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Abstract: This work aimed to obtain a phytochemical extract from jambolan leaf using a hydroethano-
lic solvent and ultrasound-assisted extraction. For this purpose, an experimental design was applied
to analyze the effect of process variables related to temperature (30–60 ◦C), time (10–30 min), and
solvent to leaf ratio (5–15 mL g−1), on the extraction mass yield (EMY) and on the yield of phenolic
compounds (PCY). The effect of extractor solvent, AE (absolute ethanol), 75E (75% v·v−1 ethanol)
and 50E (50% v·v−1), on the chemical characterization of the extracts, antidiabetic and antimi-
crobial activity, and cell viability, were also evaluated. The application of the highest values of
process variables resulted in obtaining the maximum of the response variables (EMY = 9.94 wt% and
PCY = 13.01 mg GAE g−1 leaf). A higher content of phenolic compounds and flavonoids was ob-
tained with 50E, which is mainly composed of sinapic, vanillic, trans-caffeic, and quinic acids, which
were responsible for the greatest antioxidant potential, antibacterial activity (against Staphylococcus
aureus and Pseudomonas aeruginosa), and inhibition of α-amylase. On the other hand, the use of AE
allowed us to obtain extracts with higher concentrations of squalene, α-tocopherol, β-sitosterol, and
friedelin. From cell viability tests, the extracts are not considered toxic at the concentration tested
(100 µg mg−1).

Keywords: green solvent; ultrasound; extraction of active compounds; cytotoxicity; jambolan

1. Introduction

Jambolan (Syzygium cumini), despite not being commercially produced, its parts have
biological activity and can be used to obtain products with applications in the pharmaceuti-
cal and food industries. The leaves have a high phenolic content [1,2], with antidiabetic [3]
and anti-inflammatory [1] effects. Flavonoids such as catechin and quercentin and phenolic
acids such as gallic, caffeic, ferulic, ellagic, and p-coumaric were detected in the extract
obtained from jambolan leaves [4].

The extraction of compounds from jambolan leaves normally occurs through the use
of conventional techniques as performed by Veber et al. [5] and Misrahanum et al. [6], who
obtained the phenolic compounds and antioxidants by maceration. Kaneria and Chanda [7]
applied Soxhlet extraction; however, the focus of their study was the medicinal activity of
the extract and not the intensification of extraction. Maceration is considered simple and
suitable for protecting active compounds; however, it results in low extraction efficiency [8],
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and Soxhlet extraction requires large amounts of time and solvent, in addition to contact
with a high temperature and the possible degradation of the target compounds.

As an alternative to conventional techniques, ultrasound-assisted extraction (UAE)
has been used, presenting high extraction efficiency and selectivity in short periods of
time and mild temperatures, and requiring smaller volumes of solvent, as we can see in
the recent results of different authors, in addition to maintaining the preserved biological
activity of the extracts [9]. Mahindrakar and Rathod [10] reported the energy requirements
and process costs for this technology, which were lower than those required by processes
conducted in Soxhlet, such as sequential batch and stirred batch. This technology involves
the use of ultrasonic waves that induce the phenomenon of cavitation, which causes a
sequence of expansion and compression waves on the surface of the solid, causing the
increase, collapse, and implosion of air bubbles, releasing energy in the form of waves [11].

Additionally, collapsing cavitation bubbles can rupture or remove the stagnant layer
of solvent that forms around plant material and which acts as a diffusion barrier during
the extraction process [12]. Mahindrakar and Rathod [10] used this technique to obtain the
compounds present in Syzygium cumini leaves using water as a solvent. The study was
focused on the effect of extraction variables on the removal of phenolic compounds and
showed that the extract obtained had antioxidant, antidiabetic, and anticancer potential.

Hydroethanol extraction is commonly applied to obtain active compounds from
vegetable leaves, whereas these solvents are food grade and non-toxic. As the ethanol
concentration is reduced, the polarity index of the mixture increases, thereby increasing
the solvation power [13], as well as the boiling point, facilitating the removal of target
compounds [14]. While ethanol increases the solubility of the extracted species, the presence
of water breaks the hydrogen bond between the matrix and the analytes [15].

