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Abstract: This study presents a dynamic multi-factor correlation analysis method designed to predict
provincial carbon dioxide emissions (CDE) within China’s Bohai Rim region, including Tianjin,
Hebei, Shandong, and Liaoning. By employing the sliding window technique, dynamic correlation
curves are computed between various influencing factors and CDE at different time intervals, thereby
facilitating the identification of key feature attributes. A novel metric, the Consistency Index of
Influencing Factors (CIIF), is introduced to evaluate the consistency of these factors across regions.
Furthermore, the Accurate Predictive Capability Indicator (APCI) is defined to measure the impact
of different feature categories on the prediction accuracy. The findings reveal that models relying
on a single influencing factor exhibit limited accuracy, whereas combining multiple factors with
diverse correlation features significantly improves the prediction accuracy. This study introduces a
refined analytical framework and a comprehensive indicator system for CDE prediction. It enhances
the understanding of the complex factors that influence CDE and provides a scientific rationale for
implementing effective emission reduction strategies.

Keywords: carbon emissions; prediction; multi-factor analysis; dynamic correlation; accuracy
enhancement

1. Introduction

With the intensifying global warming problem, CDE management has become a
pivotal issue in the global battle against climate change and the advancement of sustainable
development. Accurate CDE predictions are crucial for formulating effective emission
reduction policies, optimizing energy structures, adjusting industrial frameworks, and
fostering technological innovation. Consequently, CDE prediction is at the forefront of
environmental science research and is an indispensable component of global environmental
governance and sustainable development planning.

In models based on neural networks, the selection of key influencing factors signif-
icantly impacts both the accuracy and reliability of the prediction results. Therefore, a
comprehensive analysis of the correlation between CDE and relevant influencing factors,
as well as an exploration of their underlying mechanisms, is essential for improving the
accuracy of the CDE predictions. In terms of CDE management, elucidating the intricate
relationships between CDE and its influencing factors is also of great significance for the
formulation and implementation of carbon management policies.

This study selects the Bohai Rim region in China as the research subject, which
primarily comprises four provinces and cities: Tianjin, Hebei, Shandong, and Liaoning.
The main reasons for choosing this region are as follows:
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(1) Economic Significance: the Bohai Rim region is one of China’s key economic areas,
characterized by developed industries and a significant economic output, which exerts
a notable influence on the country’s carbon emissions.

(2) Industrial Structural Similarity: These four provinces and cities share certain similari-
ties in their industrial structures, especially in heavy industry and chemical industry.
This study aims to better understand the overall carbon emission characteristics of the
Bohai Rim region.

(3) Data Availability: Given the feasibility of the research and the completeness of the
data, we utilized panel data spanning from 1999 to 2021 for this region, relying on
reference data sources from Guan, Y. et al. [1] and websites [2,3]. This ensures that
sufficient data are available to support the analysis throughout the research process.

To investigate the intricacies of provincial CDE predictions in China’s Bohai Rim
region, influenced by a multitude of complex factors, we have adopted a dynamic multi-
factor correlation analysis method. This approach aims to improve the prediction accuracy
and address regional variations. Additionally, it meets the scientific requirements for
informing carbon reduction strategies. With this method, we seek to contribute to the
existing literature on CDE prediction and management, ultimately facilitating practical
applications in environmental science and policy formulation. To achieve this objective, the
following questions will be addressed:

(1) What are the mechanisms by which different categories of influencing factors af-
fect CDE?

(2) How can the impact of influencing factors on CDE be dynamically described?
(3) How can the differences in the effects of the mechanisms affecting CDE across regions

be quantified?
(4) How can key influencing factors be selected to improve prediction accuracy?

The remainder of this paper is organized as follows: Section 2 reviews the influence
mechanism of different categories of factors on CDE and their representation. Section 3 de-
scribes the dynamic correlation features between CDE and its influencing factors. Section 4
analyzes the consistency of influencing factors according to different features. Section 5 com-
pares the prediction accuracy of models using influencing factors with different features.
Section 6 presents the discussion, and Section 7 concludes the paper.

2. Literature Review

The current prediction of CDE often incorporates various categories of factors, includ-
ing economic development, urbanization, and technological advancements. As highlighted
in [4–6], exploring the mechanisms of the influencing factors on CDE and conducting
in-depth identification of key influencing factors significantly impact the accuracy of
CDE predictions.

The relationship between economic development and CDE is evident in the corre-
lation observed between economic growth and CDE across various regions and stages
of development, further manifesting in regional disparities and individual differences
in CDE levels. Multiple factors, such as economic growth, industrial structure, energy
composition, and policy formulation, influence this correlation. Abid, M. [7] investigated
the positive correlation between economic development and CDE. Liao, H. et al. [8] vali-
dated the nonlinear relationship between economic growth and CDE. The Environmental
Kuznets Curve (EKC) hypothesis suggests that as levels of economic development increase,
environmental pollution initially rises and then declines, following an inverted U-shaped
trajectory. However, Mikayilov, J.I. et al. [9] analyzed the long-term impact of economic
growth in Azerbaijan using various cointegration methods while proposing that the EKC
hypothesis may not be applicable in that specific context. Furthermore, the relationship
between economic development and CDE demonstrates significant variations across differ-
ent regions and individuals. An analysis by Li, W. et al. [10] showed that countries form
distinct higher-order clusters in terms of their relationships with economic development
and CDE, reflecting differences in stages of economic development, energy structures,
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policy frameworks, and other factors among nations. Both industrial structure and energy
composition have a substantial impact on CDE; a higher proportion of heavy industry and
high-energy-consuming sectors often results in increased CDE. Nie, Y. et al. [11] examined
the disparities in industrial structure among the eastern, central, and western regions of
China, leading to divergent trends in CDE.

Urbanization significantly influences CDE by driving infrastructure development,
population aggregation, and the expansion of economic activities. On the one hand, the
increase in energy consumption and changes in the industrial structure resulting from
urbanization often lead to an increase in CDE [12,13]. On the other hand, urbanization also
fosters technological innovation and enhances energy efficiency, which can help mitigate
the growth of CDE to some extent [14,15]. Zhang, Y. et al. [16] conducted research using
Beijing as a case study to examine the effects of policy interventions during the urbanization
process on CDE, highlighting the critical role of strategic urban planning and effective
governance practices in reducing CDE. Wang, S. et al. [17] examined the various effects
of urbanization on CDE using panel data analysis. Furthermore, Abdallh, A.A. et al. [18]
highlighted the mediating role of energy consumption in shaping the relationship between
urbanization and CDE, emphasizing that improving energy efficiency is essential for
curbing the growth of CDE. Meanwhile, Musah, M. et al. [19] revealed the importance of
optimizing the industrial structure and pursuing low-carbon transformations for reducing
CDE. Notably, significant differences exist in how urbanization relates to CDE across
various regions and countries. Li, J. et al. [20] confirmed that factors such as economic
structure, energy efficiency, and policy environment have different impacts on CDE across
regions, while Wang, Y. et al. [21] identified a nonlinear relationship between levels of
urbanization and CDE among different countries.

