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Abstract

:

This study presents a dynamic multi-factor correlation analysis method designed to predict provincial carbon dioxide emissions (CDE) within China’s Bohai Rim region, including Tianjin, Hebei, Shandong, and Liaoning. By employing the sliding window technique, dynamic correlation curves are computed between various influencing factors and CDE at different time intervals, thereby facilitating the identification of key feature attributes. A novel metric, the Consistency Index of Influencing Factors (CIIF), is introduced to evaluate the consistency of these factors across regions. Furthermore, the Accurate Predictive Capability Indicator (APCI) is defined to measure the impact of different feature categories on the prediction accuracy. The findings reveal that models relying on a single influencing factor exhibit limited accuracy, whereas combining multiple factors with diverse correlation features significantly improves the prediction accuracy. This study introduces a refined analytical framework and a comprehensive indicator system for CDE prediction. It enhances the understanding of the complex factors that influence CDE and provides a scientific rationale for implementing effective emission reduction strategies.
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1. Introduction


With the intensifying global warming problem, CDE management has become a pivotal issue in the global battle against climate change and the advancement of sustainable development. Accurate CDE predictions are crucial for formulating effective emission reduction policies, optimizing energy structures, adjusting industrial frameworks, and fostering technological innovation. Consequently, CDE prediction is at the forefront of environmental science research and is an indispensable component of global environmental governance and sustainable development planning.



In models based on neural networks, the selection of key influencing factors significantly impacts both the accuracy and reliability of the prediction results. Therefore, a comprehensive analysis of the correlation between CDE and relevant influencing factors, as well as an exploration of their underlying mechanisms, is essential for improving the accuracy of the CDE predictions. In terms of CDE management, elucidating the intricate relationships between CDE and its influencing factors is also of great significance for the formulation and implementation of carbon management policies.



This study selects the Bohai Rim region in China as the research subject, which primarily comprises four provinces and cities: Tianjin, Hebei, Shandong, and Liaoning. The main reasons for choosing this region are as follows:




	(1)

	
Economic Significance: the Bohai Rim region is one of China’s key economic areas, characterized by developed industries and a significant economic output, which exerts a notable influence on the country’s carbon emissions.




	(2)

	
Industrial Structural Similarity: These four provinces and cities share certain similarities in their industrial structures, especially in heavy industry and chemical industry. This study aims to better understand the overall carbon emission characteristics of the Bohai Rim region.




	(3)

	
Data Availability: Given the feasibility of the research and the completeness of the data, we utilized panel data spanning from 1999 to 2021 for this region, relying on reference data sources from Guan, Y. et al. [1] and websites [2,3]. This ensures that sufficient data are available to support the analysis throughout the research process.









To investigate the intricacies of provincial CDE predictions in China’s Bohai Rim region, influenced by a multitude of complex factors, we have adopted a dynamic multi-factor correlation analysis method. This approach aims to improve the prediction accuracy and address regional variations. Additionally, it meets the scientific requirements for informing carbon reduction strategies. With this method, we seek to contribute to the existing literature on CDE prediction and management, ultimately facilitating practical applications in environmental science and policy formulation. To achieve this objective, the following questions will be addressed:




	(1)

	
What are the mechanisms by which different categories of influencing factors affect CDE?




	(2)

	
How can the impact of influencing factors on CDE be dynamically described?




	(3)

	
How can the differences in the effects of the mechanisms affecting CDE across regions be quantified?




	(4)

	
How can key influencing factors be selected to improve prediction accuracy?









The remainder of this paper is organized as follows: Section 2 reviews the influence mechanism of different categories of factors on CDE and their representation. Section 3 describes the dynamic correlation features between CDE and its influencing factors. Section 4 analyzes the consistency of influencing factors according to different features. Section 5 compares the prediction accuracy of models using influencing factors with different features. Section 6 presents the discussion, and Section 7 concludes the paper.




2. Literature Review


The current prediction of CDE often incorporates various categories of factors, including economic development, urbanization, and technological advancements. As highlighted in [4,5,6], exploring the mechanisms of the influencing factors on CDE and conducting in-depth identification of key influencing factors significantly impact the accuracy of CDE predictions.



The relationship between economic development and CDE is evident in the correlation observed between economic growth and CDE across various regions and stages of development, further manifesting in regional disparities and individual differences in CDE levels. Multiple factors, such as economic growth, industrial structure, energy composition, and policy formulation, influence this correlation. Abid, M. [7] investigated the positive correlation between economic development and CDE. Liao, H. et al. [8] validated the nonlinear relationship between economic growth and CDE. The Environmental Kuznets Curve (EKC) hypothesis suggests that as levels of economic development increase, environmental pollution initially rises and then declines, following an inverted U-shaped trajectory. However, Mikayilov, J.I. et al. [9] analyzed the long-term impact of economic growth in Azerbaijan using various cointegration methods while proposing that the EKC hypothesis may not be applicable in that specific context. Furthermore, the relationship between economic development and CDE demonstrates significant variations across different regions and individuals. An analysis by Li, W. et al. [10] showed that countries form distinct higher-order clusters in terms of their relationships with economic development and CDE, reflecting differences in stages of economic development, energy structures, policy frameworks, and other factors among nations. Both industrial structure and energy composition have a substantial impact on CDE; a higher proportion of heavy industry and high-energy-consuming sectors often results in increased CDE. Nie, Y. et al. [11] examined the disparities in industrial structure among the eastern, central, and western regions of China, leading to divergent trends in CDE.



Urbanization significantly influences CDE by driving infrastructure development, population aggregation, and the expansion of economic activities. On the one hand, the increase in energy consumption and changes in the industrial structure resulting from urbanization often lead to an increase in CDE [12,13]. On the other hand, urbanization also fosters technological innovation and enhances energy efficiency, which can help mitigate the growth of CDE to some extent [14,15]. Zhang, Y. et al. [16] conducted research using Beijing as a case study to examine the effects of policy interventions during the urbanization process on CDE, highlighting the critical role of strategic urban planning and effective governance practices in reducing CDE. Wang, S. et al. [17] examined the various effects of urbanization on CDE using panel data analysis. Furthermore, Abdallh, A.A. et al. [18] highlighted the mediating role of energy consumption in shaping the relationship between urbanization and CDE, emphasizing that improving energy efficiency is essential for curbing the growth of CDE. Meanwhile, Musah, M. et al. [19] revealed the importance of optimizing the industrial structure and pursuing low-carbon transformations for reducing CDE. Notably, significant differences exist in how urbanization relates to CDE across various regions and countries. Li, J. et al. [20] confirmed that factors such as economic structure, energy efficiency, and policy environment have different impacts on CDE across regions, while Wang, Y. et al. [21] identified a nonlinear relationship between levels of urbanization and CDE among different countries.



Technological innovation serves as an effective strategy to address the increase in CDE by reducing energy consumption, enhancing energy efficiency, and effectively driving economic growth activities. However, the impact of technological innovation on CDE exhibits regional disparities. For instance, in China, effects vary across eastern, central, and western regions [22]; similarly, in Malaysia, although specific regions are not explicitly distinguished, it can be inferred that differing levels of technological innovation and environmental conditions may result in variations in emission reduction outcomes [23]. Consequently, the relationship between technological innovation and CDE is complex and multidimensional, particularly in developing economies. Research conducted by Cheng, S. et al. [24] indicated that technological innovations in renewable energy positively affect CDE intensity in low quantile regions while exerting a negative impact in high quantile areas; conversely, the effect of fossil fuel-related innovation is the opposite. Zhang, M. et al. [25] performed studies utilizing provincial panel data from China to investigate how technological innovation influences CDE. Their findings revealed that such innovations indirectly contribute to reductions in CDE through improvements in energy efficiency and exhibit spatial spillover effects on neighboring provinces. Ali, W. et al. [23] identified a bidirectional causal relationship between energy consumption and economic growth, as well as between economic growth and technological innovation in the short term. Furthermore, Erdogan, S. [26] emphasized that CDE is a cumulative variable influenced by historical values, thus requiring consideration of dynamic effects. Eslamipoor, R. et al. [27] proposed a green supply chain model under a carbon cap and highlighted the critical role of policymakers and the importance of setting allowable emission limits.



In summary, economic development and industrial structure are the primary determinants of CDE, particularly in developing countries [28,29]. Meanwhile, the advancement of urbanization, accompanied by increased energy consumption and transport-related activities, has a significant impact on CDE [30]. Furthermore, technological advancements have become a crucial factor influencing CDE by optimizing industrial and energy structures [31]. The intricate interactions between these factors, along with other relevant elements, collectively determine the trajectory and magnitude of CDE trends [32].