The objective of this study was to employ UAE in order to obtain phytochemical extract
from jambolan leaves using hydroethanolic solvent. For this purpose, the response surface
methodology was applied to verify the effect of process variables (temperature, extraction
time, and solvent to leaf ratio) on extraction mass yield (EMY) and phenolic compound
yield (PCY) and establish the ideal region that maximizes these responses. The influence
of the ethanol content in the extracting solvent was also evaluated on the composition
of the extracts, and the results obtained were subjected to principal component analysis.
Finally, the extracts were characterized in relation to phenolic compounds, flavonoids,
active compounds, and their antioxidant, antidiabetic, and antibacterial activities. The cell
viability of the extracts was also evaluated.

2. Materials and Methods
2.1. Raw Material

Syzigium cumini leaves obtained in Umuarama (Paraná, Brazil) (3◦47′55′′ S and
53◦18′ 48′′ W) were identified and deposited in an exhibition specimen in the herbarium of
the State University of Maringá (registration HUEM 40310). The leaves were sanitized, the
central stalk was removed and subsequently dried at 60 ◦C (Marconi, MA035, Piracicaba,
Brazil) for 4 h, reaching a humidity of 4.38 ± 1.33 wt%. After drying, the material was
crushed in a multiprocessor (Walita, RI7625, Itapevi, Brazil) and classified on Tyler-type
sieves (Bertel, series 1.0, Caieiras, Brazil) to obtain particles with an average diameter of
0.557 mm.

2.2. Solvents, Reagents, and Analytical Standards

Ethanol (Honeywell™, Charlotte, NC, USA, purity ≥ 99.9% purity) and ultrapure
water obtained from the Milli-Q purification system (Merck, Burlington, MA, USA) were
used as solvents. For the analyses, the following were used: Folin–Ciocalteu (Dynamic,
Indaiatuba, Brazil), gallic acid (Sigma-Aldrich St. Louis, MO, USA, 99.9%, purity), sodium
carbonate (Anidrol, Diadema, Brazil), methanol (Neon, Suzano, Brazil), aluminum chloride
(Dynamic), potassium acetate (Synth, Diadema, Brazil), distilled water, 2.2-diphenyl-1-
picrylhydrazyl (DPPH•) (Sigma-Aldrich), 2.4.6-Tris(2-Pyridyl)-S-Triazine (Sigma-Aldrich),
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trolox ((±)-6-hydroxy-2.5.7.8-tetramethylchromanwe-2-carboxylic acid (Sigma-Aldrich),
hydrochloric acid (Anidrol), sodium acetate (Synth), glacial acetic acid (Anidrol), fer-
ric chloride (Scientific Exodus, Sumaré, Brazil), methanol and formic acid suitable for
HPLC (Merck), and chromatographic standards of squalene, α-tocopherol, β-sitosterol and
friedelin (Sigma-Aldrich). To evaluate enzyme inhibition, α-glucosidase (Sigma-Aldrich),
p-Nitrophenyl α-D-glucopyranoside (Sigma-Aldrich), α-amylase (Sigma-Aldrich), and
soluble starch (Synth) were used.

In the antibacterial assays, the following were used: Brain Heart Infusion (BHI) broth
(Kasvi, São Jose dos Pinhais, Brazil), Tween 80 (Sigma-Aldrich), 2.3.5-triphenyl-tetrazolium
chloride (Sigma-Aldrich), and strains of Staphylococcus aureus (ATCC 12026), Pseudomonas
aeruginosa (ATCC 9027), and Escherichia coli (ATCC 25922). For cell viability analysis,
HaCaT cells, dulbecco’s modified eagle medium (DMEM, Life Technologies, Waltham,
MA, USA), fetal bovine serum (Gibco, São Paulo, Brazil), penicillin (Nova Biotecnolo-
gia, São Paulo, Brazil), streptomycin (Gibco), and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide, Sigma-Aldrich) were used.