Technological innovation serves as an effective strategy to address the increase in
CDE by reducing energy consumption, enhancing energy efficiency, and effectively driving
economic growth activities. However, the impact of technological innovation on CDE
exhibits regional disparities. For instance, in China, effects vary across eastern, central,
and western regions [22]; similarly, in Malaysia, although specific regions are not explicitly
distinguished, it can be inferred that differing levels of technological innovation and
environmental conditions may result in variations in emission reduction outcomes [23].
Consequently, the relationship between technological innovation and CDE is complex and
multidimensional, particularly in developing economies. Research conducted by Cheng, S.
et al. [24] indicated that technological innovations in renewable energy positively affect
CDE intensity in low quantile regions while exerting a negative impact in high quantile
areas; conversely, the effect of fossil fuel-related innovation is the opposite. Zhang, M.
et al. [25] performed studies utilizing provincial panel data from China to investigate how
technological innovation influences CDE. Their findings revealed that such innovations
indirectly contribute to reductions in CDE through improvements in energy efficiency
and exhibit spatial spillover effects on neighboring provinces. Ali, W. et al. [23] identified
a bidirectional causal relationship between energy consumption and economic growth,
as well as between economic growth and technological innovation in the short term.
Furthermore, Erdogan, S. [26] emphasized that CDE is a cumulative variable influenced by
historical values, thus requiring consideration of dynamic effects. Eslamipoor, R. et al. [27]
proposed a green supply chain model under a carbon cap and highlighted the critical role
of policymakers and the importance of setting allowable emission limits.

In summary, economic development and industrial structure are the primary determi-
nants of CDE, particularly in developing countries [28,29]. Meanwhile, the advancement
of urbanization, accompanied by increased energy consumption and transport-related
activities, has a significant impact on CDE [30]. Furthermore, technological advancements
have become a crucial factor influencing CDE by optimizing industrial and energy struc-
tures [31]. The intricate interactions between these factors, along with other relevant
elements, collectively determine the trajectory and magnitude of CDE trends [32].
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Currently, the primary approaches for describing the relationship between CDE and its
influencing factors predominantly encompass statistical analysis, decomposition analysis,
grey relational analysis, and artificial intelligence analysis. Statistical analysis commonly
employs techniques such as correlation, regression, factor, and principal component analy-
sis. Raihan, A. et al. [33] utilized Dynamic Ordinary Least Squares (DOLS) and Canonical
Correlation Regression (CCR) to analyze the dynamic implications of factors such as eco-
nomic growth and energy consumption on CDE, revealing the causal relationships among
these factors. Wang, Z. et al. [34] identified the principal influencing factors and their
interactions using factor analysis (FA) and subsequently employed a Bayesian Neural
Network (BNN) to capture the nonlinear relationship between the inputs and CDE. Chang,
L. et al. [35] exploited the capability of Projection Pursuit Regression (PPR) in handling
high-dimensional data and extracted the most critical information for predicting CDE from
large-scale datasets. Yang, H. et al. [36] transformed the complex CDE time series into
manageable components through decomposition and reconstruction, and subsequently
employed a deep learning model to capture the patterns of each component and make
predictions. Ding, Y.K. et al. [37] quantified the influence of technology-upgrading policies
on CDE through factor analysis and expressed the flows of CDE between different regions
and industries based on Graph Representation Learning (GRL), thereby predicting CDE.
Chen, Y.X. et al. [38] captured the spatiotemporal correlations of CDE by means of a hybrid
deep learning model integrating a Gated Recurrent Unit (GRU) and Graph Convolutional
Network (GCN), thereby accomplishing CDE prediction.

Based on the above analysis, the potential limitations of the current research are
as follows:

(1) Regarding the studied regions and datasets: Some research focuses on carbon emission
studies in specific areas, such as in Egypt or certain urban agglomerations in China.
These studies often rely on limited datasets, potentially failing to adequately capture
the variations and similarities across diverse regions.

(2) Regarding the depth and breadth of influencing factor analysis: some studies may
primarily concentrate on the impact of a few key influencing factors (e.g., economic
growth and energy use) on carbon emissions, resulting in a somewhat oversimplified
comprehension of the matter.

(3) With respect to models and methodologies: although these methods may excel in
addressing simple or linear relationships, they may face limitations when dealing with
complex, nonlinear carbon emission data.

(4) In terms of the practicality and specificity of policy recommendations: the policy
suggestions proposed in some research may indeed be relatively high-level or general,
lacking specific implementation plans tailored to particular regions or situations.

The primary objective of this study is to comprehensively analyze the dynamic evolu-
tion relationship between various influencing factors and CDE, specifically manifested in
the following aspects:

(1) Dynamism: distinct from static correlation analysis, this study employs a sliding
window technique to capture the time-varying relationships between carbon emissions
and various influencing factors.

(2) Multi-factor Analysis and New Indicators: This study simultaneously considers multi-
ple influencing factors, thereby providing a more comprehensive understanding of
the drivers of carbon emissions. Furthermore, we introduce two novel indicators: the
Consistency Index of Influencing Factors (CIIF) and the Accurate Predictive Capa-
bility Indicator (APCI), which together form a robust framework for evaluating and
comparing prediction models.

(3) Comprehensive Analysis: by analyzing the consistency and comparing the prediction
accuracy of influencing factors across different feature categories, our method offers
deeper insights into the complex mechanisms of carbon emissions.
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3. Dynamic Characterization of Correlation Features between CDE and
Influencing Factors

The most prominent issue encountered in the panel data of the Bohai Rim region is
the presence of missing values. To address this, the following data preprocessing measures
were adopted in this study:

(1) Data Cleaning: Variables with excessive missing values and outliers were removed.
To ensure the scientific validity of the research findings, interpolation methods were
employed to correct missing data when the amount for a variable was less than 10%.
Otherwise, the variable was excluded from the analysis, which inevitably led to certain
differences in the datasets of various provinces.

(2) Data Standardization: To eliminate the influence of different variable dimensions, all
variables were standardized. In this study, the Min–Max standardization method was
primarily employed.

Additionally, the partitioning of the dataset into training and testing sets will be
introduced in Section 5.

By employing the Pearson correlation coefficient, as outlined in Equation (1), we define
the correlation between various influencing factors and CDE within a sliding window, as
illustrated in Equation (2).

ρXY =
cov(X, Y)

σXσY
=

E[(X − µX)(Y − µY)]
σXσY

(1)

In Equation (1), X and Y represent the random variables, respectively. ρXY denotes the
Pearson correlation coefficient between these two random variables. cov(., .) represents the
covariance, σ indicates the standard deviation, µ signifies the expected value of a specified
random variable, and E[.] denotes the mathematical expectation function.

ρXY_Wi =
cov(Xi, Yi)

σXi σYi

, i ∈ [1, n − w + 1] (2)

In Equation (2), ρXY_Wi represents the Pearson correlation coefficient of the random
variable within the i-th sliding window. Xi or Yi denote the values of the random variable
within the i-th sliding window, respectively. n indicates the number of values taken by the
random variable, and w indicates the width of the window.

The process of the dynamic multi-factor correlation analysis is summarized as follows:

(1) Obtain the length n of the time series data for both CDE and its influencing fac-
tors. Set the width w of the sliding window and define the moving step size as
nStep. Calculate the number of sliding windows, denoted as nw. In this case, set
nw = (n − w)/nStep + 1.

(2) Let Y represent the CDE time series data. Identify and denote the number of influenc-
ing factors as Ni. Initialize the variable k = 1 to represent the sequence number of the
influencing factors.

(3) Represent the time series of the k-th influencing factor with X. Initialize the variable
i = 1, which corresponds to a specific sliding window.