Currently, the primary approaches for describing the relationship between CDE and its influencing factors predominantly encompass statistical analysis, decomposition analysis, grey relational analysis, and artificial intelligence analysis. Statistical analysis commonly employs techniques such as correlation, regression, factor, and principal component analysis. Raihan, A. et al. [33] utilized Dynamic Ordinary Least Squares (DOLS) and Canonical Correlation Regression (CCR) to analyze the dynamic implications of factors such as economic growth and energy consumption on CDE, revealing the causal relationships among these factors. Wang, Z. et al. [34] identified the principal influencing factors and their interactions using factor analysis (FA) and subsequently employed a Bayesian Neural Network (BNN) to capture the nonlinear relationship between the inputs and CDE. Chang, L. et al. [35] exploited the capability of Projection Pursuit Regression (PPR) in handling high-dimensional data and extracted the most critical information for predicting CDE from large-scale datasets. Yang, H. et al. [36] transformed the complex CDE time series into manageable components through decomposition and reconstruction, and subsequently employed a deep learning model to capture the patterns of each component and make predictions. Ding, Y.K. et al. [37] quantified the influence of technology-upgrading policies on CDE through factor analysis and expressed the flows of CDE between different regions and industries based on Graph Representation Learning (GRL), thereby predicting CDE. Chen, Y.X. et al. [38] captured the spatiotemporal correlations of CDE by means of a hybrid deep learning model integrating a Gated Recurrent Unit (GRU) and Graph Convolutional Network (GCN), thereby accomplishing CDE prediction.



Based on the above analysis, the potential limitations of the current research are as follows:




	(1)

	
Regarding the studied regions and datasets: Some research focuses on carbon emission studies in specific areas, such as in Egypt or certain urban agglomerations in China. These studies often rely on limited datasets, potentially failing to adequately capture the variations and similarities across diverse regions.




	(2)

	
Regarding the depth and breadth of influencing factor analysis: some studies may primarily concentrate on the impact of a few key influencing factors (e.g., economic growth and energy use) on carbon emissions, resulting in a somewhat oversimplified comprehension of the matter.




	(3)

	
With respect to models and methodologies: although these methods may excel in addressing simple or linear relationships, they may face limitations when dealing with complex, nonlinear carbon emission data.




	(4)

	
In terms of the practicality and specificity of policy recommendations: the policy suggestions proposed in some research may indeed be relatively high-level or general, lacking specific implementation plans tailored to particular regions or situations.









The primary objective of this study is to comprehensively analyze the dynamic evolution relationship between various influencing factors and CDE, specifically manifested in the following aspects:




	(1)

	
Dynamism: distinct from static correlation analysis, this study employs a sliding window technique to capture the time-varying relationships between carbon emissions and various influencing factors.




	(2)

	
Multi-factor Analysis and New Indicators: This study simultaneously considers multiple influencing factors, thereby providing a more comprehensive understanding of the drivers of carbon emissions. Furthermore, we introduce two novel indicators: the Consistency Index of Influencing Factors (CIIF) and the Accurate Predictive Capability Indicator (APCI), which together form a robust framework for evaluating and comparing prediction models.




	(3)

	
Comprehensive Analysis: by analyzing the consistency and comparing the prediction accuracy of influencing factors across different feature categories, our method offers deeper insights into the complex mechanisms of carbon emissions.










3. Dynamic Characterization of Correlation Features between CDE and Influencing Factors


The most prominent issue encountered in the panel data of the Bohai Rim region is the presence of missing values. To address this, the following data preprocessing measures were adopted in this study:




	(1)

	
Data Cleaning: Variables with excessive missing values and outliers were removed. To ensure the scientific validity of the research findings, interpolation methods were employed to correct missing data when the amount for a variable was less than 10%. Otherwise, the variable was excluded from the analysis, which inevitably led to certain differences in the datasets of various provinces.




	(2)

	
Data Standardization: To eliminate the influence of different variable dimensions, all variables were standardized. In this study, the Min–Max standardization method was primarily employed.









Additionally, the partitioning of the dataset into training and testing sets will be introduced in Section 5.



By employing the Pearson correlation coefficient, as outlined in Equation (1), we define the correlation between various influencing factors and CDE within a sliding window, as illustrated in Equation (2).


   ρ  X Y   =    cov   X , Y      σ X   σ Y     =    E     X − μ X     Y − μ Y        σ X   σ Y      



(1)







In Equation (1),  X  and  Y  represent the random variables, respectively.    ρ  X Y     denotes the Pearson correlation coefficient between these two random variables.   cov   . , .     represents the covariance,  σ  indicates the standard deviation,  μ  signifies the expected value of a specified random variable, and   E  .    denotes the mathematical expectation function.


   ρ  X Y _ W i   =    cov    X i  ,  Y i       σ   X i     σ   Y i       , i ∈ [ 1 , n − w + 1 ]  



(2)







In Equation (2),    ρ  X Y _ W i     represents the Pearson correlation coefficient of the random variable within the i-th sliding window.    X i    or    Y i    denote the values of the random variable within the i-th sliding window, respectively.  n  indicates the number of values taken by the random variable, and  w  indicates the width of the window.



The process of the dynamic multi-factor correlation analysis is summarized as follows:




	(1)

	
Obtain the length  n  of the time series data for both CDE and its influencing factors. Set the width  w  of the sliding window and define the moving step size as    n  S t e p    . Calculate the number of sliding windows, denoted as    n w   . In this case, set    n w  =   n − w   /  n  S t e p   + 1  .




	(2)

	
Let  Y  represent the CDE time series data. Identify and denote the number of influencing factors as    N i   . Initialize the variable   k = 1   to represent the sequence number of the influencing factors.




	(3)

	
Represent the time series of the k-th influencing factor with  X . Initialize the variable   i = 1  , which corresponds to a specific sliding window.




	(4)

	
Calculate the starting position, denoted as    n  i _ B e g i n     and the ending position, denoted as    n  i _ E n d    , for the i-th sliding window. Here,    n  i _ B e g i n   = 1 + ( i − 1 ) ⋅  n  S t e p    , and    n  i _ E n d   =  n  i _ B e g i n   + w  .




	(5)

	
Apply Equation (2) to calculate the correlation coefficient    ρ  X Y _ W i     for the variables  X  and  Y  within the interval      n  i _ B e g i n   ,  n  i _ E n d      .




	(6)

	
Increase the value of i by 1. If   i ≤  n w   , go to step (4).




	(7)

	
At this step, the correlation curve between the k-th influencing factor and the CDE, which is represented by the time series      ρ  X Y _ W i   | i = 1 , 2 …  n w     , has been obtained.




	(8)

	
Increase the value of k by 1. If   k ≤  N i   , proceed to step (3).




	(9)

	
Finish the process.









Using Tianjin as a case study, the correlation between various influencing factors and CDE was calculated based on Equation (1). The representative results of this calculation are presented in Table 1.



Using Equation (2), the dynamic correlation curves for each influencing factor presented in Table 1 were computed individually, as illustrated in Figure 1. The window width employed in these calculations was set to 10 units, with a moving step of 1.



Through a comparative analysis of Table 1 and Figure 1, the following conclusions can be drawn:




	(1)

	
Variables that exhibit a high overall correlation in Table 1 may demonstrate relatively low correlation within specific sliding windows illustrated in Figure 1. These variables may exhibit various fluctuation features, such as initially high then low, initially low then high, low in the middle with high values on both sides, or high in the middle with low values on both sides.




	(2)

	
Conversely, variables exhibiting low overall correlation in Table 1 may show relatively high correlation within certain sliding windows presented in Figure 1, also displaying diverse features similar to those mentioned above.









Thus, by utilizing Equation (2), the sliding window descriptive method offers a more comprehensive understanding of the intricate correlation characteristics between CDE and its various influencing factors. Within this analytical framework, the correlation between independent and dependent variables is categorized as follows: a correlation coefficient exceeding 0.6 is classified as High (“H”), a coefficient ranging from 0 to 0.6 is considered Low (“L”), a coefficient falling between −0.6 and 0 is labeled as Shallow (“S”), and a coefficient below -0.6 is denoted as Deep (“D”).



Based on these classifications, the correlation features illustrated in Figure 1 can be further represented using the format presented in Table 2. This representation aligns with the “inverted U-shaped relationship between environmental pollution and per capita income” described in reference [9]. In Table 2, the correlation characteristic between “Tertiary Industry Value-added Share in GDP” and CDE in Tianjin is classified as DHD, indicating an inverted U-shaped feature that can be seen in Figure 1m. When Figure 1 and Table 2 are considered together, it becomes evident that the relationship between CDE and its influencing factors also encompasses shapes such as “V” (Figure 1i), “L” (Figure 1s), and other more complex forms. These features are generally summarized as “complexity” and “diversity,” and they are manifested through the aforementioned “HLSD” combinations. This provides a reference for the dynamic description and in-depth analysis of correlation mining, modeling, and visualization.



In practical applications of the dynamic multi-factor correlation analysis method, the step size of the sliding window primarily influences the density of data points along the resulting curve. The width of the sliding window is pivotal in determining the accuracy of the data analysis, which in turn affects its robustness and reproducibility. Here, taking Tianjin as an example, Table 3 presents the correlation features between CDE and different influencing factors across various sliding window widths. The considered sliding window widths include 6, 8, 9, 10, 11, 12, 14, and 16, respectively. Notably, a sliding window width of 10 was utilized for the analysis presented in this article.



As shown in Table 3, when the sliding window width is narrow, the correlation analysis captures features with more frequent fluctuations. This is exemplified by the impact of “Crude Salt Production” on CDE. Specifically, when the sliding window width is set to 6, the correlation features are characterized as “SHDLSL”. Consequently, an excessively narrow sliding window width may result in an abundance of features, potentially diminishing the practical significance of the results. Conversely, when the sliding window width is broad, some important correlation features may be overlooked. For instance, considering the influencing factor “Urban Population”, when the sliding window width is 10, its impact on CDE is “HDS”. However, with a width of 16, the result changes to “HH”. It is evident that a wider window may lead to an incomplete capture of certain intermediate process features and distort the view of recent trends, particularly given the limited length of the panel data.