2.3. Ultrasound-Assisted Extraction

Ultrasound-assisted extraction was conducted applying a Box–Behnken experimental
design with three variables (temperature—T, extraction time—ET and solvent to leaf ratio—
SLR) and levels (T—30, 45, and 60 ◦C; ET—10, 20, and 30 min; SLR—5, 10, and 15 mL g−1).

In each experiment, ~3 g of sample was transferred to Erlenmeyer (250 mL), with the
addition of hydroethanolic solvent (75% v·v−1 ethanol), which was positioned in the center
of the ultrasonic bath (Ultronique, Q 5.9/40 A/165 W, Eco-Sonics, Indaiatuba, Brazil). The
extraction and obtaining of the dry extract were conducted as reported by Raspe et al. [16]
and the extraction mass yield (EMY) was obtained considering the mass of dry extract
obtained and the initial mass of the leaf used.

To quantify the content of phenolic compounds, the Folin–Ciocalteau method [17] was
adopted from the solubilization of the extract in the extraction solvent. The absorbance was
determined in a spectrophotometer (Shimadzu, UV-1900, Japan, Tokyo) at 760 nm and to
quantify the content of phenolic compounds, a standard curve prepared with a standard
gallic acid solution was used. The phenolic compounds yield (PCY) was determined
from the content in the extract and the EMY; the result was expressed in mg equivalent to
GAE g−1 of leaf.

Analysis of variance (ANOVA) used Statistica® 8.0 software (StatSoft, Inc., Tulsa, OK,
USA) to evaluate the effects of independent variables (with 95% confidence interval) on
responses and experimental data were adjusted to a second-order polynomial model.

To determine the conditions that maximize the responses, in the considered experi-
mental range, the Derringer desirability function was applied, and the predictive capacity
of the polynomial model was evaluated by verification experiments conducted under this
condition. In the experimental condition of maximum extraction, solvents with the follow-
ing different compositions were tested: absolute ethanol (AE), 75:25 (v·v−1) ethanol:water
(75E), and 50:50 (v·v−1) ethanol:water (50E).

2.4. Extract Characterization

The phenolic compounds content was determined as described in Section 2.3. The
aluminum chloride colorimetric method [18] was used to determine the flavonoid content
from a standard curve prepared with quercetin.

The identification of active compounds was determined in a triple quadrupole mass
spectrometer (model XEVO TQD from Waters, Milford, MA, USA) equipped with an
electrospray ionization (ESI) source operating in negative ionization modes [2]. Data were
collected and processed with MassLynx software (version 4.1) and the Pubchem database
was used to identify the compounds.

For CG-FID analysis, the extracts were diluted in ethanol and kept at 60 ◦C for 15 min.
The solution was filtered and then injected (1 µL) into a NA-5 capillary column (Analytical,
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5% Phenyl–Methylsiloxane, 30 m × 0.25 mm id, 0.25 µm) at a split rate of 1:30. The
initial temperature of the column was 185 ◦C, which was subsequently increased by 6 ◦C
min−1 until reaching 300 ◦C, remaining at this temperature for 8 min. The injector and
detector temperatures were maintained at 280 ◦C and 300 ◦C, respectively. The compounds
were identified by comparing the retention time of the chromatographic standards and
quantification was carried out using calibration curves obtained by injecting solutions of
these at different concentrations.

To determine the antioxidant potential, the DPPH• free radicals and the iron reduction
method (FRAP) as described by Gu et al. [19] and Rufino et al. [20], respectively, were used.

The results were evaluated by ANOVA using Statistica® 8.0 software, followed by a
comparison of the means using the Tukey test (with 95% confidence interval).