(4) Calculate the starting position, denoted as ni_Begin and the ending position, de-
noted as ni_End, for the i-th sliding window. Here, ni_Begin = 1 + (i − 1) · nStep, and
ni_End = ni_Begin + w.

(5) Apply Equation (2) to calculate the correlation coefficient ρXY_Wi for the variables X
and Y within the interval

[
ni_Begin, ni_End

)
.

(6) Increase the value of i by 1. If i ≤ nw, go to step (4).
(7) At this step, the correlation curve between the k-th influencing factor and the CDE,

which is represented by the time series [ρXY_Wi|i = 1, 2 . . . nw], has been obtained.
(8) Increase the value of k by 1. If k ≤ Ni, proceed to step (3).
(9) Finish the process.
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Using Tianjin as a case study, the correlation between various influencing factors and
CDE was calculated based on Equation (1). The representative results of this calculation
are presented in Table 1.

Table 1. Overall correlation values between CDE and different influencing factors in Tianjin.

Influencing Factor Unit Comprehensive Correlation Value

Merchandise Sales billion yuan 0.9704
Primary Plastics Output ten thousand tons 0.976

Transaction Volume billion yuan 0.8159
Electricity Generation billion kWh 0.9387
Number of Markets - 0.5644

Total Current Assets (Industry Enterprises) billion yuan 0.9523
Total Wastewater Discharge ten thousand tons 0.952

Second Industry Value-added Share in GDP % −0.4437
Artificial Gas Users ten thousand people 0.5736
Urban Population ten thousand people 0.9401

Number of Industry State-owned Enterprises - −0.952
Rural Population Share % −0.9394

Tertiary Industry Value-added Share in GDP % 0.566
Primary Industry Value-added Share in GDP % −0.9223

Oil Production ten thousand tons −0.7574
Green Coverage in Built-up Areas % −0.7766

Yarn Production ten thousand tons −0.9562
Unemployment Insurance Recipients ten thousand people −0.4642

Crude Salt Production ten thousand tons −0.883
Cleaning and Maintenance Area ten thousand sqm 0.8204

Using Equation (2), the dynamic correlation curves for each influencing factor pre-
sented in Table 1 were computed individually, as illustrated in Figure 1. The window width
employed in these calculations was set to 10 units, with a moving step of 1.

Through a comparative analysis of Table 1 and Figure 1, the following conclusions can
be drawn:

(1) Variables that exhibit a high overall correlation in Table 1 may demonstrate relatively
low correlation within specific sliding windows illustrated in Figure 1. These variables
may exhibit various fluctuation features, such as initially high then low, initially low
then high, low in the middle with high values on both sides, or high in the middle
with low values on both sides.

(2) Conversely, variables exhibiting low overall correlation in Table 1 may show relatively
high correlation within certain sliding windows presented in Figure 1, also displaying
diverse features similar to those mentioned above.

Thus, by utilizing Equation (2), the sliding window descriptive method offers a more
comprehensive understanding of the intricate correlation characteristics between CDE and
its various influencing factors. Within this analytical framework, the correlation between
independent and dependent variables is categorized as follows: a correlation coefficient
exceeding 0.6 is classified as High (“H”), a coefficient ranging from 0 to 0.6 is considered
Low (“L”), a coefficient falling between −0.6 and 0 is labeled as Shallow (“S”), and a
coefficient below -0.6 is denoted as Deep (“D”).
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Figure 1. Dynamic correlation curves between CDE and different influencing factors in Tianjin.

Based on these classifications, the correlation features illustrated in Figure 1 can be
further represented using the format presented in Table 2. This representation aligns
with the “inverted U-shaped relationship between environmental pollution and per capita
income” described in reference [9]. In Table 2, the correlation characteristic between
“Tertiary Industry Value-added Share in GDP” and CDE in Tianjin is classified as DHD,
indicating an inverted U-shaped feature that can be seen in Figure 1m. When Figure 1 and
Table 2 are considered together, it becomes evident that the relationship between CDE and
its influencing factors also encompasses shapes such as “V” (Figure 1i), “L” (Figure 1s), and
other more complex forms. These features are generally summarized as “complexity” and
“diversity,” and they are manifested through the aforementioned “HLSD” combinations.
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This provides a reference for the dynamic description and in-depth analysis of correlation
mining, modeling, and visualization.

Table 2. Correlation features between CDE and different influencing factors in Tianjin.

Influencing Factors Correlation Curves in Figure 1 Correlation Features

Merchandise Sales Figure 1a HH
Primary Plastics Output Figure 1b HL

Transaction Volume Figure 1c HLH
Electricity Generation Figure 1d HS
Number of Markets Figure 1e HSH

Total Current Assets (Industry Enterprises) Figure 1f HSL
Total Wastewater Discharge Figure 1g HD

Second Industry Value-added Share in GDP Figure 1h HDH
Artificial Gas Users Figure 1i HDHL
Urban Population Figure 1j HDS

Number of Industry State-owned Enterprises Figure 1k DH
Rural Population Share Figure 1l DHL

Tertiary Industry Value-added Share in GDP Figure 1m DHD
Primary Industry Value-added Share in GDP Figure 1n DL

Oil Production Figure 1o DLS
Green Coverage in Built-up Areas Figure 1p DLD

Yarn Production Figure 1q DS
Unemployment Insurance Recipients Figure 1r DSD

Crude Salt Production Figure 1s LDS
Cleaning and Maintenance Area Figure 1t SHD

In practical applications of the dynamic multi-factor correlation analysis method, the
step size of the sliding window primarily influences the density of data points along the
resulting curve. The width of the sliding window is pivotal in determining the accuracy
of the data analysis, which in turn affects its robustness and reproducibility. Here, taking
Tianjin as an example, Table 3 presents the correlation features between CDE and different
influencing factors across various sliding window widths. The considered sliding window
widths include 6, 8, 9, 10, 11, 12, 14, and 16, respectively. Notably, a sliding window width
of 10 was utilized for the analysis presented in this article.

As shown in Table 3, when the sliding window width is narrow, the correlation analysis
captures features with more frequent fluctuations. This is exemplified by the impact of
“Crude Salt Production” on CDE. Specifically, when the sliding window width is set to 6, the
correlation features are characterized as “SHDLSL”. Consequently, an excessively narrow
sliding window width may result in an abundance of features, potentially diminishing
the practical significance of the results. Conversely, when the sliding window width is
broad, some important correlation features may be overlooked. For instance, considering
the influencing factor “Urban Population”, when the sliding window width is 10, its impact
on CDE is “HDS”. However, with a width of 16, the result changes to “HH”. It is evident
that a wider window may lead to an incomplete capture of certain intermediate process
features and distort the view of recent trends, particularly given the limited length of the
panel data.

Therefore, when setting the parameters of the sliding window, it is recommended to
consider two primary factors. The first is the length of the panel data’s time series. When
the data length is limited, the sliding window step size should be set to 1 to maximize
the use of available data. If the data length is substantial, this value can be appropriately
increased to balance computational efficiency and feature capture. The second important
factor is the policy-making cycle. In China, major plans are typically formulated every
5 years, accompanied by corresponding policy adjustments. Consequently, in this article,
the sliding window width is set at 10, which encompasses two consecutive 5-year plans
and the policy adjustments that occur within those periods. When applying this method to
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different datasets, this factor should also be taken into account to ensure that the sliding
window parameters align with the relevant policy cycles.

