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Abstract: In heavy oil thermal recovery processes, higher pressure usually leads to low dryness and
expansion difficulty for the injected steam in thermal recovery processes, which will result in lower oil
recovery and more carbon emissions. This paper proposed a new CO2-inducing method to accelerate
the steam chamber expansion, based on a core flooding experiment and numerical simulation. First,
the CO2 showed significant viscosity reduction at high pressure in the PVT test. In the core flooding
experiment, the CO2 provided strong flow conductivity in porous media for the thermal flooding,
as the CO2 pre-injection restrained the steam condensation. Using the CO2-inducing method, CO2

pre-injection before steam built a fast flow channel in a relatively higher permeability layer and
reduced the thermal injection pressure by about 1.0~2.4 MPa. As a result, the steam overlap around
the injection wells became slower and the gravity drainage process was able to heat and displace the
heavy oil above the channel. Furthermore, the CO2 gas trapped at the top reduced heat loss by about
12.4%. The field numerical simulation showed that this new method improved thermal recovery by
7.5% and reduced CO2 emissions by about 18 million kg/unit for the whole process. This method
changes the conventional thermal expansion direction by CO2 inducing effect and fundamentally
reduces heat loss, which provides significant advantages in low-carbon EOR.

Keywords: heavy oil; CO2 inducing; thermal chamber; gravity drainage

1. Introduction
1.1. Thermal Chamber Expansion in Heavy-Oil Reservoirs

Global heavy oil resources have reached 1.4 trillion tons, with an annual production of
653 million tons. Proven heavy oil reserves are 815 billion tons, accounting for about 70%
of the world’s remaining proven oil reserves, which are important for global energy supply.
Due to the high oil viscosity and thermal sensitivity, thermal oil recovery by steam, such as
via steam huff and puff, steam flooding, and steam-assisted gravity drainage (SAGD), is
the most effective way to improve oil production and recovery [1,2].

The SAGD method was first promoted by Butler in the 1980s and industrialized in
Canada from the 1990s [3,4] in areas such as Christina Lake and the Mackay River oilfields.
As shown in Figure 1, SAGD uses two horizontal wells drilled in parallel in a lower position
of the reservoir; the appropriate distance between the two wells is about 5 m [5]. Oil will be
produced from the well located in the lower area of the oilfield, and the parallel well above
that point is used for steam injection, through which a steam chamber is generated [6,7].
Using this combination, heat diffuses upwards from the upper well to the reservoir. As the
reservoir temperature is increased, heat is transferred to augment the oil temperature and
consequently decrease its viscosity. As a result, oil will flow down to the production well
by gravity. As the steam chamber expands in the reservoir, the oil above the dual horizontal
wells will be produced and oil recovery will reach up to 60~70% at ideal conditions.
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Figure 1. Dual horizontal well SAGD.

For heavy oil reservoirs buried in the range of 200 to 600 m, the oil normally exists as
oil sand or bitumen such as that in the Long Lake oilfield in Canada [8]. The oil viscosity is
over 10,000 mPa·s and is usually developed by SAGD.

If the heavy oil reservoirs are buried over 600 m, the steam huff and puff method is
first conducted using vertical wells. Assisted with elastic energy, the steam mass injected for
unit oil production (steam–oil ratio) in this period is about 0.5~1 and the reservoir pressure
decreases to 2~5 MPa. However, the heating radius cannot exceed 70 m due to limited
steam injection and heat loss in the formation. As the reservoir pressure decreases, the
reservoir pressure becomes much lower and the steam dryness is increased to 0.7~0.8. Then,
steam flooding or SAGD will take over to heat the remaining oil far from the wells and oil
recovery will be improved by 20~40% [9–11]. In order to take full advantage of the original
vertical wells, the VH-SAGD method (vertical and horizontal well combinational SAGD)
was promoted to reduce the investment cost [12,13]. With the rapid increase in the heating
area, heat loss is much greater than that in steam huff and puff; the cost is much higher for
the amount of steam per unit of oil production. The steam–oil ratio in steam flooding thus
decreases to 0.1–0.3 for SAGD/VH-SAGD [14–16]. Considering the formation oil viscosity,
steam flooding is commonly used for oil viscosities below 10,000 cp and SAGD/VH-SAGD
for oil viscosities over 10,000 cp. This has proved to be a very efficient method in many
heavy oil reservoirs buried below 900 m in Canada and China [17,18].