2.5. Inhibition of Enzymes and Antibacterial Activity

Inhibition of α-glucosidase and α-amylase were performed according to Kim et al. [21]
(Equation (1)). In both analyses, the samples were diluted in 0.1 mol L−1 potassium
phosphate buffer (pH 6.8) to obtain a concentration of 0.25 mg mL−1. A solution without
the extract was used as a control, and a solution without the substrate was used as a blank.

Inhibition (%) = (1 − (Abs sample − Abs blank)/Abs control) × 100 (1)

The antibacterial activity was analyzed in independent duplicates by a serial microdi-
lution method in 96-well reservoir microplates [22]. The test was carried out using the
methodology applied by Pinc et al. [23].

2.6. Cell Viability Assay

To evaluate cell viability, HaCat cells were used. Samples of the extracts (100 µg mg−1)
were diluted in the culture medium and incubated in a shaker for 48 h (room temperature).
Then, 200 µL of this solution was added to each well. Subsequently, the culture medium
was removed, the MTT solution (5 mg mL−1) was added, and the presence of formazan
crystals was evaluated using a microplate reader (Agilent, Santa Clara, CA, USA) at 550 nm.
For the execution of the test, a negative control (without extract), a vehicle control (70%
alcoholic), and a positive control (with hydrogen peroxide) were performed, and the cell
viability was calculated according to Malich et al. [24].

3. Results and Discussion
3.1. Experimental Design: Establishment of Predictive Equations

Table 1 presents the results obtained from EMY and PCY in the experimental runs
proposed by the experimental design.

Table 1. Experimental conditions and results of extraction mass yield (EMY) and phenolic compounds
yield (PCY).

Run
Variable 1

EMY
(wt%)

PCY 2

(mg GAE g−1 Leaf)T ET SLR

1 −1 (30) −1 (10) 0 (10) 6.03 4.19 ± 0.07
2 1 (60) −1 (10) 0 (10) 8.04 7.27 ± 0.07
3 −1 (30) 1 (30) 0 (10) 7.39 5.64 ± 0.04
4 1 (60) 1 (30) 0 (10) 9.44 10.41 ± 0.12
5 −1 (30) 0 (20) −1 (5) 5.88 3.48 ± 0.15
6 1 (60) 0 (20) −1 (5) 7.52 7.22 ± 0.59
7 −1 (30) 0 (20) 1 (15) 8.25 6.25 ± 0.67
8 1 (60) 0 (20) 1 (15) 9.99 13.37 ± 0.16
9 0 (45) −1 (10) −1 (5) 4.68 4.12 ± 0.02
10 0 (45) 1 (30) −1 (5) 6.55 6.55 ± 0.05
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Table 1. Cont.

Run
Variable 1

EMY
(wt%)

PCY 2

(mg GAE g−1 Leaf)T ET SLR

11 0 (45) −1 (10) 1 (15) 8.58 5.17 ± 0.05
12 0 (45) 1 (30) 1 (15) 8.92 9.31 ± 0.08

13–16 3 0 (45) 0 (20) 0 (10) 8.53 ± 0.43 8.72 ± 0.47
1 T: temperature (◦C); ET: extraction time (min); SLR: solvent to leaf ratio (mL g−1). 2 GAE: gallic acid equivalent.
3 Mean of four repetitions.

Based on the results in Table 1, the analysis of variance (Table 2) was generated to
evaluate the effects of each variable (linear and quadratic) as well as their interactions in
the response variables.

Table 2. Analysis of variance of regression models for extraction mass yield (EMY) and phenolic
compound yield (PCY).

EMY PCY

Factor Sum of Squares Mean Square F p a Sum of Squares Mean Square F p a

(T) (L) 6.94 6.94 37.96 <0.01 45.19 45.19 207.70 <0.001
(T) (Q) 0.02 0.02 0.12 0.76 0.30 0.30 1.39 0.323
(ET) (L) 3.09 3.09 16.91 0.03 15.58 15.58 71.59 0.003
(ET) (Q) 2.58 2.58 14.10 0.03 10.77 10.77 49.52 0.006
(SLR) (L) 15.44 15.44 84.47 <0.01 21.24 21.24 97.62 0.002
(SLR) (Q) 1.52 1.52 8.34 0.06 2.98 2.98 13.71 0.034