Table 3. Correlation features of CDE and different influencing factors in Tianjin under different
sliding window widths.

Influencing Factor Sliding Window Width
6 8 9 10 11 12 14 16

Merchandise Sales HH HH HH HH HH HH HH HH
Primary Plastics Output HSH HL HSL HL HL HL HH HH

Transaction Volume HLHL HL HLH HLH HLH HLH HL HL
Electricity Generation HL HSL HS HS HS HS HH HH
Number of Markets HDHS HSL HSH HSH HSH HSL HS HS

Total Current Assets (Industry Enterprises) HSL HSL HSL HSL HS HL HH HH
Total Wastewater Discharge HDLS HDS HD HD HD HS HH HH

Second Industry Value-added Share in GDP HDHS HDL HDH HDH HDH HDL LDS LDS
Artificial Gas Users HDHS HDL HDL HDHL HDH HDL HDS LD
Urban Population HDS HDS HDS HDS HD HS HH HH

Number of Industry State-owned Enterprises DSDHS DHL DHL DH DH DL DD DD
Rural Population Share DHS DHL DHL DHL DH DL DD DD

Tertiary Industry Value-added Share in GDP DHDL DHS DHD DHD DHD DHS SHL LHL
Primary Industry Value-added Share in GDP DHS DL DL DL DL DL DD DD

Oil Production SDHDS DHS DLS DLS DLS DLS DL DS
Green Coverage in Built-up Areas DHDH DHS DHS DLD DLD DLS DL DL

Yarn Production SDL SDS DS DS DD DD DD DD
Unemployment Insurance Recipients SDLDL DS DSD DSD DLD DLD DL DL

Crude Salt Production SHDLSL SLDS LDS LDS LDS LDS SD DD
Cleaning and Maintenance Area SHDL SHDS SHD SHD LHD LHS HL HH

4. Consistency Analysis of Influencing Factors According to Different Features

The influencing factors of CDE exhibit diverse correlation features across different
provinces and cities. In this paper, four provinces and cities in the Bohai Rim region of
China, including Tianjin, Hebei, Shandong, and Liaoning, have been selected, and the
features of some influencing factors mentioned in previous references are compared, as
illustrated in Table 4.

Table 4. Correlation features of influencing factors across different provinces and cities.

Influencing Factors
Correlation Features in Provinces and Cities

Tianjin Hebei Shandong Liaoning

Economic Growth (GDP) HS HD HH HSL
Agricultural Growth HS HL HH HL

Industrial Growth HDS HD HH HLH
Service Sector Growth HD HD HH HL

Population Size HS HD HH HD
Urbanization Rate HDS HD HH HLH

Investment in Pollution Control HDS HD HH HLH
Government Public Expenditure LHD HS HH HLH

Foreign Direct Investment HS HSLS HSH LHLH

As illustrated in Table 4, even within the Bohai Rim region, which shares certain
similarities in comprehensive structures, such as economy and energy, the correlation
features of identical influencing factors can exhibit significant variations across different
areas. This observation indicates that generalizing the impact of factors with identical
nomenclature across diverse regions and time periods using a single correlation feature is
not feasible. For instance, economic growth, represented by GDP, has an influence on CDE.
At the end of the last century in the Bohai Rim region, this influence displayed a consistent



Processes 2024, 12, 2207 10 of 21

H-type correlation feature. However, Shandong consistently maintained a high level of
correlation, while Liaoning’s correlation gradually weakened. In contrast, Tianjin and
Hebei’s correlations transitioned from positive to negative over time. Regarding industrial
growth’s impact on CDE, Tianjin and Hebei exhibited similar correlation characteristics,
influenced by regional integration and development initiatives within the Beijing–Tianjin–
Hebei region. Both regions demonstrated a gradual transition from positive to negative
correlations. In contrast, Shandong, distinguished by its prominent heavy industrial
capabilities nationwide, and Liaoning, a pivotal center of heavy industry in Northeast
China, consistently exerted a positive influence on CDE through industrial expansion,
manifesting HH and HLH correlation features, respectively. The disparate correlation
features of the identical influencing factors across various provinces and cities inherently
affect the identification of primary CDE drivers, highlighting the importance of this aspect
for accurate predictions.

In this study, after accounting for data completeness, the four aforementioned provinces
and cities encompass nearly 400 common influencing factors, which are categorized into
approximately 50 distinct correlation feature categories. To further quantify the consis-
tency of these influencing factors with varying features among provinces and cities, the
Consistency Index of Influencing Factors (CIIF), as illustrated in Equation (3), is defined.

CIIFi_AB =
card(Ci_A ∩ Ci_B)

card(Ci_B)
, i ∈ [1, nC] (3)

In Equation (3), CIIFi_AB represents the CIIF value for the i-th correlation feature from
province B relative to province A, where nC denotes the total number of correlation feature
categories and i is the index of the correlation feature. The variables Ci_A and Ci_B represent
the sets of influencing factors corresponding to the i-th correlation feature for provinces A
and B, respectively, and card(.) is the counting function for set elements.

The CIIF calculation process involves the following steps:

(1) Identify the number (nC) of shared correlation features between two provinces, such as
A and B, and initialize the variable i to 1, where i corresponds to a specific feature category;

(2) Calculate the number of influencing factors associated with correlation feature i for A
and B, respectively, thus obtaining the values of card(Ci_A) and card(Ci_B);

(3) Assess the intersection of influencing factors within feature category i for both A and
B. The count of these factors is the value of card(Ci_A∩Ci_B), then CIIF is calculated
using Equation (3);

(4) Increase i by 1. If i ≤ nC, go to step (2); otherwise, finish the process.

Based on Equation (3) and the above steps, the CIIF was calculated separately for the
commonly shared correlation features among the four provinces and cities. This analysis
specifically targeted representative features such as DH, DHD, DHS, DL, DLS, DS, HD,
HDH, HDL, HDS, HH, HL, HLH, HLHS, HS, HSH, HSL, LDH, LDL, LDS, LHD, LHDS,
LHS, LSH, LSHS, SDSD, SHD, and SHSL. The results of these calculations are illustrated in
Figure 2.

In each graph of Figure 2, the curve values represent the magnitude of the CIIF based
on each correlation feature within a specific province or city. This indicator does not exhibit
a clear numerical distribution. From the CIIF curves of the correlation features in each
province and city, it is evident that the LSHS feature demonstrates higher values in Tianjin,
Liaoning, and Hebei, indicating that the influencing factors associated with this feature are
similar across these regions. Conversely, the CIIF values corresponding to the DHS and DL
features are zero in all provinces and cities, suggesting that the influencing factors related
to these correlation features are entirely distinct.
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Figure 2. Consistency Index of Influencing Factors (CIIF) of different correlation features across
four provinces and cities. (a). Consistency of various features of Tianjin with the other three regions.
(b). Consistency of various features of Hebei with the other three regions. (c). Consistency of various
features of Shandong with the other three regions. (d). Consistency of various features of Liaoning
with the other three regions.

In Figure 2a, the CIIF for features such as HD, HDH, and HDL from Hebei relative to
Tianjin is non-zero, which consequently indicates that these features will also exhibit non-
zero CIIF values for Tianjin in relation to Hebei in Figure 2b. However, the corresponding
values do not necessarily equal one another.