When heavy oil reservoirs are buried by over 1000 m, the reservoir pressure after
steam huff and puff maintains a high level, of 8~9 MPa, due to the high initial pressure and
edge water. This leads to a high injection pressure, low dryness, and expansion difficulties
for the injected steam; therefore, steam flooding, SAGD, and VH-SAGD generally cannot
be adopted in deep heavy oil reservoirs.

1.2. Carbon Emission in Thermal Recovery

For reservoirs with lower thickness and higher viscosity, steam overlap can lead to
higher heat loss and a lower oil–steam ratio (OSR). Steam generators are commonly used
for steam generation and use crude oil or natural gas as fuel. Compared to conventional
water-flooding development reservoirs, the generators emit significant amounts of carbon
dioxide and are more costly. According to statistical results, thermal production, in regions
such as North America and China, is greater than 130 kg/bbl of carbon [19–21], which
is more than twice the level of light- and medium-crude oil production. Furthermore,
SAGD, VH-SAGD and steam flooding are 40 kg/bbl higher [22,23]. Therefore, with the
development of heavy oil thermal recovery in the middle and late stages, thermal recovery
development costs and carbon emissions will continue to rise.

In the last 15 years, some heavy oilfields have tried to use the non-condensate gas-
assisted thermal recovery method to improve oil production rates; this has proved to
be an efficient way to enhance the steam–oil ratio and reduce heat loss [24–26]. Carbon
dioxide and nitrogen are frequently used as a non-condensate gas. CO2 showed significant
reduction effect of oil viscosity and thermal injection at the beginning of the steam huff
and puff method [27–29], for example, in Z411 extra-heavy oilfield. While nitrogen was
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injected to reduce heat loss to the cap rock during the middle periods of VH-SAGD or
SAGD [30–32], for example, in the Du84 extra-heavy oilfield, the steam–oil ratio was
increased by 0.4~0.6. Nevertheless, the high flow capacity of non-condensate gas led to
thermal and fluid channeling, for example, in the NB35-2 heavy oil field [33,34]. However,
non-condensate gas has never been used to induce steam flow and thermal expansion in
these studies and applications.

1.3. Method Innovation Research Directiom

The economy and emission problems have led to a 17% decrease in international
heavy oil trade since 2016. At the same time, international oil demand and production have
continued to rise over the past three years. The continuous decline in heavy oil production
has further increased pressure on international energy supply and demand. Therefore,
reducing carbon emissions and the cost of heavy oil thermal flooding to increase heavy oil
production and recovery will have an important impact on improving the international
crude oil supply and demand balance.

Sedimentary facies of most heavy oil reservoirs are fluvial or have a fluvial delta face
of continental deposits, which have a positive rhythm with a high-permeability layer in
the middle of the longitudinal section [22,34]. However, steam overlap is a main function
during the SAGD/VH-SAGD process. If a rapid thermal flow channel can first be built in
the higher-permeability layer between the injection and production wells, it could slow
down the steam overlap effect and heat loss to the cap rock.

Therefore, this study evaluated the viscosity reduction and flow conductivity of CO2 in
multi-thermal flow with a core-scale experiment that showed a significant effect on thermal
injection pressure and flow resistance. Thus, a CO2-inducing VH-SAGD method was
proposed to build a horizontal rapid flow channel that can delay the steam overlap around
the injection well. The steam-assisted gravity drainage works along the whole area between
the injection and production wells, resulting in reduced heat loss and carbon emissions.
This method offers an economic new method for deep heavy oil thermal recovery.

2. Experimental
2.1. Fluid Property Test

Considering the high pressure of the reservoir, high temperature during the thermal
recovery process, the steam phase change, and carbon dioxide dissolution in oil, the flow
resistance of different thermal fluids was first evaluated by a core flooding experiment.