Therefore, when setting the parameters of the sliding window, it is recommended to consider two primary factors. The first is the length of the panel data’s time series. When the data length is limited, the sliding window step size should be set to 1 to maximize the use of available data. If the data length is substantial, this value can be appropriately increased to balance computational efficiency and feature capture. The second important factor is the policy-making cycle. In China, major plans are typically formulated every 5 years, accompanied by corresponding policy adjustments. Consequently, in this article, the sliding window width is set at 10, which encompasses two consecutive 5-year plans and the policy adjustments that occur within those periods. When applying this method to different datasets, this factor should also be taken into account to ensure that the sliding window parameters align with the relevant policy cycles.




4. Consistency Analysis of Influencing Factors According to Different Features


The influencing factors of CDE exhibit diverse correlation features across different provinces and cities. In this paper, four provinces and cities in the Bohai Rim region of China, including Tianjin, Hebei, Shandong, and Liaoning, have been selected, and the features of some influencing factors mentioned in previous references are compared, as illustrated in Table 4.



As illustrated in Table 4, even within the Bohai Rim region, which shares certain similarities in comprehensive structures, such as economy and energy, the correlation features of identical influencing factors can exhibit significant variations across different areas. This observation indicates that generalizing the impact of factors with identical nomenclature across diverse regions and time periods using a single correlation feature is not feasible. For instance, economic growth, represented by GDP, has an influence on CDE. At the end of the last century in the Bohai Rim region, this influence displayed a consistent H-type correlation feature. However, Shandong consistently maintained a high level of correlation, while Liaoning’s correlation gradually weakened. In contrast, Tianjin and Hebei’s correlations transitioned from positive to negative over time. Regarding industrial growth’s impact on CDE, Tianjin and Hebei exhibited similar correlation characteristics, influenced by regional integration and development initiatives within the Beijing–Tianjin–Hebei region. Both regions demonstrated a gradual transition from positive to negative correlations. In contrast, Shandong, distinguished by its prominent heavy industrial capabilities nationwide, and Liaoning, a pivotal center of heavy industry in Northeast China, consistently exerted a positive influence on CDE through industrial expansion, manifesting HH and HLH correlation features, respectively. The disparate correlation features of the identical influencing factors across various provinces and cities inherently affect the identification of primary CDE drivers, highlighting the importance of this aspect for accurate predictions.



In this study, after accounting for data completeness, the four aforementioned provinces and cities encompass nearly 400 common influencing factors, which are categorized into approximately 50 distinct correlation feature categories. To further quantify the consistency of these influencing factors with varying features among provinces and cities, the Consistency Index of Influencing Factors (CIIF), as illustrated in Equation (3), is defined.


  C I I  F  i _ A B   =    c a r d    C  i _ A   ∩  C  i _ B       c a r d    C  i _ B        , i ∈ [ 1 ,  n C  ]  



(3)







In Equation (3), CIIFi_AB represents the CIIF value for the i-th correlation feature from province B relative to province A, where    n C    denotes the total number of correlation feature categories and i is the index of the correlation feature. The variables Ci_A and Ci_B represent the sets of influencing factors corresponding to the i-th correlation feature for provinces A and B, respectively, and card(.) is the counting function for set elements.



The CIIF calculation process involves the following steps:




	(1)

	
Identify the number (nC) of shared correlation features between two provinces, such as A and B, and initialize the variable i to 1, where i corresponds to a specific feature category;




	(2)

	
Calculate the number of influencing factors associated with correlation feature i for A and B, respectively, thus obtaining the values of card(Ci_A) and card(Ci_B);




	(3)

	
Assess the intersection of influencing factors within feature category i for both A and B. The count of these factors is the value of card(Ci_A∩Ci_B), then CIIF is calculated using Equation (3);




	(4)

	
Increase i by 1. If i ≤ nC, go to step (2); otherwise, finish the process.









Based on Equation (3) and the above steps, the CIIF was calculated separately for the commonly shared correlation features among the four provinces and cities. This analysis specifically targeted representative features such as DH, DHD, DHS, DL, DLS, DS, HD, HDH, HDL, HDS, HH, HL, HLH, HLHS, HS, HSH, HSL, LDH, LDL, LDS, LHD, LHDS, LHS, LSH, LSHS, SDSD, SHD, and SHSL. The results of these calculations are illustrated in Figure 2.



In each graph of Figure 2, the curve values represent the magnitude of the CIIF based on each correlation feature within a specific province or city. This indicator does not exhibit a clear numerical distribution. From the CIIF curves of the correlation features in each province and city, it is evident that the LSHS feature demonstrates higher values in Tianjin, Liaoning, and Hebei, indicating that the influencing factors associated with this feature are similar across these regions. Conversely, the CIIF values corresponding to the DHS and DL features are zero in all provinces and cities, suggesting that the influencing factors related to these correlation features are entirely distinct.



In Figure 2a, the CIIF for features such as HD, HDH, and HDL from Hebei relative to Tianjin is non-zero, which consequently indicates that these features will also exhibit non-zero CIIF values for Tianjin in relation to Hebei in Figure 2b. However, the corresponding values do not necessarily equal one another.



From this perspective, the CIIF reflects, to some extent, the transfer capability of various influencing factors on CDE, as manifested through correlation features. It is evident that the relationships between different influencing factors and CDE are complex and exhibit significant variations among provinces and cities, despite potential deviations in the size of effective datasets among them.




5. Comparison of CDE Prediction Accuracy Based on Influencing Factors with Different Features


In this study, we assume that the accuracy of neural network prediction depends on the correlation between the selected factors and the predicted value, which is highlighted in Jebli, I. et al. [39].



Given the diversity of correlated features, predicting CDE inherently presents complex challenges, particularly concerning the identification of key influencing factors. In this section, we evaluate the accuracy of CDE predictions based on influencing factors with distinct features. Taking the aforementioned four provinces and cities as case studies, we conduct a comparative analysis of the prediction accuracy for CDE, employing correlation feature categories of influencing factors as the primary analytical unit. The comparisons include both single and multiple categories of influencing factors.



For the prediction testing, a Long Short-Term Memory (LSTM) neural network was utilized with the following baseline parameters: sequence length = 3, hidden size = 5, learning rate = 0.003, batch size = 4, and number of epochs = 300. Considering the variations in the correlation between influencing factors and CDE across different years, the years 2006, 2011, 2016, and 2021 were selected as test years. This means that the accuracy calculation for each set of influencing factors includes four separate training and testing cycles.



To assess the capacity of influencing factors belonging to distinct correlation feature categories and combinations of multiple categories in predicting CDE accurately, the Accurate Predictive Capability Indicator (APCI) is defined as presented in Equation (4).


  A P C I =     Σ  i = 1    n C    T  P i   N   × 100 %  



(4)







In Equation (4), TPi represents the number of samples correctly predicted for the i-th category, while N denotes the total number of samples.



After the CDE prediction, the APCI can be calculated using statistical methods based on a specific prediction accuracy level setting.



In this study, predictions were primarily categorized into two scenarios: first, predictions based on influencing factors exhibiting a single category of correlation features; second, predictions derived from a combination of influencing factors across multiple categories of correlation features. In the former scenario, predictions were made by selecting either one factor or multiple factors (in this case, three) from a single category of correlation features. In the latter scenario, predictions were executed by selecting one factor from each of three entirely distinct categories of correlation features.



5.1. Prediction Based on Influencing Factors with One Correlation Feature Category


Table 5 presents the results of the prediction deviations for CDE using a single influencing factor. For comparison, only categories common to all provinces and cities are included. The maximum prediction deviation and the corresponding year for each category among the aforementioned four provinces and cities are listed. The last column of the table provides the overall deviation for each province and city, representing the maximum value observed within them.



Table 6 presents the APCI values corresponding to the calculation results displayed in Table 5, including both the individual and comprehensive results for the four provinces and cities. The APCI values offer a quantitative assessment of the predictive capability of each influencing factor and their combinations, facilitating a comparison of their effectiveness in accurately predicting CDE.



The prediction deviations for CDE based on a single influencing factor, as illustrated in Table 5, are generally substantial. Factors belonging to different categories exhibit varying degrees of accuracy, and even factors within the same category demonstrate significant performance disparities across different provinces and cities. Specifically, the smallest deviations for Tianjin and Liaoning are observed in the HDS correlation feature category, with values of 0.217 and 0.037, respectively. For Hebei and Shandong, the minimum deviations are found in the HD and LDS categories, with values of 0.195 and 0.166, respectively. Considering the overall maximum deviation across the four provinces and cities, the HD correlation feature category exhibits the smallest deviation at 0.243.



Table 6 presents the APCI values for each province and city, corresponding to varying prediction accuracies. Specifically, at a prediction accuracy threshold of 80%, Tianjin demonstrates an APCI of 0. When the threshold is increased to 85%, both Hebei and Shandong also exhibit an APCI of 0. In contrast, at a prediction accuracy level of 90%, Liaoning achieves an APCI of 2.22%.