From this perspective, the CIIF reflects, to some extent, the transfer capability of
various influencing factors on CDE, as manifested through correlation features. It is evident
that the relationships between different influencing factors and CDE are complex and
exhibit significant variations among provinces and cities, despite potential deviations in
the size of effective datasets among them.
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5. Comparison of CDE Prediction Accuracy Based on Influencing Factors with
Different Features

In this study, we assume that the accuracy of neural network prediction depends on
the correlation between the selected factors and the predicted value, which is highlighted
in Jebli, I. et al. [39].

Given the diversity of correlated features, predicting CDE inherently presents complex
challenges, particularly concerning the identification of key influencing factors. In this
section, we evaluate the accuracy of CDE predictions based on influencing factors with
distinct features. Taking the aforementioned four provinces and cities as case studies, we
conduct a comparative analysis of the prediction accuracy for CDE, employing correlation
feature categories of influencing factors as the primary analytical unit. The comparisons
include both single and multiple categories of influencing factors.

For the prediction testing, a Long Short-Term Memory (LSTM) neural network was
utilized with the following baseline parameters: sequence length = 3, hidden size = 5,
learning rate = 0.003, batch size = 4, and number of epochs = 300. Considering the variations
in the correlation between influencing factors and CDE across different years, the years 2006,
2011, 2016, and 2021 were selected as test years. This means that the accuracy calculation
for each set of influencing factors includes four separate training and testing cycles.

To assess the capacity of influencing factors belonging to distinct correlation feature
categories and combinations of multiple categories in predicting CDE accurately, the
Accurate Predictive Capability Indicator (APCI) is defined as presented in Equation (4).

APCI =
ΣnC

i=1TPi

N
× 100% (4)

In Equation (4), TPi represents the number of samples correctly predicted for the i-th
category, while N denotes the total number of samples.

After the CDE prediction, the APCI can be calculated using statistical methods based
on a specific prediction accuracy level setting.

In this study, predictions were primarily categorized into two scenarios: first, pre-
dictions based on influencing factors exhibiting a single category of correlation features;
second, predictions derived from a combination of influencing factors across multiple cate-
gories of correlation features. In the former scenario, predictions were made by selecting
either one factor or multiple factors (in this case, three) from a single category of correlation
features. In the latter scenario, predictions were executed by selecting one factor from each
of three entirely distinct categories of correlation features.

5.1. Prediction Based on Influencing Factors with One Correlation Feature Category

Table 5 presents the results of the prediction deviations for CDE using a single in-
fluencing factor. For comparison, only categories common to all provinces and cities are
included. The maximum prediction deviation and the corresponding year for each category
among the aforementioned four provinces and cities are listed. The last column of the table
provides the overall deviation for each province and city, representing the maximum value
observed within them.

Table 6 presents the APCI values corresponding to the calculation results displayed in
Table 5, including both the individual and comprehensive results for the four provinces and
cities. The APCI values offer a quantitative assessment of the predictive capability of each
influencing factor and their combinations, facilitating a comparison of their effectiveness in
accurately predicting CDE.
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Table 5. Prediction deviations for a single influencing factor.

Correlation Features
Maximum Deviation Across Provinces and Cities Overall Maximum

DeviationTianjin Year Hebei Year Shandong Year Liaoning Year

HH 0.399 2016 0.24 2011 0.167 2016 0.093 2011 0.399
HL 0.422 2016 0.33 2016 0.181 2021 0.182 2016 0.422

HLH 0.345 2016 0.605 2011 0.329 2016 0.175 2016 0.605
HLHS 0.588 2011 0.81 2011 0.242 2016 1.729 2006 1.729

HS 0.246 2006 0.325 2016 0.266 2016 0.34 2011 0.34
HSH 0.421 2021 0.773 2011 0.238 2011 0.387 2011 0.773
HSL 0.315 2006 0.838 2011 0.555 2016 0.266 2016 0.838
HDH 0.48 2006 0.394 2016 0.945 2021 0.247 2016 0.945
HDL 0.505 2016 0.329 2016 0.399 2016 0.109 2021 0.505
HD 0.243 2006 0.195 2006 0.176 2016 0.148 2021 0.243

HDS 0.217 2006 0.323 2016 0.539 2016 0.037 2011 0.539
LHS 0.436 2006 0.592 2011 0.776 2006 0.19 2006 0.776
LHD 0.452 2011 0.516 2011 0.552 2016 0.265 2011 0.552

LHDS 0.341 2006 0.486 2006 2.22 2006 0.431 2011 2.22
LSH 0.647 2006 1.943 2006 0.188 2011 1.163 2006 1.943

LSHS 1.334 2011 1.202 2011 0.584 2011 0.829 2006 1.334
LDH 0.299 2011 1.383 2011 0.429 2011 0.362 2006 1.383
LDL 0.504 2006 1.541 2021 1.417 2006 0.744 2021 1.541
LDS 0.643 2011 1.221 2006 0.166 2016 2.668 2006 2.668

SHSL 0.346 2011 0.979 2011 0.617 2021 1.191 2016 1.191
SHD 0.579 2006 0.534 2006 1.005 2006 0.356 2011 1.005
SDSD 0.409 2016 0.649 2021 0.53 2006 0.391 2006 0.649
DH 0.274 2016 0.246 2016 0.183 2011 0.148 2016 0.274

DHS 0.438 2016 1.324 2006 1.481 2006 0.247 2011 1.481
DHD 2.501 2006 0.763 2006 1.453 2021 0.665 2011 2.501
DL 0.36 2016 0.436 2011 0.375 2016 0.547 2021 0.547

DLS 0.416 2016 0.436 2016 0.4 2016 0.638 2011 0.638
DS 0.419 2016 0.402 2016 0.519 2016 0.11 2006 0.519

Table 6. The Accurate Predictive Capability Indicator (APCI) for predictions based on a single
influencing factor.

Prediction Accuracy Threshold Tianjin Hebei Shandong Liaoning Comprehensive Value

80% 0% 2% 7.33% 10.56% 5.68%
85% 0% 0% 0% 5% 1.65%
90% 0% 0% 0% 2.22% 0.73%

The prediction deviations for CDE based on a single influencing factor, as illustrated
in Table 5, are generally substantial. Factors belonging to different categories exhibit
varying degrees of accuracy, and even factors within the same category demonstrate
significant performance disparities across different provinces and cities. Specifically, the
smallest deviations for Tianjin and Liaoning are observed in the HDS correlation feature
category, with values of 0.217 and 0.037, respectively. For Hebei and Shandong, the
minimum deviations are found in the HD and LDS categories, with values of 0.195 and
0.166, respectively. Considering the overall maximum deviation across the four provinces
and cities, the HD correlation feature category exhibits the smallest deviation at 0.243.

Table 6 presents the APCI values for each province and city, corresponding to varying
prediction accuracies. Specifically, at a prediction accuracy threshold of 80%, Tianjin
demonstrates an APCI of 0. When the threshold is increased to 85%, both Hebei and
Shandong also exhibit an APCI of 0. In contrast, at a prediction accuracy level of 90%,
Liaoning achieves an APCI of 2.22%.