The S2 heavy oil reservoir in Shengli Oilfield of Sinope China (Dongying, China),
which is buried under 1200 m and has strong edge water, was selected for the research
case. Using a stock tank oil sample taken from the production well, the carbon dioxide
dissolution experiment was conducted at different pressures and temperatures with PVT
instruments (manufactured by Huabao Ltd., Yangzhou, China). Then, the bubble-point
pressure of the CO2 and the oil viscosity were measured, as shown in Figures 2 and 3.
For ordinary heavy oil reservoirs with pressures of 2~5 MPa, the CO2 solution (GOR) is
about 10~37 sm3/sm3 at 60 ◦C, and the oil viscosity can be reduced by 59~85%. With the
reservoir pressure increased to 8~9 MPa, the GOR can be improved to 55~60 sm3/sm3 and
the viscosity reduction would reach 70~95%.

On the other hand, the temperature has an obviously negative effect on the GOR due
to the heating precipitation. If the steam heating zone temperature increases to 150 ◦C
at 2~5 MPa, most CO2 would diffuse from the oil phase to the gas phase and the GOR
would decrease to 1~5 sm3/sm3. Then, the viscosity reduction and carbon storage would
be significantly reduced. For a deep heavy oil reservoir with a higher pressure of 8~9 MPa,
the CO2 GOR would maintain at 25~29 sm3/sm3 at 150 ◦C. The CO2 still has a considerable
viscosity reduction and carbon storage effect in these conditions; therefore, CO2-assisted
thermal recovery development is more suitable for deep heavy oil.
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2.2. Thermal Flooding Experiment

The fluid distribution and phase have a great influence on flow resistance, while the
gas phase and flooded channel usually leads to steam channeling. In order to evaluate
the flow capacity of different fluids at different water saturation heterogeneities after
steam huff and puff, the flow resistance for different thermal fluids was tested by a core
flooding experiment.

The multi-thermal fluid flow experimental diagram is shown in Figure 4. First, the
sand-pack with different water saturations (Sw) was manufactured. The porosity of the
sand-pack was about 35% and the bulk density was about 1.7 g/cm3; therefore, the pore
volume per unit mass of sand could be calculated. Based on the water saturation and pore
volume, the volume of water and oil was calculated. According to the design quantity, the
dry sands and water were mixed and fully stirred. Then, the heavy oil was added into
the wet sand and fully stirred again. Finally, the mixture was filled into the sand-pack
tube and compressed so that the sand-pack with different water saturations (Sw) could
be manufactured.

An oven was used to maintain the reservoir temperature (50 ◦C) and pressure (9 MPa)
of the sand-pack. Second, the liquid CO2 and purified water were injected into the
steam generator over 9 MPa. The flow rate of CO2 and water was controlled precisely at
0.00~5.00 mL/min for different thermal fluid flow experiments by an ISCO A260D (man-
ufactured by Teledyne, Lincoln NE, USA) micro pump. Then, the CO2 and water were
heated to the temperature of the multi-thermal fluid of the gas phase with 100% dryness.
Third, as the multi-thermal fluid flowed through the sand-pack, the flow pressure gradient
was measured with a differential pressure sensor between the inlet and outlet.
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2.3. CO2-Inducing Effect

Using the fluid flow experiment at the core scale, the dynamic changes of flow resis-
tance for steam are shown in Figure 5. Considering that the reservoir temperature will
recover to the initial reservoir temperature at the end of the steam huff and puff application,
the sand-pack was placed at the initial reservoir temperature at high pressure. Thus, the oil
viscosity was about 9871 cp, which meant that it was difficult for the oil to flow through a
porous medium. At the beginning of the thermal fluid injection at connate water saturation
(Sw = 0.25), the heat had not been injected into the core and it was difficult for the oil to flow
through the sand-pack. The steam at the inlet transformed to the liquid phase (hot water)
and the pressure gradient increased slowly. Between 40~80 min, the pressure gradient
began to grow swiftly and reached a maximum value of 5.5 MPa/m. Then, the hot water
flowed into the sand-pack at high pressure. After the peak value was reached, the injected
steam or condensate water heated the oil in the porous media and the pressure gradient
dramatically declined to 0.2 MPa/m due to the reduction in oil viscosity.
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If the water saturation increases to 0.4~0.5, the water phase in the porous media of
the sand-pack would have an initial flow capacity at reservoir temperature. Then, the
multi-thermal fluid could flow through those pores at a lower pressure. Therefore, the
maximum pressure gradient would decrease to 0.51~1.95 MPa/m, and the stable flow
pressure gradient after the peak value would be 0.01~0.03 MPa/m. Therefore, formation
produced by steam huff and puff would have higher water saturation and flow ability for
the steam.