It is evident that relying on a single influencing factor is insufficient for achieving universally high-accuracy predictions of CDE. This limitation primarily arises from the complex interplay of multiple factors affecting CDE, rendering it impossible for any single factor to fully capture their intricate and dynamic variation characteristics. Furthermore, prediction models that depend solely on individual influencing factors tend to exhibit heightened sensitivity to hyperparameters, necessitating stringent conditions to achieve satisfactory prediction accuracy. Consequently, this paper will not further explore the optimization of prediction models.



Table 7 presents the CDE prediction results based on three influencing factors that belong to the same category. These factors have been selected to investigate the potential of combining multiple influencing factors from a single category to enhance the prediction accuracy. The table outlines the prediction results for various combinations of these factors along with their corresponding deviation values. Additionally, Table 8 displays the APCI values associated with the calculation results presented in Table 7.



The analysis of Table 7 indicates significant prediction deviation across different provinces and cities, exhibiting similar variations to those observed in Table 5. For Tianjin and Hebei, the minimum deviations are noted in the HSH and HS categories, with values of 0.105 and 0.093, respectively. For Shandong and Liaoning, the lowest deviations are recorded in the DHS and DH categories, with values of 0.162 and 0.075, respectively. When assessing the overall maximum deviation across the four provinces and cities, the HD correlation feature category consistently demonstrates the smallest deviation at 0.244.



The comparison between Table 7 and Table 5 indicates that, despite a reduction in the minimum prediction deviations for each province and city, the correlation feature categories associated with these deviations have changed. Nevertheless, the overall maximum deviation and its corresponding correlation feature category remain unchanged.



As presented in Table 8, when the prediction accuracy threshold is established at 80%, Shandong Province exhibits an APCI of 16.67%, indicating a significant increase. For Tianjin, the APCI rises to 3.03% with a prediction accuracy of 85%. When the prediction accuracy criterion is set at 90%, Hebei and Liaoning provinces demonstrate respective APCI enhancements of 3.7% and 2.94%. Furthermore, the overall APCI across the four provinces and cities also shows improvement.



The comparison of results between Table 7 and Table 5, as well as Table 8 and Table 6, indicates that utilizing three influencing factors from a single correlation feature category for CDE prediction leads to a reduction in prediction deviations across the four provinces and cities. This suggests that by concentrating on one category of correlation features and incorporating multiple influencing factors, there is potential to enhance the prediction accuracy to a certain degree. However, it also underscores the limitation that a combination of factors within the same correlation feature category cannot fully capture the diversity of CDE variations.




5.2. Combined Prediction Based on Multiple Correlation Feature Categories


Table 9 presents the statistical deviations associated with CDE predictions, derived from a model that incorporates three influencing factors, each originating from distinct categories of correlation features. Given the large number of potential combinations arising from these diverse categories, only the top ten combinations exhibiting the smallest deviations across the provinces and cities are displayed, ensuring consistent representation of these combinations across all provinces and cities. Subsequently, Table 10 illustrates the APCI values corresponding to the computational results presented in Table 9.



The data presented in Table 9 demonstrate that, by incorporating combinations of influencing factors from diverse correlation feature categories, the accuracy of CDE predictions has been significantly enhanced across various provinces and cities, compared to the results shown in Table 7 and Table 5. Notably, certain feature combinations achieve high prediction accuracy specifically for Tianjin; however, the overall maximum deviation may still be considerable. This observation is also applicable to combinations that demonstrate effectiveness in other provinces and cities, reinforcing the notion that key influencing factors for CDE predictions differ among various administrative regions. Therefore, a comprehensive analysis tailored to the specific correlation features of influencing factors within each province and city is essential.



Table 10 indicates that at a 90% prediction accuracy threshold, all four provinces and cities exhibit non-zero APCI values, suggesting unique combinations of correlation feature categories that can achieve notably high accuracy in CDE predictions. The relatively modest APCI values reported, both individually and collectively, can be attributed to the extensive range of potential category combinations inherent within each provincial or city context.



In summary, the integration of multiple influencing factors from several distinct correlation feature categories significantly enhances the accuracy of CDE predictions. This suggests that combining various factor categories provides a more comprehensive understanding of the multifaceted drivers behind CDE. Consequently, this approach mitigates the model’s sensitivity to hyperparameters, resulting in improved prediction accuracy. However, it is essential to note that not all combinations achieve optimal prediction accuracy; therefore, the analysis of effective combinations must be specifically tailored to different provinces and cities, along with varying categories of influencing factors.





6. Discussion


This study employed a comprehensive dynamic multi-factor correlation analysis methodology to investigate CDE in China’s Bohai Rim region. We computed and analyzed the dynamic correlation curves between CDE and various influencing factors, thereby elucidating their intricate interrelationships and dynamic characteristics. To quantify these features, we implemented the CIIF and the APCI indices. Among these indicators, the CIIF serves as a valuable tool for policymakers to assess the applicability of successful emission reduction strategies across various regions. Nevertheless, despite its advantages, the proposed method does present certain limitations. A constructive discussion is provided to address these shortcomings and improve future research methodologies.



(1) Policy Implications and Regional Variations: The determinants influencing the variations in relevant characteristics among provinces and cities are intricate and multifaceted, encompassing factors that may have been elaborated upon in the literature review or remain unaddressed in this paper. Despite the geographical proximity of Tianjin, Hebei, Shandong, and Liaoning within the Bohai Rim region, the correlation features identified in this analysis exhibit significant disparities, as illustrated in Table 4 and Figure 2. In Table 4, with the exception of “Government Public Expenditure” and “Foreign Direct Investment”, the dynamic correlations between the other factors and CDE initiate with a high “H” across all provinces. This phenomenon is partially attributable to early regional influences; however, as reforms deepen and economic globalization progresses, diversifications in correlation features subsequently become inevitable. Taking the factor “Economic Growth (GDP)” as an example, the reasons for the differences in its correlation with CDE among different provinces are as follows: the negative correlation observed in Hebei and Tianjin is mainly attributed to the optimization and improvement of industrial structures, policy guidance, and controls on CDE. Additionally, coordinated governance in the Beijing–Tianjin–Hebei area has also played a significant role. In Shandong, the strong correlation is primarily due to its heavy industrial structure, limited variety in its energy consumption mix, and expanding economic scale. The weak correlation in Liaoning Province is mainly due to its heavy industrial structure, reliance on coal-based energy, rapid economic development, and unresolved issues related to pollution emissions. It is therefore recommended that future research efforts undertake a more comprehensive survey encompassing a greater number of provinces and cities nationwide. In doing so, more suitable indicators should be established, referencing the CIIF, to accurately reflect both the synergies and heterogeneities among CDE drivers. Furthermore, the use of clustering methodologies should be considered a viable strategy, and the development of prediction models tailored to specific regions and industrial sectors could significantly enhance their practical applicability.



(2) Multi-Factor Consideration in Policy Formulation: Our findings indicate that prediction models based on multiple influencing factors with diverse correlation features outperform those based on a single factor. This highlights the complexity of CDE dynamics and suggests that policymakers should consider the combined effects of multiple factors when devising emission reduction strategies. The CIIF presented in this study provides a quantitative metric to identify factors that exhibit consistent influence across regions, facilitating the formulation of targeted policies. When devising emission reduction policies, governments and policymakers can leverage the CIIF to prioritize coordinated actions on consistently influential driving factors, thus improving the efficacy of policy execution. Furthermore, insights from the CIIF regarding regional variations in driving factors can optimize resource allocation, enabling a more precise and effective distribution of resources for emission reduction measures. Specifically, Table 4 presents the influencing factors and their correlation characteristics derived from panel data. Tianjin and Hebei both exhibit a downward trend in these characteristics, indicating a need to strengthen the implementation of existing CDE-related policies. Conversely, Shandong demonstrates an upward trend, suggesting that enhancement of corresponding CDE control measures is necessary. In Liaoning, industrial growth, urbanization rate, and investment in pollution control are strongly correlated with CDE, thereby indicating the need for targeted CDE management strategies that account for the varying stages of industrialization and urbanization.



(3) Implications for Neural Network-Based Prediction Models: This paper establishes the APCI index by evaluating the prediction accuracy of various influencing factors and their combinations through an LSTM neural network. The selection of the LSTM architecture is due to its remarkable memory capabilities, proficiency in managing long-term dependencies within sequential data, and adaptability to dynamic changes in influencing factors. Simultaneously, the limitations of LSTM neural networks have also been recognized: firstly, the model’s complexity, characterized by a relatively intricate structure containing a substantial number of parameters, leading to a time-consuming training process; secondly, the risk of overfitting, which occurs when the training data volume is insufficient; and thirdly, parameter sensitivity, as the model’s performance is notably sensitive to the choice of hyperparameters. To mitigate these limitations, corresponding measures were adopted during the research. For instance, cross-validation was employed to prevent overfitting, and grid search was utilized to optimize the hyperparameters. To further enhance the prediction performance, future research could integrate this model with other neural network architectures, such as Gated Recurrent Units (GRUs), Convolutional Neural Networks (CNNs), Feedforward Neural Networks (FFNNs), and Transformers, thereby improving both the prediction accuracy and stability. Although different neural network models can significantly influence CDE predictions and the APCI, whether these impacts lead to transformative conclusions depends on several factors, such as model characteristics, task complexity, data quality and attributes, as well as the degree of parameter tuning and optimization. In practical applications, it is advisable to empirically compare the performance of diverse models through cross-validation while developing tailored APCIs for each specific model.