It is evident that relying on a single influencing factor is insufficient for achieving
universally high-accuracy predictions of CDE. This limitation primarily arises from the
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complex interplay of multiple factors affecting CDE, rendering it impossible for any single
factor to fully capture their intricate and dynamic variation characteristics. Furthermore,
prediction models that depend solely on individual influencing factors tend to exhibit
heightened sensitivity to hyperparameters, necessitating stringent conditions to achieve
satisfactory prediction accuracy. Consequently, this paper will not further explore the
optimization of prediction models.

Table 7 presents the CDE prediction results based on three influencing factors that
belong to the same category. These factors have been selected to investigate the potential of
combining multiple influencing factors from a single category to enhance the prediction
accuracy. The table outlines the prediction results for various combinations of these factors
along with their corresponding deviation values. Additionally, Table 8 displays the APCI
values associated with the calculation results presented in Table 7.

Table 7. Prediction deviations of three factors derived from single feature category.

Correlation Features
Maximum Deviation across Regions Overall Maximum

DeviationTianjin Year Hebei Year Shandong Year Liaoning Year

HH 0.371 2016 0.155 2021 0.266 2016 0.27 2011 0.371
HL 0.193 2016 0.285 2021 0.204 2016 0.403 2021 0.403

HLH 0.354 2016 0.309 2011 0.757 2016 0.116 2021 0.757
HLHS 0.245 2016 0.728 2011 0.478 2011 0.373 2016 0.728

HS 0.262 2016 0.093 2006 0.32 2016 0.4 2021 0.4
HSH 0.105 2016 0.129 2016 0.372 2016 0.433 2011 0.433
HSL 0.233 2016 0.319 2021 0.362 2021 0.241 2006 0.362
HDH 0.273 2016 0.401 2011 0.692 2021 0.182 2016 0.692
HDL 0.197 2021 0.281 2011 0.343 2021 0.651 2021 0.651
HD 0.244 2016 0.135 2011 0.244 2016 0.148 2021 0.244

HDS 0.375 2016 0.188 2016 0.189 2016 0.17 2006 0.375
LHS 0.347 2006 0.24 2021 0.558 2016 0.358 2021 0.558
LHD 0.402 2006 0.329 2006 0.216 2006 0.181 2011 0.402

LHDS 0.391 2006 0.852 2011 0.641 2021 0.293 2021 0.852
LDL 0.226 2021 0.874 2016 0.239 2016 0.486 2006 0.874
LDS 0.467 2011 1.926 2006 0.77 2011 0.599 2011 1.926

SHSL 0.431 2016 0.428 2006 0.386 2016 0.17 2021 0.431
SHD 0.543 2011 0.729 2006 0.391 2006 0.116 2011 0.729
SDSD 0.272 2011 0.408 2011 0.266 2011 0.378 2011 0.408
DH 0.198 2016 0.248 2016 0.182 2016 0.075 2011 0.248

DHS 0.527 2016 0.175 2021 0.162 2016 0.175 2006 0.527
DHD 0.228 2016 0.695 2011 0.261 2016 0.345 2021 0.695
DL 0.193 2016 0.34 2016 0.813 2016 0.604 2021 0.813

DLS 0.314 2016 0.463 2021 0.183 2016 0.368 2021 0.463
DS 0.431 2016 0.211 2011 0.249 2016 0.148 2021 0.431

Table 8. The Accurate Predictive Capability Indicator (APCI) for predictions of three influencing
factors derived from the single feature category.

Prediction Accuracy Threshold Tianjin Hebei Shandong Liaoning Comprehensive Value

80% 15.15% 25.93% 16.67% 32.35% 22.88%
85% 3.03% 11.11% 0% 17.65% 8.47%
90% 0% 3.7% 0% 2.94% 1.69%

The analysis of Table 7 indicates significant prediction deviation across different
provinces and cities, exhibiting similar variations to those observed in Table 5. For Tianjin
and Hebei, the minimum deviations are noted in the HSH and HS categories, with values
of 0.105 and 0.093, respectively. For Shandong and Liaoning, the lowest deviations are
recorded in the DHS and DH categories, with values of 0.162 and 0.075, respectively. When
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assessing the overall maximum deviation across the four provinces and cities, the HD
correlation feature category consistently demonstrates the smallest deviation at 0.244.

The comparison between Tables 5 and 7 indicates that, despite a reduction in the
minimum prediction deviations for each province and city, the correlation feature cate-
gories associated with these deviations have changed. Nevertheless, the overall maximum
deviation and its corresponding correlation feature category remain unchanged.

As presented in Table 8, when the prediction accuracy threshold is established at
80%, Shandong Province exhibits an APCI of 16.67%, indicating a significant increase. For
Tianjin, the APCI rises to 3.03% with a prediction accuracy of 85%. When the prediction
accuracy criterion is set at 90%, Hebei and Liaoning provinces demonstrate respective APCI
enhancements of 3.7% and 2.94%. Furthermore, the overall APCI across the four provinces
and cities also shows improvement.

The comparison of results between Tables 5 and 7, as well as Tables 6 and 8, indicates
that utilizing three influencing factors from a single correlation feature category for CDE
prediction leads to a reduction in prediction deviations across the four provinces and
cities. This suggests that by concentrating on one category of correlation features and
incorporating multiple influencing factors, there is potential to enhance the prediction
accuracy to a certain degree. However, it also underscores the limitation that a combination
of factors within the same correlation feature category cannot fully capture the diversity of
CDE variations.

5.2. Combined Prediction Based on Multiple Correlation Feature Categories

Table 9 presents the statistical deviations associated with CDE predictions, derived
from a model that incorporates three influencing factors, each originating from distinct
categories of correlation features. Given the large number of potential combinations
arising from these diverse categories, only the top ten combinations exhibiting the smallest
deviations across the provinces and cities are displayed, ensuring consistent representation
of these combinations across all provinces and cities. Subsequently, Table 10 illustrates the
APCI values corresponding to the computational results presented in Table 9.

Table 9. Prediction deviations of combined influencing factors derived from three distinct feature
categories.

Combined Features
Top 10 Minimum Deviations Overall Maximum

DeviationTianjin Year Hebei Year Shandong Year Liaoning Year

HDHL, DLS, DS 0.032 2011 0.113 2006 0.147 2016 0.136 2021 0.147
LDHL, LDHL, HLH 0.039 2011 0.284 2011 0.429 2016 0.396 2011 0.429

HDHL, DHS, DS 0.039 2016 0.214 2021 0.137 2016 0.321 2021 0.321
HSH, HSH, HSH 0.047 2006 1.015 2011 0.372 2016 0.433 2011 1.015

HDHL, HDHL, HLH 0.048 2021 0.153 2006 0.981 2016 0.481 2021 0.981
HDHL, HLH, DS 0.051 2006 0.239 2006 0.237 2016 0.081 2011 0.239
SDL, DHS, DHS 0.053 2006 0.587 2006 0.209 2016 0.150 2016 0.587
SHDS, HSH, DL 0.054 2006 0.412 2011 0.164 2006 0.399 2021 0.412
HSH, LDS, DS 0.055 2016 0.776 2021 0.208 2016 0.191 2011 0.776

HSHL, HDHL, DS 0.059 2016 0.301 2006 0.258 2016 0.313 2021 0.313
DHD, LSHD, DLS 0.242 2016 0.052 2006 0.181 2021 0.210 2021 0.242

HS, LHD, DS 0.342 2006 0.054 2016 0.312 2016 0.206 2011 0.342
HSL, LSHD, LSHD 0.210 2016 0.060 2016 0.191 2011 0.170 2006 0.21

DH, HSL, SHS 0.204 2021 0.064 2021 0.196 2016 0.105 2011 0.204
HSL, LSHD, DLS 0.306 2006 0.069 2021 0.184 2006 0.372 2016 0.372
HH, DHL, LSHS 0.152 2021 0.070 2011 0.144 2016 0.585 2021 0.585

HD, HD, HSL 0.281 2016 0.071 2021 0.208 2016 0.166 2016 0.281
HH, LHD, DLS 0.255 2016 0.072 2006 0.323 2011 0.249 2016 0.323
HDS, DHL, DS 0.329 2006 0.072 2016 0.187 2016 0.044 2021 0.329
HS, LHD, DLS 0.249 2016 0.077 2006 0.312 2016 0.376 2016 0.376
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Table 9. Cont.

