niu, C., & Ma, S. (2024). Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs. Processes, 12(1), 43. https://doi.org/10.3390/pr12010043