(4) Insights into Factor Interplay and Prediction Reliability: This study elucidates the intricate interplay of factors influencing CDE and their associated processes. It provides valuable insights into the accuracy and reliability of CDE predictions across various application scenarios, which have profound implications for environmental protection, policy formulation, and resource management. Given the multidimensional nature of these influencing factors, the correlation features between them and CDE are classified in practical applications. Next, an APCI index is constructed to analyze the predictive ability of different categories of influencing factors on CDE. Moreover, given the complexity and multidimensionality of the CDE impact mechanism, selecting an appropriate combination of influencing factors is crucial. Ultimately, by acknowledging regional variations in key influencing factors, strategies for mutual learning and transfer learning across prediction models in different provinces and cities can be formulated using the CIIF, enhancing both the learning efficiency and prediction accuracy.



(5) Temporal Trend Analysis and Future Enhancements: The current dynamic correlation analysis model established between influencing factors and CDE primarily reflects instances in which variable values traverse multiple threshold regions; nevertheless, it does not incorporate rigorous temporal trend information. Future research can implement several enhancements. Firstly, additional dynamic feature indicators should be integrated alongside time series analysis techniques to effectively capture long-term trends, short-term fluctuations, and random variations within the data sequences. This approach will provide a more comprehensive understanding of the temporal dynamics inherent in the data. Secondly, by refining the data resolution over time, for example, by changing the data collection frequency from annual to quarterly or monthly intervals, this will enable a more detailed observation of how correlations evolve over time, thereby allowing for a more precise analysis of temporal variations.



Collectively, these improvements will further enhance both the precision of the dynamic correlation analysis and the overall predictive capabilities of the model, particularly in capturing long-term trends and short-term fluctuations in the data.




7. Conclusions


Based on panel data from 1999 to 2021, this study conducted an in-depth analysis of the dynamic correlations between provincial CDE and various influencing factors in the Bohai Rim region of China, including Tianjin, Hebei, Shandong, and Liaoning provinces and cities. The main findings and their implications are summarized as follows:



(1) Limitations of Single Influencing Factor: The study reveals that CDE prediction models relying solely on individual influencing factors often fail to achieve high accuracy. This underscores the complexity of CDE dynamics, where multiple factors interact to drive CDE. Therefore, single-factor models cannot fully capture the complex changes in CDE.



(2) Advantages and Limitations of Combining Similar Factors: While combining multiple factors with similar correlation features can slightly improve the prediction accuracy, this approach remains limited in fully capturing the breadth of CDE variations. In contrast, integrating factors with diverse correlation features offers a more comprehensive solution. This highlights the need for a more diverse set of influencing factors to improve the predictive performance.



(3) Benefits of Integrating Multiple Feature Categories: Integrating multiple types of influencing factors with different correlation features significantly enhances the accuracy of CDE predictions. This approach more comprehensively captures the multifaceted driving mechanisms behind CDE, thus improving the robustness and reliability of the predictions.



Implications for Future Research and Policy:



(1) Methodological Innovation: The dynamic multi-factor correlation analysis method introduced in this study provides a novel perspective and tool for advancing future research on CDE prediction. It enhances the understanding of the intricate mechanisms underlying CDE dynamics and offers a pathway for refining predictive models.



(2) Data Integration and Advanced Techniques: As data accessibility and technological advancements continue to evolve, future research should aim to integrate a broader spectrum of dynamic feature indicators and sophisticated time series analysis methodologies. This will further refine the accuracy and reliability of CDE predictions, enabling more informed decision making.



(3) Policy Implications: The research findings emphasize the importance of considering the cumulative impacts of multiple factors when developing emission reduction strategies. Policymakers should utilize the Consistency Index of Influencing Factors (CIIF) as a quantitative tool to pinpoint factors that consistently impact CDE across regions, thereby enabling the development of targeted and coordinated emission reduction strategies.



In summary, this study not only uncovers the complexity of factors influencing CDE but also provides robust support for optimizing CDE prediction models, scientifically formulating emission reduction policies, refining energy structures, adjusting industrial frameworks, and nurturing technological innovations. The insights gained from this research hold significant potential for guiding future environmental policy and sustainable development initiatives.







Author Contributions


Conceptualization, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, writing—original draft, writing—review and editing, Y.Q.; data curation, methodology, software, validation, writing—original draft, writing—review and editing, X.Z.; conceptualization, data curation, formal analysis, investigation, resources, software, writing—review and editing, J.Z.; conceptualization, formal analysis, funding acquisition, project administration, resources, supervision, writing—review and editing, Y.S. All authors have read and agreed to the published version of the manuscript.




Funding


This work was supported in part by the National Social Science Fund Post-Funding Project (No. 23FGLB020).




Data Availability Statement


https://www.epsnet.com.cn; https://www.ceads.net.cn (accessed on 17 May 2024).




Conflicts of Interest


The authors declare no conflicts of interest.




References


	



Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]

	



China Regional Economy Data. Available online: https://www.epsnet.com.cn (accessed on 17 May 2024).

	



China’s Provincial Total Apparent Carbon Dioxide Emission Data. Available online: https://www.ceads.net.cn (accessed on 17 May 2024).

	



Shuai, C.; Shen, L.; Jiao, L.; Wu, Y.; Tan, Y. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]

	



Yang, Y.; Zhao, T.; Wang, Y.; Shi, Z. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012. Environ. Impact Assess. Rev. 2015, 55, 45–53. [Google Scholar] [CrossRef]

	



Shao, S.; Liu, J.; Geng, Y.; Miao, Z.; Yang, Y. Uncovering driving factors of carbon emissions from China’s mining sector. Appl. Energy 2016, 166, 220–238. [Google Scholar] [CrossRef]

	



Abid, M. The close relationship between informal economic growth and carbon emissions in Tunisia since 1980: The (ir)relevance of structural breaks. Sustain. Cities Soc. 2015, 15, 11–21. [Google Scholar] [CrossRef]

	



Liao, H.; Cao, H. How does carbon dioxide emission change with the economic development? Statistical experiences from 132 countries. Glob. Environ. Chang. 2013, 23, 1073–1082. [Google Scholar] [CrossRef]

	



Mikayilov, J.I.; Galeotti, M.; Hasanov, F.J. The impact of economic growth on CO2 emissions in Azerbaijan. J. Clean. Prod. 2018, 197, 1558–1572. [Google Scholar] [CrossRef]

	



Li, W.; Yang, G.; Li, X.; Sun, T.; Wang, J. Cluster analysis of the relationship between carbon dioxide emissions and economic growth. J. Clean. Prod. 2019, 225, 459–471. [Google Scholar] [CrossRef]

	



Nie, Y.; Li, Q.; Wang, E.; Zhang, T. Study of the nonlinear relations between economic growth and carbon dioxide emissions in the Eastern, Central and Western regions of China. J. Clean. Prod. 2019, 219, 713–722. [Google Scholar] [CrossRef]

	



Wang, W.; Liu, L.; Liao, H.; Wei, Y. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]

	



Wang, Y.; Li, L.; Kubota, J.; Han, R.; Zhu, X.; Lu, G. Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries. Appl. Energy 2016, 168, 375–380. [Google Scholar] [CrossRef]

	



Al-mulali, U.; Che Sab, C.N.B.; Fereidouni, H.G. Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission. Energy 2012, 46, 156–167. [Google Scholar] [CrossRef]

	



Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]

	



Zhang, Y.; Yi, W.; Li, B. The Impact of Urbanization on Carbon Emission: Empirical Evidence in Beijing. Energy Procedia 2015, 75, 2963–2968. [Google Scholar] [CrossRef]

	



Wang, S.; Zeng, J.; Huang, Y.; Shi, C.; Zhan, P. The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis. Appl. Energy 2018, 228, 1693–1706. [Google Scholar] [CrossRef]

	



Abdallh, A.A.; Abugamos, H. A semi-parametric panel data analysis on the urbanisation-carbon emissions nexus for the MENA countries. Renew. Sustain. Energy Rev. 2017, 78, 1350–1356. [Google Scholar] [CrossRef]

	



Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Donkor, M. The connection between urbanization and carbon emissions: A panel evidence from West Africa. Environ. Dev. Sustain. 2021, 23, 11525–11552. [Google Scholar] [CrossRef]

	



Li, J.; Huang, X.; Kwan, M.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef]

	



Wang, Y.; Chen, L.; Kubota, J. The relationship between urbanization, energy use and carbon emissions: Evidence from a panel of Association of Southeast Asian Nations (ASEAN) countries. J. Clean. Prod. 2016, 112, 1368–1374. [Google Scholar] [CrossRef]

	



Liu, Y.; Tang, L.; Liu, G. Carbon dioxide emissions reduction through technological innovation: Empirical evidence from Chinese provinces. Int. J. Environ. Res. Public Health 2022, 19, 9543. [Google Scholar] [CrossRef]

	



Ali, W.; Abdullah, A.; Azam, M. The dynamic linkage between technological innovation and carbon dioxide emissions in Malaysia: An autoregressive distributed lagged bound approach. Int. J. Energy Econ. Policy 2016, 6, 389–400. [Google Scholar]