Combined Features
Top 10 Minimum Deviations Overall Maximum

DeviationTianjin Year Hebei Year Shandong Year Liaoning Year

LH, HSL, LHSL 0.166 2021 0.355 2016 0.052 2011 0.250 2011 0.355
LSH, LHS, LHSL 0.397 2006 0.186 2006 0.035 2016 0.162 2021 0.397

HS, HL, LHSL 0.318 2006 0.286 2006 0.069 2006 0.396 2021 0.396
HSL, HDL, LHD 0.517 2006 0.479 2006 0.077 2021 0.089 2006 0.517
HSL, LHSL, SD 0.340 2006 0.583 2021 0.098 2021 0.330 2011 0.583
HS, HSL, HDL 0.318 2006 0.278 2006 0.095 2011 0.344 2021 0.344
SH, LHSL, SD 0.170 2021 0.247 2021 0.057 2011 0.297 2011 0.297

SH, LSH, HLHS 0.236 2016 0.398 2021 0.236 2011 0.198 2021 0.398
HS, HDL, LHS 0.228 2016 0.362 2006 0.112 2016 0.471 2021 0.471

HSL, LDS, LHSL 0.233 2006 1.286 2021 0.078 2016 0.632 2016 1.286
HL, LHLH, SHD 0.199 2021 0.137 2006 0.165 2016 0.009 2016 0.199
HD, LSH, HLHD 0.179 2016 0.247 2006 0.179 2016 0.025 2011 0.247
HLH, DHLH, DD 0.275 2006 0.175 2006 0.212 2016 0.027 2011 0.275

DH, HDS, LD 0.285 2016 0.234 2016 0.202 2016 0.027 2011 0.285
HL, LD, DHLH 0.297 2016 0.159 2021 0.185 2016 0.028 2021 0.297
DLD, SHL, DHL 0.141 2006 0.122 2016 0.211 2016 0.031 2021 0.211

DSD, LHS, HLHD 0.421 2006 0.444 2021 0.166 2016 0.032 2021 0.444
HH, LSH, LD 0.142 2016 0.253 2006 0.166 2006 0.034 2011 0.253

HL, SHLH, SHLH 0.173 2016 0.202 2006 0.371 2016 0.034 2006 0.371
HSL, HSL, DHLH 0.232 2016 0.185 2006 0.243 2016 0.035 2006 0.243

Table 10. The Accurate Predictive Capability Indicator (APCI) for predictions of combined influencing
factors from three distinct feature categories.

Prediction Accuracy Threshold Tianjin Hebei Shandong Liaoning Comprehensive Value

80% 21.34% 19.8% 39.40% 37.3% 28.95%
85% 7.7% 6.33% 9.9% 20.8% 5.81%
90% 1.86% 0.97% 1.32% 7.06% 3.42%

The data presented in Table 9 demonstrate that, by incorporating combinations of
influencing factors from diverse correlation feature categories, the accuracy of CDE pre-
dictions has been significantly enhanced across various provinces and cities, compared to
the results shown in Tables 5 and 7. Notably, certain feature combinations achieve high
prediction accuracy specifically for Tianjin; however, the overall maximum deviation may
still be considerable. This observation is also applicable to combinations that demonstrate
effectiveness in other provinces and cities, reinforcing the notion that key influencing
factors for CDE predictions differ among various administrative regions. Therefore, a
comprehensive analysis tailored to the specific correlation features of influencing factors
within each province and city is essential.

Table 10 indicates that at a 90% prediction accuracy threshold, all four provinces and
cities exhibit non-zero APCI values, suggesting unique combinations of correlation feature
categories that can achieve notably high accuracy in CDE predictions. The relatively modest
APCI values reported, both individually and collectively, can be attributed to the extensive
range of potential category combinations inherent within each provincial or city context.

In summary, the integration of multiple influencing factors from several distinct cor-
relation feature categories significantly enhances the accuracy of CDE predictions. This
suggests that combining various factor categories provides a more comprehensive under-
standing of the multifaceted drivers behind CDE. Consequently, this approach mitigates
the model’s sensitivity to hyperparameters, resulting in improved prediction accuracy.
However, it is essential to note that not all combinations achieve optimal prediction ac-
curacy; therefore, the analysis of effective combinations must be specifically tailored to
different provinces and cities, along with varying categories of influencing factors.
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6. Discussion

This study employed a comprehensive dynamic multi-factor correlation analysis
methodology to investigate CDE in China’s Bohai Rim region. We computed and analyzed
the dynamic correlation curves between CDE and various influencing factors, thereby
elucidating their intricate interrelationships and dynamic characteristics. To quantify these
features, we implemented the CIIF and the APCI indices. Among these indicators, the CIIF
serves as a valuable tool for policymakers to assess the applicability of successful emission
reduction strategies across various regions. Nevertheless, despite its advantages, the
proposed method does present certain limitations. A constructive discussion is provided to
address these shortcomings and improve future research methodologies.

(1) Policy Implications and Regional Variations: The determinants influencing the vari-
ations in relevant characteristics among provinces and cities are intricate and multifaceted,
encompassing factors that may have been elaborated upon in the literature review or remain
unaddressed in this paper. Despite the geographical proximity of Tianjin, Hebei, Shandong,
and Liaoning within the Bohai Rim region, the correlation features identified in this anal-
ysis exhibit significant disparities, as illustrated in Table 4 and Figure 2. In Table 4, with
the exception of “Government Public Expenditure” and “Foreign Direct Investment”, the
dynamic correlations between the other factors and CDE initiate with a high “H” across all
provinces. This phenomenon is partially attributable to early regional influences; however,
as reforms deepen and economic globalization progresses, diversifications in correlation
features subsequently become inevitable. Taking the factor “Economic Growth (GDP)” as
an example, the reasons for the differences in its correlation with CDE among different
provinces are as follows: the negative correlation observed in Hebei and Tianjin is mainly
attributed to the optimization and improvement of industrial structures, policy guidance,
and controls on CDE. Additionally, coordinated governance in the Beijing–Tianjin–Hebei
area has also played a significant role. In Shandong, the strong correlation is primarily
due to its heavy industrial structure, limited variety in its energy consumption mix, and
expanding economic scale. The weak correlation in Liaoning Province is mainly due to its
heavy industrial structure, reliance on coal-based energy, rapid economic development,
and unresolved issues related to pollution emissions. It is therefore recommended that
future research efforts undertake a more comprehensive survey encompassing a greater
number of provinces and cities nationwide. In doing so, more suitable indicators should
be established, referencing the CIIF, to accurately reflect both the synergies and hetero-
geneities among CDE drivers. Furthermore, the use of clustering methodologies should be
considered a viable strategy, and the development of prediction models tailored to specific
regions and industrial sectors could significantly enhance their practical applicability.