Furthermore, the flow resistance for different thermal fluids was evaluated and is
shown in Figure 6. For single CO2 gas injection, the oil dissolved at reservoir temperature
and reduced the oil viscosity by about 65% at the beginning. Then, the maximum pressure
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gradient would be1.7 MPa/m lower than steam in connate water saturation conditions
(Sw = 0.25). Since the CO2 gas phase has greater flow mobility than liquid and the increase
in water saturation (Sw = 0.4) would offer initial flow capacity, the CO2 max pressure
gradient would decrease to 0.45 MPa/m, which is 70% lower than single steam.
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Figure 6. Maximum pressure gradient of multi-thermal fluid flow at different water saturations.

If we injected steam after the CO2 slug, the steam would flow through the CO2-
induced channel and heat the oil in the sand-pack. The maximum pressure gradient could
be further reduced to 0.21 MPa/m. Therefore, the CO2 pre-injection can induce a rapid flow
channel in the porous media for the steam, which can reduce the steam injection pressure
and improve the dryness significantly.

3. Numerical Simulation
3.1. Reservior Characters

The sand layer group of S2 consists of five layers with edge water; the average
thickness and physical properties for single layers are shown in Table 1. The sand layer
group is a compound rhythm with higher permeability in the middle layer 3#, and there
is no obvious and continuous interlayer. After years of steam huff and puff, the average
oil saturation has been reduced from 0.68 to 0.48~0.58; however, the average pressure
decreased slowly from 11 Mpa to 9 MPa because of edge water incursion. Due to the steam
overlap, the average oil saturation of top layer 1# is 0.49, especially around the production
well. Under the combined influence of higher permeability and edge water incursion, the
average oil saturation of middle layer 3# is 0.48, according to the well-logging interpretation
results, which was the lowest in the sand layer group. Considering the water saturation
and permeability, the 3# layers could form a rapid flow channel for multi-thermal fluid
flow with CO2 and steam.

Table 1. Average thickness and physical properties for single layers of S2.

Layer 1# 2# 3# 4# 5#

Average Thickness, m 13 12 9 6 7

Average Porosity 0.337 0.337 0.355 0.342 0.334

Average permeability, mD 3453 3403 4560 3604 2416

Average Oil Saturation 0.49 0.52 0.48 0.58 0.57

3.2. CO2-Induced VH-SAGD Method

At a high reservoir pressure, conventional SAGD using a double horizontal well
cannot be adopted since the steam would transform to hot water and the steam chamber
expansion rate is too low. In the meantime, the original vertical well for steam huff and
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puff could not be used for the SAGD process and drilling new horizontal wells would
significantly increase the investment cost. Using the original vertical injection well and a
new horizontal production well, VH-SAGD could reduce the investment cost and improve
the steam flooding effect at high pressure.

However, conventional VH-SAGD at high reservoir pressures could result in a higher
injection pressure and a lower steam injection rate, which would aggravate the steam
overlap around the injection well and cause huge heat (over 40%) losses to the cap rock.
As shown in Figure 7, gas flow to the top is the main cause of steam overlap and heat loss.
The vertical flow rate must be controlled and the horizontal flow rate must be improved
to reduce steam overlap. As CO2 can reduce oil viscosity and build a rapid flow channel,
it can be injected before the steam to reduce the thermal injection pressure. As shown in
Figure 8, the injected steam after CO2 flows along the rapid flow channel and the heat
is then transported from the injection well to the production well. The steam channel is
generated in the middle layer 3# of the formation; afterwards, the steam heats the oil layer
over the steam channel rather than the cap rock to reduce heat loss.
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3.3. CO2-Induced VH-SAGD Model