	



Cheng, S.; Meng, L.; Xing, L. Energy technological innovation and carbon emissions mitigation: Evidence from China. Kybernetes 2022, 51, 982–1008. [Google Scholar] [CrossRef]

	



Zhang, M.; Li, B.; Yin, S. Is technological innovation effective for energy saving and carbon emissions reduction? Evidence from China. IEEE Access 2020, 8, 83524–83537. [Google Scholar] [CrossRef]

	



Erdogan, S. Dynamic nexus between technological innovation and building sector carbon emissions in the BRICS countries. J. Environ. Manag. 2021, 293, 112780. [Google Scholar] [CrossRef]

	



Eslamipoor, R.; Sepehriyar, A. Promoting green supply chain under carbon tax, carbon cap and carbon trading policies. Bus. Strategy Environ. 2024, 33, 4901–4912. [Google Scholar] [CrossRef]

	



Wu, Y.; Shen, L.; Zhang, Y.; Shuai, C.; Yan, H.; Lou, Y.; Ye, G. A new panel for analyzing the impact factors on carbon emission: A regional perspective in China. Ecol. Indic. 2019, 97, 260–268. [Google Scholar] [CrossRef]

	



Khan, M.T.; Imran, M. Unveiling the Carbon Footprint of Europe and Central Asia: Insights into the Impact of Key Factors on CO2 Emissions. Arch. Soc. Sci. J. Collab. Mem. 2023, 1, 52–66. [Google Scholar] [CrossRef]

	



Shuai, C.; Chen, X.; Wu, Y.; Tan, Y.; Zhang, Y.; Shen, L. Identifying the key impact factors of carbon emission in China: Results from a largely expanded pool of potential impact factors. J. Clean. Prod. 2018, 175, 612–623. [Google Scholar] [CrossRef]

	



Shi, Q.; Chen, J.; Shen, L. Driving factors of the changes in the carbon emissions in the Chinese construction industry. J. Clean. Prod. 2017, 166, 615–627. [Google Scholar] [CrossRef]

	



Dong, F.; Hua, Y.; Yu, B. Peak carbon emissions in China: Status, key factors and countermeasures-A literature review. Sustainability 2018, 10, 2895. [Google Scholar] [CrossRef]

	



Raihan, A.; Ibrahim, S.; Muhtasim, D.A. Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. World Dev. Sustain. 2023, 2, 100059. [Google Scholar] [CrossRef]

	



Wang, Z.; Li, Y.P.; Huang, G.H.; Gong, J.W.; Li, Y.F.; Zhang, Q. A factorial-analysis-based Bayesian neural network method for quantifying China’s CO2 emissions under dual-carbon target. Sci. Total Environ. 2024, 920, 170698. [Google Scholar] [CrossRef]

	



Chang, L.; Mohsin, M.; Hasnaoui, A.; Taghizadeh-Hesary, F. Exploring carbon dioxide emissions forecasting in China: A policy-oriented perspective using projection pursuit regression and machine learning models. Technol. Forecast. Soc. Chang. 2023, 197, 122872. [Google Scholar] [CrossRef]

	



Yang, H.; Wang, M.Z.; Li, G.H. A multi-factor forecasting model for carbon emissions based on decomposition and swarm intelligence optimization. Measurement 2023, 222, 113554. [Google Scholar] [CrossRef]

	



Ding, Y.K.; Li, Y.P.; Zheng, H.; Mei, M.Y.; Liu, N. A graph-factor-based random forest model for assessing and predicting carbon emission patterns—Pearl River Delta urban agglomeration. J. Clean. Prod. 2024, 469, 143220. [Google Scholar] [CrossRef]

	



Chen, Y.X.; Xie, Y.X.; Dang, X.; Huang, B.; Wu, C.; Jiao, D.L. Spatiotemporal prediction of carbon emissions using a hybrid deep learning model considering temporal and spatial correlations. Environ. Model. Softw. 2024, 172, 105937. [Google Scholar] [CrossRef]

	



Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by pearson correlation using machine learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]








[image: Processes 12 02207 g001] 





Figure 1. Dynamic correlation curves between CDE and different influencing factors in Tianjin. 
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Figure 2. Consistency Index of Influencing Factors (CIIF) of different correlation features across four provinces and cities. (a). Consistency of various features of Tianjin with the other three regions. (b). Consistency of various features of Hebei with the other three regions. (c). Consistency of various features of Shandong with the other three regions. (d). Consistency of various features of Liaoning with the other three regions. 
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Table 1. Overall correlation values between CDE and different influencing factors in Tianjin.
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	Influencing Factor
	Unit
	Comprehensive Correlation Value





	Merchandise Sales
	billion yuan
	0.9704



	Primary Plastics Output
	ten thousand tons
	0.976



	Transaction Volume
	billion yuan
	0.8159



	Electricity Generation
	billion kWh
	0.9387



	Number of Markets
	-
	0.5644



	Total Current Assets (Industry Enterprises)
	billion yuan
	0.9523



	Total Wastewater Discharge
	ten thousand tons
	0.952



	Second Industry Value-added Share in GDP
	%
	−0.4437



	Artificial Gas Users
	ten thousand people
	0.5736



	Urban Population
	ten thousand people
	0.9401



	Number of Industry State-owned Enterprises
	-
	−0.952



	Rural Population Share
	%
	−0.9394



	Tertiary Industry Value-added Share in GDP
	%
	0.566



	Primary Industry Value-added Share in GDP
	%
	−0.9223



	Oil Production
	ten thousand tons
	−0.7574



	Green Coverage in Built-up Areas
	%
	−0.7766



	Yarn Production
	ten thousand tons
	−0.9562



	Unemployment Insurance Recipients
	ten thousand people
	−0.4642



	Crude Salt Production
	ten thousand tons
	−0.883



	Cleaning and Maintenance Area
	ten thousand sqm
	0.8204










 





Table 2. Correlation features between CDE and different influencing factors in Tianjin.
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	Influencing Factors
	Correlation Curves in Figure 1
	Correlation Features





	Merchandise Sales
	Figure 1a
	HH



	Primary Plastics Output
	Figure 1b
	HL



	Transaction Volume
	Figure 1c
	HLH



	Electricity Generation
	Figure 1d
	HS



	Number of Markets
	Figure 1e
	HSH



	Total Current Assets (Industry Enterprises)
	Figure 1f
	HSL



	Total Wastewater Discharge
	Figure 1g
	HD



	Second Industry Value-added Share in GDP
	Figure 1h
	HDH



	Artificial Gas Users
	Figure 1i
	HDHL



	Urban Population
	Figure 1j
	HDS



	Number of Industry State-owned Enterprises
	Figure 1k
	DH



	Rural Population Share
	Figure 1l
	DHL



	Tertiary Industry Value-added Share in GDP
	Figure 1m
	DHD



	Primary Industry Value-added Share in GDP
	Figure 1n
	DL



	Oil Production
	Figure 1o
	DLS



	Green Coverage in Built-up Areas
	Figure 1p
	DLD



	Yarn Production
	Figure 1q
	DS



	Unemployment Insurance Recipients
	Figure 1r
	DSD



	Crude Salt Production
	Figure 1s
	LDS



	Cleaning and Maintenance Area
	Figure 1t
	SHD










 





Table 3. Correlation features of CDE and different influencing factors in Tianjin under different sliding window widths.
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Influencing Factor

	
Sliding Window Width




	
6

	
8

	
9

	
10

	
11

	
12

	
14

	
16






	
Merchandise Sales

	
HH

	
HH

	
HH

	
HH

	
HH

	
HH

	
HH

	
HH




	
Primary Plastics Output

	
HSH

	
HL

	
HSL

	
HL

	
HL

	
HL

	
HH

	
HH




	
Transaction Volume

	
HLHL

	
HL

	
HLH

	
HLH

	
HLH

	
HLH

	
HL

	
HL




	
Electricity Generation

	
HL

	
HSL

	
HS

	
HS

	
HS

	
HS

	
HH

	
HH




	
Number of Markets

	
HDHS

	
HSL

	
HSH

	
HSH

	
HSH

	
HSL

	
HS

	
HS




	
Total Current Assets (Industry Enterprises)