(2) Multi-Factor Consideration in Policy Formulation: Our findings indicate that pre-
diction models based on multiple influencing factors with diverse correlation features
outperform those based on a single factor. This highlights the complexity of CDE dynamics
and suggests that policymakers should consider the combined effects of multiple factors
when devising emission reduction strategies. The CIIF presented in this study provides
a quantitative metric to identify factors that exhibit consistent influence across regions,
facilitating the formulation of targeted policies. When devising emission reduction policies,
governments and policymakers can leverage the CIIF to prioritize coordinated actions on
consistently influential driving factors, thus improving the efficacy of policy execution.
Furthermore, insights from the CIIF regarding regional variations in driving factors can
optimize resource allocation, enabling a more precise and effective distribution of resources
for emission reduction measures. Specifically, Table 4 presents the influencing factors and
their correlation characteristics derived from panel data. Tianjin and Hebei both exhibit a
downward trend in these characteristics, indicating a need to strengthen the implemen-
tation of existing CDE-related policies. Conversely, Shandong demonstrates an upward
trend, suggesting that enhancement of corresponding CDE control measures is necessary.
In Liaoning, industrial growth, urbanization rate, and investment in pollution control are
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strongly correlated with CDE, thereby indicating the need for targeted CDE management
strategies that account for the varying stages of industrialization and urbanization.

(3) Implications for Neural Network-Based Prediction Models: This paper establishes
the APCI index by evaluating the prediction accuracy of various influencing factors and
their combinations through an LSTM neural network. The selection of the LSTM archi-
tecture is due to its remarkable memory capabilities, proficiency in managing long-term
dependencies within sequential data, and adaptability to dynamic changes in influencing
factors. Simultaneously, the limitations of LSTM neural networks have also been recognized:
firstly, the model’s complexity, characterized by a relatively intricate structure containing a
substantial number of parameters, leading to a time-consuming training process; secondly,
the risk of overfitting, which occurs when the training data volume is insufficient; and
thirdly, parameter sensitivity, as the model’s performance is notably sensitive to the choice
of hyperparameters. To mitigate these limitations, corresponding measures were adopted
during the research. For instance, cross-validation was employed to prevent overfitting,
and grid search was utilized to optimize the hyperparameters. To further enhance the pre-
diction performance, future research could integrate this model with other neural network
architectures, such as Gated Recurrent Units (GRUs), Convolutional Neural Networks
(CNNs), Feedforward Neural Networks (FFNNs), and Transformers, thereby improving
both the prediction accuracy and stability. Although different neural network models
can significantly influence CDE predictions and the APCI, whether these impacts lead
to transformative conclusions depends on several factors, such as model characteristics,
task complexity, data quality and attributes, as well as the degree of parameter tuning
and optimization. In practical applications, it is advisable to empirically compare the
performance of diverse models through cross-validation while developing tailored APCIs
for each specific model.

(4) Insights into Factor Interplay and Prediction Reliability: This study elucidates
the intricate interplay of factors influencing CDE and their associated processes. It pro-
vides valuable insights into the accuracy and reliability of CDE predictions across various
application scenarios, which have profound implications for environmental protection,
policy formulation, and resource management. Given the multidimensional nature of
these influencing factors, the correlation features between them and CDE are classified in
practical applications. Next, an APCI index is constructed to analyze the predictive ability
of different categories of influencing factors on CDE. Moreover, given the complexity and
multidimensionality of the CDE impact mechanism, selecting an appropriate combination
of influencing factors is crucial. Ultimately, by acknowledging regional variations in key
influencing factors, strategies for mutual learning and transfer learning across prediction
models in different provinces and cities can be formulated using the CIIF, enhancing both
the learning efficiency and prediction accuracy.

(5) Temporal Trend Analysis and Future Enhancements: The current dynamic corre-
lation analysis model established between influencing factors and CDE primarily reflects
instances in which variable values traverse multiple threshold regions; nevertheless, it
does not incorporate rigorous temporal trend information. Future research can implement
several enhancements. Firstly, additional dynamic feature indicators should be integrated
alongside time series analysis techniques to effectively capture long-term trends, short-
term fluctuations, and random variations within the data sequences. This approach will
provide a more comprehensive understanding of the temporal dynamics inherent in the
data. Secondly, by refining the data resolution over time, for example, by changing the data
collection frequency from annual to quarterly or monthly intervals, this will enable a more
detailed observation of how correlations evolve over time, thereby allowing for a more
precise analysis of temporal variations.

Collectively, these improvements will further enhance both the precision of the dy-
namic correlation analysis and the overall predictive capabilities of the model, particularly
in capturing long-term trends and short-term fluctuations in the data.
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7. Conclusions

Based on panel data from 1999 to 2021, this study conducted an in-depth analysis of
the dynamic correlations between provincial CDE and various influencing factors in the
Bohai Rim region of China, including Tianjin, Hebei, Shandong, and Liaoning provinces
and cities. The main findings and their implications are summarized as follows:

(1) Limitations of Single Influencing Factor: The study reveals that CDE prediction
models relying solely on individual influencing factors often fail to achieve high accuracy.
This underscores the complexity of CDE dynamics, where multiple factors interact to drive
CDE. Therefore, single-factor models cannot fully capture the complex changes in CDE.

(2) Advantages and Limitations of Combining Similar Factors: While combining mul-
tiple factors with similar correlation features can slightly improve the prediction accuracy,
this approach remains limited in fully capturing the breadth of CDE variations. In con-
trast, integrating factors with diverse correlation features offers a more comprehensive
solution. This highlights the need for a more diverse set of influencing factors to improve
the predictive performance.

(3) Benefits of Integrating Multiple Feature Categories: Integrating multiple types of
influencing factors with different correlation features significantly enhances the accuracy of
CDE predictions. This approach more comprehensively captures the multifaceted driving
mechanisms behind CDE, thus improving the robustness and reliability of the predictions.

Implications for Future Research and Policy:
(1) Methodological Innovation: The dynamic multi-factor correlation analysis method

introduced in this study provides a novel perspective and tool for advancing future research
on CDE prediction. It enhances the understanding of the intricate mechanisms underlying
CDE dynamics and offers a pathway for refining predictive models.

(2) Data Integration and Advanced Techniques: As data accessibility and technological
advancements continue to evolve, future research should aim to integrate a broader spec-
trum of dynamic feature indicators and sophisticated time series analysis methodologies.
This will further refine the accuracy and reliability of CDE predictions, enabling more
informed decision making.

(3) Policy Implications: The research findings emphasize the importance of considering
the cumulative impacts of multiple factors when developing emission reduction strategies.
Policymakers should utilize the Consistency Index of Influencing Factors (CIIF) as a quanti-
tative tool to pinpoint factors that consistently impact CDE across regions, thereby enabling
the development of targeted and coordinated emission reduction strategies.

In summary, this study not only uncovers the complexity of factors influencing CDE
but also provides robust support for optimizing CDE prediction models, scientifically
formulating emission reduction policies, refining energy structures, adjusting industrial
frameworks, and nurturing technological innovations. The insights gained from this
research hold significant potential for guiding future environmental policy and sustainable
development initiatives.
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