In order to evaluate the VH-SAGD steam chamber expansion and heat utilization
ratio, a typical well group model was built for the S2 reservoir using CMG-STARS software
(version 2020.10). The horizontal and vertical well groups are shown in Figure 9 and the
injection and production parameters are shown in Tables 1 and 2. To make full use of
the original vertical well, the new horizontal production wells were placed between the
vertical well lines; therefore, the producer–injector spacing was set to 40 m. Considering
the CO2-inducing effect, the horizontal well segment and vertical well perforated interval
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were placed in middle layer 3#. For conventional VH-SAGD, the steam was injected in the
vertical well to build the heat connection and steam chamber. For CO2-induced VH-SAGD,
the CO2 was pre-injected at 5000 sm3/day for 5 days to build the fast flow channel. Then,
the steam was injected with a CO2 (500 sm3/day) slug. The multi-thermal fluid injection
maximum pressure was limited to 14 MPa to guarantee steam dryness; the production
minimum pressure was limited to 8 MPa to avoid edge water flooding.
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Table 2. Injection and production parameters design for VH-SAGD.

Parameter Value

Oil in place 135 × 106 m3

Initial reservoir average pressure 9 MPa

Horizontal well length 300 m

Injection–production well ratio 9:2

Single-well liquid production rate 300 m3/day

Producer–injector spacing 40 m

Single-well steam injection rate
(water equivalent) ≤350 m3/day

Single-well CO2 injection rate 500~5000 sm3/day

Bottom-hole pressure of production well
(water equivalent) ≥9 MPa

Bottom-hole pressure of injection well
(water equivalent) ≤14 MPa

4. Results and Discussion
4.1. Steam Chamber Expansion

Due to the high permeability and water saturation of 3#, the CO2 has a strong flow
capacity, according to the abovementioned experiment. As shown in Figure 10, the pre-
injected CO2 flows to the production horizontal well rapidly through middle layer 3#, and
the CO2 gas saturation in layer 3# can reach 0.01~0.03 in 5 days.

In order to restrain the edge water incursion from the left side, the minimum horizontal
bottom-hole pressure (BHP) was controlled at 9 MPa. In Figure 10, the CO2 gas was injected
at a relatively high pressure (BHP 13~14 MPa in Figure 11) and flow rate to build the rapid
flow channel in about 5 days. The total volume of CO2 injected was about 2500 m3 at
reservoir conditions. This had no influence on the edge water; therefore, the CO2 gas could
flow uniformly from the vertical well to the horizontal wells on both sides.
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As a result of the thermal fluid flow capacity difference, the bottom-hole pressure
of the injectors had obvious differences. For conventional VH-SAGD, the steam injection
pressure would slowly decrease from 14 MPa to11.3 MPa (shown in Figure 11), since the
initial water saturation was higher than the connate water saturation. However, the CO2
injection pressure directly decreased to 8.9 MPa in 5 days, which was 2.4 MPa lower than
that of steam. Then, the multi-thermal fluid injection pressure of the steam and CO2 slowly
increased to 10.3 MPa because condensate hot water has a higher flow resistance than the
gas phase. It can be seen that the CO2 reduces the injection pressure by about 1.0~2.4 MPa
in the primary stage, which enhances the steam dryness and injected heat quantity. With the
continuous injection of thermal fluid, the temperature of the thermal swept area increases
rapidly and the flow resistance in the reservoir decreases. Therefore, the injection pressure
values of the different VH-SAGD methods would become closer after 60~80 days.

Reservoir pressure is the key factor for steam chamber expansion; therefore, steam
flooding, SAGD and VH-SAGD are normally conducted at pressures below 5 MPa. If
conventional VH-SAGD was carried out at a higher pressure over 9 MPa, the steam
chamber volume would be compressed, as shown in Figure 12a. The steam overlap at
the injection well results in strong heat transport in a vertical direction, and significant
amounts of heat would be lost from the top layer 1# to the cap rock. The high-temperature
area (≥250 ◦C) was only 10 m long when the hot water reached the horizontal production
well after 240 days, as shown in the red cell in Figure 12a. The hot water flowed in most
areas; however, the heat release by liquefaction cannot heat most areas in the formation.