	
HSL

	
HSL

	
HSL

	
HSL

	
HS

	
HL

	
HH

	
HH




	
Total Wastewater Discharge

	
HDLS

	
HDS

	
HD

	
HD

	
HD

	
HS

	
HH

	
HH




	
Second Industry Value-added Share in GDP

	
HDHS

	
HDL

	
HDH

	
HDH

	
HDH

	
HDL

	
LDS

	
LDS




	
Artificial Gas Users

	
HDHS

	
HDL

	
HDL

	
HDHL

	
HDH

	
HDL

	
HDS

	
LD




	
Urban Population

	
HDS

	
HDS

	
HDS

	
HDS

	
HD

	
HS

	
HH

	
HH




	
Number of Industry State-owned Enterprises

	
DSDHS

	
DHL

	
DHL

	
DH

	
DH

	
DL

	
DD

	
DD




	
Rural Population Share

	
DHS

	
DHL

	
DHL

	
DHL

	
DH

	
DL

	
DD

	
DD




	
Tertiary Industry Value-added Share in GDP

	
DHDL

	
DHS

	
DHD

	
DHD

	
DHD

	
DHS

	
SHL

	
LHL




	
Primary Industry Value-added Share in GDP

	
DHS

	
DL

	
DL

	
DL

	
DL

	
DL

	
DD

	
DD




	
Oil Production

	
SDHDS

	
DHS

	
DLS

	
DLS

	
DLS

	
DLS

	
DL

	
DS




	
Green Coverage in Built-up Areas

	
DHDH

	
DHS

	
DHS

	
DLD

	
DLD

	
DLS

	
DL

	
DL




	
Yarn Production

	
SDL

	
SDS

	
DS

	
DS

	
DD

	
DD

	
DD

	
DD




	
Unemployment Insurance Recipients

	
SDLDL

	
DS

	
DSD

	
DSD

	
DLD

	
DLD

	
DL

	
DL




	
Crude Salt Production

	
SHDLSL

	
SLDS

	
LDS

	
LDS

	
LDS

	
LDS

	
SD

	
DD




	
Cleaning and Maintenance Area

	
SHDL

	
SHDS

	
SHD

	
SHD

	
LHD

	
LHS

	
HL

	
HH











 





Table 4. Correlation features of influencing factors across different provinces and cities.
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Influencing Factors

	
Correlation Features in Provinces and Cities




	
Tianjin

	
Hebei

	
Shandong

	
Liaoning






	
Economic Growth (GDP)

	
HS

	
HD

	
HH

	
HSL




	
Agricultural Growth

	
HS

	
HL

	
HH

	
HL




	
Industrial Growth

	
HDS

	
HD

	
HH

	
HLH




	
Service Sector Growth

	
HD

	
HD

	
HH

	
HL




	
Population Size

	
HS

	
HD

	
HH

	
HD




	
Urbanization Rate

	
HDS

	
HD

	
HH

	
HLH




	
Investment in Pollution Control

	
HDS

	
HD

	
HH

	
HLH




	
Government Public Expenditure

	
LHD

	
HS

	
HH

	
HLH




	
Foreign Direct Investment

	
HS

	
HSLS

	
HSH

	
LHLH











 





Table 5. Prediction deviations for a single influencing factor.
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Correlation Features

	
Maximum Deviation Across Provinces and Cities

	
Overall Maximum Deviation




	
Tianjin

	
Year

	
Hebei

	
Year

	
Shandong

	
Year

	
Liaoning

	
Year






	
HH

	
0.399

	
2016

	
0.24

	
2011

	
0.167

	
2016

	
0.093

	
2011

	
0.399




	
HL

	
0.422

	
2016

	
0.33

	
2016

	
0.181

	
2021

	
0.182

	
2016

	
0.422




	
HLH

	
0.345

	
2016

	
0.605

	
2011

	
0.329

	
2016

	
0.175

	
2016

	
0.605




	
HLHS

	
0.588

	
2011

	
0.81

	
2011

	
0.242

	
2016

	
1.729

	
2006

	
1.729




	
HS

	
0.246

	
2006

	
0.325

	
2016

	
0.266

	
2016

	
0.34

	
2011

	
0.34




	
HSH

	
0.421

	
2021

	
0.773

	
2011

	
0.238

	
2011

	
0.387

	
2011

	
0.773




	
HSL

	
0.315

	
2006

	
0.838

	
2011

	
0.555

	
2016

	
0.266

	
2016

	
0.838




	
HDH

	
0.48

	
2006

	
0.394

	
2016

	
0.945

	
2021

	
0.247

	
2016

	
0.945




	
HDL

	
0.505

	
2016

	
0.329

	
2016

	
0.399

	
2016

	
0.109

	
2021

	
0.505




	
HD

	
0.243

	
2006

	
0.195

	
2006

	
0.176

	
2016

	
0.148

	
2021

	
0.243




	
HDS

	
0.217

	
2006

	
0.323

	
2016

	
0.539

	
2016

	
0.037

	
2011

	
0.539




	
LHS

	
0.436

	
2006

	
0.592

	
2011

	
0.776

	
2006

	
0.19

	
2006

	
0.776




	
LHD

	
0.452

	
2011

	
0.516

	
2011

	
0.552

	
2016

	
0.265

	
2011

	
0.552




	
LHDS

	
0.341

	
2006

	
0.486

	
2006

	
2.22

	
2006

	
0.431

	
2011

	
2.22




	
LSH

	
0.647

	
2006

	
1.943

	
2006

	
0.188

	
2011

	
1.163

	
2006

	
1.943




	
LSHS

	
1.334

	
2011

	
1.202

	
2011

	
0.584

	
2011

	
0.829

	
2006

	
1.334




	
LDH

	
0.299

	
2011

	
1.383

	
2011

	
0.429

	
2011

	
0.362

	
2006

	
1.383




	
LDL

	
0.504

	
2006

	
1.541

	
2021

	
1.417

	
2006

	
0.744

	
2021

	
1.541




	
LDS

	
0.643

	
2011

	
1.221

	
2006

	
0.166

	
2016

	
2.668

	
2006

	
2.668




	
SHSL

	
0.346

	
2011

	
0.979

	
2011

	
0.617

	
2021

	
1.191

	
2016

	
1.191




	
SHD

	
0.579

	
2006

	
0.534

	
2006

	
1.005

	
2006

	
0.356

	
2011

	
1.005




	
SDSD

	
0.409

	
2016

	
0.649

	
2021

	
0.53

	
2006

	
0.391

	
2006

	
0.649




	
DH

	
0.274

	
2016

	
0.246

	
2016

	
0.183

	
2011

	
0.148

	
2016

	
0.274




	
DHS

	
0.438

	
2016

	
1.324

	
2006

	
1.481

	
2006

	
0.247

	
2011

	
1.481




	
DHD

	
2.501

	
2006

	
0.763

	
2006

	
1.453

	
2021

	
0.665

	
2011

	
2.501




	
DL

	
0.36

	
2016

	
0.436

	
2011

	
0.375

	
2016

	
0.547

	
2021

	
0.547




	
DLS

	
0.416

	
2016

	
0.436

	
2016

	
0.4

	
2016

	
0.638

	
2011

	
0.638




	
DS

	
0.419

	
2016

	
0.402

	
2016

	
0.519

	
2016

	
0.11

	
2006

	
0.519











 





Table 6. The Accurate Predictive Capability Indicator (APCI) for predictions based on a single influencing factor.






Table 6. The Accurate Predictive Capability Indicator (APCI) for predictions based on a single influencing factor.





	Prediction Accuracy Threshold
	Tianjin
	Hebei
	Shandong
	Liaoning
	Comprehensive Value





	80%
	0%
	2%
	7.33%
	10.56%
	5.68%



	85%
	0%
	0%
	0%
	5%
	1.65%



	90%
	0%
	0%
	0%
	2.22%
	0.73%










 





Table 7. Prediction deviations of three factors derived from single feature category.






Table 7. Prediction deviations of three factors derived from single feature category.





	
Correlation Features

	
Maximum Deviation across Regions

	
Overall Maximum Deviation




	
Tianjin

	
Year

	
Hebei

	
Year

	
Shandong

	
Year

	
Liaoning

	
Year






	
HH

	
0.371

	
2016

	
0.155

	
2021

	
0.266

	
2016

	
0.27

	
2011

	
0.371




	
HL

	
0.193

	
2016

	
0.285

	
2021

	
0.204

	
2016

	
0.403

	
2021

	
0.403




	
HLH

	
0.354

	
2016

	
0.309

	
2011

	
0.757

	
2016

	
0.116

	
2021

	
0.757




	
HLHS

	
0.245

	
2016

	
0.728

	
2011

	
0.478

	
2011

	
0.373

	
2016

	
0.728




	
HS

	
0.262

	
2016

	
0.093

	
2006

	
0.32

	
2016

	
0.4

	
2021

	
0.4




	
HSH

	
0.105

	
2016

	
0.129

	
2016

	
0.372

	
2016

	
0.433

	
2011

	
0.433




	
HSL

	
0.233

	
2016

	
0.319

	
2021

	
0.362

	
2021

	
0.241

	
2006

	
0.362




	
HDH

	
0.273

	
2016

	
0.401

	
2011

	
0.692

	
2021

	
0.182

	
2016

	
0.692




	
HDL

	
0.197

	
2021

	
0.281

	
2011

	
0.343

	
2021

	
0.651

	
2021

	
0.651




	
HD

	
0.244

	
2016

	
0.135

	
2011

	
0.244

	
2016

	
0.148

	
2021

	
0.244




	
HDS

	
0.375

	
2016

	
0.188

	
2016

	
0.189

	
2016

	
0.17

	
2006

	
0.375




	
LHS

	
0.347

	
2006

	
0.24

	
2021

	
0.558

	
2016

	
0.358

	
2021

	
0.558




	
LHD

	
0.402

	
2006

	
0.329

	
2006

	
0.216

	
2006

	
0.181

	
2011

	
0.402




	
LHDS

	
0.391

	
2006

	
0.852

	
2011

	
0.641

	
2021

	
0.293

	
2021

	
0.852




	
LDL

	
0.226

	
2021

	
0.874

	
2016

	
0.239

	
2016

	
0.486

	
2006

	
0.874




	
LDS

	
0.467

	
2011

	
1.926

	
2006

	
0.77

	
2011

	
0.599

	
2011

	
1.926




	
SHSL

	
0.431

	
2016

	
0.428

	
2006

	
0.386

	
2016

	
0.17

	
2021

	
0.431




	
SHD

	
0.543

	
2011

	
0.729

	
2006

	
0.391

	
2006

	
0.116

	
2011

	
0.729




	
SDSD

	
0.272

	
2011

	
0.408

	
2011

	
0.266

	
2011

	
0.378

	
2011

	
0.408




	
DH

	
0.198

	
2016

	
0.248

	
2016

	
0.182

	
2016

	
0.075

	
2011

	
0.248




	
DHS

	
0.527

	
2016

	
0.175

	
2021

	
0.162

	
2016

	
0.175

	
2006

	
0.527




	
DHD

	
0.228

	
2016

	
0.695

	
2011

	
0.261

	
2016

	
0.345

	
2021

	
0.695




	
DL

	
0.193

	
2016

	
0.34

	
2016

	
0.813

	
2016

	
0.604

	
2021

	
0.813




	
DLS

	
0.314

	
2016

	
0.463

	
2021

	
0.183

	
2016

	
0.368

	
2021

	
0.463




	
DS

	
0.431

	
2016

	
0.211

	
2011

	
0.249

	
2016

	
0.148

	
2021

	
0.431











 





Table 8. The Accurate Predictive Capability Indicator (APCI) for predictions of three influencing factors derived from the single feature category.






Table 8. The Accurate Predictive Capability Indicator (APCI) for predictions of three influencing factors derived from the single feature category.





	Prediction Accuracy Threshold
	Tianjin
	Hebei
	Shandong
	Liaoning
	Comprehensive Value





	80%
	15.15%
	25.93%
	16.67%
	32.35%
	22.88%



	85%
	3.03%
	11.11%
	0%
	17.65%
	8.47%



	90%
	0%
	3.7%
	0%
	2.94%
	1.69%










 





Table 9. Prediction deviations of combined influencing factors derived from three distinct feature categories.






Table 9. Prediction deviations of combined influencing factors derived from three distinct feature categories.





	
Combined Features

	
Top 10 Minimum Deviations

	
Overall Maximum Deviation




	
Tianjin

	
Year

	
Hebei

	
Year

	
Shandong

	
Year

	
Liaoning

	
Year






	
HDHL, DLS, DS

	
0.032

	
2011

	
0.113

	
2006

	
0.147

	
2016

	
0.136

	
2021

	
0.147




	
LDHL, LDHL, HLH

	
0.039

	
2011

	
0.284

	
2011

	
0.429

	
2016

	
0.396

	
2011

	
0.429




	
HDHL, DHS, DS

	
0.039

	
2016

	
0.214

	
2021

	
0.137

	
2016

	
0.321

	
2021

	
0.321




	
HSH, HSH, HSH

	
0.047

	
2006

	
1.015

	
2011

	
0.372

	
2016

	
0.433

	
2011

	
1.015




	
HDHL, HDHL, HLH

	
0.048

	
2021

	
0.153

	
2006

	
0.981

	
2016

	
0.481

	
2021

	
0.981




	
HDHL, HLH, DS

	
0.051

	
2006

	
0.239

	
2006

	
0.237

	
2016

	
0.081

	
2011

	
0.239




	
SDL, DHS, DHS

	
0.053

	
2006

	
0.587

	
2006

	
0.209

	
2016

	
0.150

	
2016

	
0.587




	
SHDS, HSH, DL

	
0.054

	
2006

	
0.412

	
2011

	
0.164

	
2006

	
0.399

	
2021

	
0.412




	
HSH, LDS, DS

	
0.055

	
2016

	
0.776

	
2021

	
0.208

	
2016

	
0.191

	
2011

	
0.776




	
HSHL, HDHL, DS

	
0.059

	
2016

	
0.301

	
2006

	
0.258

	
2016

	
0.313

	
2021

	
0.313




	
DHD, LSHD, DLS

	
0.242

	
2016

	
0.052

	
2006

	
0.181

	
2021

	
0.210

	
2021

	
0.242




	
HS, LHD, DS

	
0.342

	
2006

	
0.054

	
2016

	
0.312

	
2016

	
0.206

	
2011

	
0.342




	
HSL, LSHD, LSHD

	
0.210

	
2016

	
0.060

	
2016

	
0.191

	
2011

	
0.170

	
2006

	
0.21




	
DH, HSL, SHS

	
0.204

	
2021

	
0.064

	
2021

	
0.196

	
2016

	
0.105

	
2011

	
0.204




	
HSL, LSHD, DLS

	
0.306

	
2006

	
0.069

	
2021

	
0.184

	
2006

	
0.372

	
2016

	
0.372




	
HH, DHL, LSHS

	
0.152

	
2021

	
0.070

	
2011

	
0.144

	
2016

	
0.585

	
2021

	
0.585




	
HD, HD, HSL

	
0.281

	
2016

	
0.071

	
2021

	
0.208

	
2016

	
0.166

	
2016

	
0.281




	
HH, LHD, DLS

	
0.255

	
2016

	
0.072

	
2006

	
0.323

	
2011

	
0.249

	
2016

	
0.323




	
HDS, DHL, DS

	
0.329

	
2006

	
0.072

	
2016

	
0.187

	
2016

	
0.044

	
2021

	
0.329




	
HS, LHD, DLS

	
0.249

	
2016

	
0.077

	
2006

	
0.312

	
2016

	
0.376

	
2016

	
0.376




	
LH, HSL, LHSL

	
0.166

	
2021

	
0.355

	
2016

	
0.052

	
2011

	
0.250

	
2011

	
0.355




	
LSH, LHS, LHSL

	
0.397

	
2006

	
0.186

	
2006

	
0.035

	
2016

	
0.162

	
2021

	
0.397




	
HS, HL, LHSL

	
0.318

	
2006

	
0.286

	
2006

	
0.069

	
2006

	
0.396

	
2021

	
0.396




	
HSL, HDL, LHD

	
0.517

	
2006

	
0.479

	
2006

	
0.077

	
2021

	
0.089

	
2006

	
0.517




	
HSL, LHSL, SD

	
0.340

	
2006

	
0.583

	
2021

	
0.098

	
2021

	
0.330

	
2011

	
0.583




	
HS, HSL, HDL

	
0.318

	
2006

	
0.278

	
2006

	
0.095

	
2011

	
0.344

	
2021

	
0.344




	
SH, LHSL, SD

	
0.170

	
2021

	
0.247

	
2021

	
0.057

	
2011

	
0.297

	
2011

	
0.297




	
SH, LSH, HLHS

	
0.236

	
2016

	
0.398

	
2021

	
0.236

	
2011

	
0.198

	
2021

	
0.398




	
HS, HDL, LHS

	
0.228

	
2016

	
0.362

	
2006

	
0.112

	
2016

	
0.471

	
2021

	
0.471




	
HSL, LDS, LHSL

	
0.233

	
2006

	
1.286

	
2021

	
0.078

	
2016

	
0.632

	
2016

	
1.286




	
HL, LHLH, SHD

	
0.199

	
2021

	
0.137

	
2006

	
0.165

	
2016

	
0.009

	
2016

	
0.199




	
HD, LSH, HLHD

	
0.179

	
2016

	
0.247

	
2006

	
0.179

	
2016

	
0.025

	
2011

	
0.247




	
HLH, DHLH, DD

	
0.275

	
2006

	
0.175

	
2006

	
0.212

	
2016

	
0.027

	
2011

	
0.275




	
DH, HDS, LD

	
0.285

	
2016

	
0.234

	
2016

	
0.202

	
2016

	
0.027

	
2011

	
0.285




	
HL, LD, DHLH

	
0.297

	
2016

	
0.159

	
2021

	
0.185

	
2016

	
0.028

	
2021

	
0.297




	
DLD, SHL, DHL

	
0.141

	
2006

	
0.122

	
2016

	
0.211

	
2016

	
0.031

	
2021

	
0.211




	
DSD, LHS, HLHD

	
0.421

	
2006

	
0.444

	
2021

	
0.166

	
2016

	
0.032

	
2021

	
0.444




	
HH, LSH, LD

	
0.142

	
2016

	
0.253

	
2006

	
0.166

	
2006

	
0.034

	
2011

	
0.253




	
HL, SHLH, SHLH

	
0.173

	
2016

	
0.202

	
2006

	
0.371

	
2016

	
0.034

	
2006

	
0.371




	
HSL, HSL, DHLH

	
0.232

	
2016

	
0.185

	
2006

	
0.243

	
2016

	
0.035

	
2006

	
0.243











 





Table 10. The Accurate Predictive Capability Indicator (APCI) for predictions of combined influencing factors from three distinct feature categories.






Table 10. The Accurate Predictive Capability Indicator (APCI) for predictions of combined influencing factors from three distinct feature categories.





	Prediction Accuracy Threshold
	Tianjin
	Hebei
	Shandong
	Liaoning
	Comprehensive Value





	80%
	21.34%
	19.8%
	39.40%
	37.3%
	28.95%



	85%
	7.7%
	6.33%
	9.9%
	20.8%
	5.81%



	90%
	1.86%
	0.97%
	1.32%
	7.06%
	3.42%
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