In contrast, the CO2-inducing effect enhances the horizontal flow velocity and reduces
the steam partial pressure; thus, the steam can travel a greater distance. It can be seen from
Figure 12b that the high-temperature area (≥250 ◦C) can reach up to 24 m after 180 days,
which is 12 m further and 60 days faster than conventional VH-SAGD. The steam chamber
preferentially expands in the horizontal direction in middle layer 3#; then, the steam will
heat layers 1# and 2# l rather than the cap rock. With the continues injection of thermal
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fluid, the condensed hot water and heated oil in layer 1# and 2# will flow down to layer 3#,
which is then produced by the horizontal production well.
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However, the thermal chamber tends to expand to the left side in both conditions. In
the continuous steam injection stage shown in Figure 12, the injection pressure decreased
to 9.5~11 MPa to ensure the dryness of the steam (as shown in Figure 11). The minimum
horizontal bottom-hole pressure (BHP) was still controlled at 9 MPa to restrain the edge
water incursion from the left side. Thus, the pressure difference between the injection
and production well decreased from 4~5 MPa to 0.5~1.5 MPa, and the steam and thermal
chamber expanded in both vertical and horizontal directions. The pressure of the thermal
chamber was still a little higher than the edge water (9 MPa) on the left and the right side
was a closed boundary; therefore, the middle thermal chamber (around Injection Well2)
expanded and was slightly offset to the right after several months.

4.2. Thermal Recovery Results

Based on the well group simulation of VH-SAGD, the thermal utilization factor, oil
production rate, and oil steam ratio were analyzed by year, as shown in Figures 13 and 14.
Due to the rapid expansion speed in the horizontal direction, the single-well oil production
rate in the first year was 9 m3/d (about 23.7%) higher than that of conventional VH-SAGD.
This advantage would last about five years, and then decrease to the same value with
conventional VH-SAGD after 7 years, when the steam chamber occupies the most areas in
the well group. Under the effect of steam overlap, the steam denudation process would
be slow in conventional VH-SAGD, and the oil production rate and decline rate would be
relatively lower.

After ten years of VH-SAGD, the oil recovery of CO2 diversion VH-SAGD would
increase to 57.2%, which is 7.5% higher than that of conventional VH-SAGD. Heat loss to
the cap rock would be reduced by 12.4%. More heat would be used for heating oil in the
formation for CO2-diversion VH-SAGD; the oil–steam ratio would be 0.036~0.043 higher.
Therefore, this method would save about 40 kg steam for one ton of heavy oil production,
which means that 2.6 sm3 of natural gas would be saved, with CO2 emissions reductions
of 5.4 kg. Considering the whole process of VH-SAGD in S2, CO2 emissions reductions
of about 0.8 million kg/well and 16 million kg/unit over ten years would be achieved by
reducing fuel consumption. At the same time, about 27% of CO2 gas would be stored in
the reservoir according to the numerical simulation, which means that the storage amount
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is about 1.13 million Nm3(about 2.25 million kg) for this unit. Therefore, the CO2 emissions
reductions would reach about 18 million kg/unit with the VH-SAGD process.
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Figure 13. Average oil rate and OSR of production well for different VH-SAGD methods.
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5. Conclusions

In this paper, a CO2-inducing VH-SAGD method was promoted and represented
for the first time. By transforming the disadvantage of CO2 channeling to the advantage
of the inducing effect, the conventional steam expansion direction was changed. Thus,
it restrained the steam overlap, accelerated the thermal chamber expansion speed and
enhanced the oil recovery. Moreover, it reduced the steam consumption and achieved
partial CO2 storage, which offers great advantages in low-carbon EOR. The main findings
are summed up as follows:

• The CO2 dissolution and viscosity reduction are relatively higher in deep heavy oil
reservoirs. Combined with high flow capacity, the CO2 pre-injection could reduce
the steam injection pressure by about 1.0~2.4 MPa, which can help to improve steam
dryness and heat injection;

• The CO2 pre-injection is able to build a horizontal rapid flow channel in a relatively
higher permeability layer, which can accelerate thermal expansion between injec-
tion and production wells. This can also slow down the steam overlap around the
injection well;
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• For deep buried heavy oil reservoirs, using the CO2-induced VH-SAGD method could
increase oil recovery by 7.5% and the oil–steam ratio by 0.036~0.043 over conventional
VH-SAGD;

• Considering steam boiler fuel savings and CO2 storage, the new method could reduce
CO2 emissions by 18 million kg/unit in ten years. It offers a more economical and
environmentally friendly method for heavy thermal recovery.
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