TxET <0.01 <0.01 <0.01 0.96 0.71 0.71 3.28 0.168
TxSLR 0.003 <0.01 0.01 0.91 3.39 3.39 15.57 0.030

ETxSLR 0.57 0.58 3.16 0.17 0.73 0.73 3.35 0.164
Lack of fit 0.35 0.12 0.64 0.64 5.53 1.84 8.47 0.056
Pure Error 0.55 0.18 0.65 0.22

Total 31.06 107.07
a Statistical significance (p < 0.05); L: linear effect; and Q: quadratic effect.

From the data presented in Table 2, it can be observed that the linear terms of all
variables had an effect for EMY and PCY. Among the quadratic terms, the time variable
had an effect for both responses and the solvent to leaf ratio variable had an effect only for
PCY. The interaction between temperature and solvent to leaf ratio had an effect for PCY.
Based on the significant terms, the polynomial equations adjusted to the experimental data
were obtained as follows (Equations (2) and (3)):

EMY = 7.89 + 0.89 T + 0.59 ET + 1.33 SLR − 0.77 ET2 (2)

PCY = 8.66 + 2.38 T + 1.40 ET + 1.63 SLR − 1.64 ET2 − 0.86 SLR2+0.92 T × SLR (3)

The generated polynomial models are considered valid in relation to the experimental
data, considering the non-significant lack of fit p-value and the values obtained from
Fcalc (25.91) > Ftab (3.36) for EMY and Fcalc (13.61) > Ftab (3.37) for PCY. Additionally,
the generated diagnostic graphs (Supplementary Materials) confirm the adequacy of the
model and the validity of its predictions. Figures S1a and S2a show that the residual
values were less than 1, with no discrepancies between the values or unexpected errors.
In Figures S1b and S2b the agreement between the experimental and predicted data are
verified (R2 > 0.90).

3.2. Analysis of Effects

Figure 1 presents the three-dimensional graphs used to represent the effects of the
variables and their interactions according to Equations (2) and (3) (each graph is a function
of two variables, keeping the third at the central point).
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Figure 1. Response surface for extraction mass yield (EMY) and phenolic compound yield (PCY).
Correlative effects for EMY: (a) time and temperature, (b) solvent to leaf ratio and temperature, and
(c) solvent to leaf ratio and time. Correlative effects for PCY: (d) temperature and solvent to leaf ratio,
(e) time and solvent to leaf ratio, and (f) time and temperature.
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Figure 1a shows an increase in EMY with a progressive increase in T, while for ET, a
slight decrease in EMY can be observed to a certain extent. The interaction between T and
SLR in Figure 1b resulted in higher EMY. Figure 1c showed an increase in the dependent
variable in favor of an increase in ET and SLR. Figure 1d showed a greater influence of SLR
and T for PCY, obtaining up to >14 mg GAE g−1 leaf. The upward behavior of SLR and
ET resulted in obtaining higher PCY contents (Figure 1e). The application of high T values
favored PCY in a short ET period (Figure 1f).

3.2.1. Effect of Temperature

The observed effect of temperature is due to the reduction in viscosity and surface
tension between the solute and solvent with the application of higher values of this variable,
which consequently increases the penetration of the solvent into the matrix [25] and the
diffusion of molecules in the extraction medium [26]. In addition, it causes the softening of
plant tissues and accelerates the dissolution of active compounds from the leaves [27]. Jo
and Kim [28] observed an increase in the effective diffusion coefficient from 1.281 × 10−13

to 5.977 × 10−13 m2 s−1 as the extraction temperature was raised from 25 to 45 ◦C, indicating
that the external resistance to mass transfer is negligible due to the efficient mixing of solute
and solvent.

The increase in the solubility of phenolic compounds in the solvent with the increase
in extraction temperature and reduction in solvent viscosity contributes to the greater
recovery of these compounds from the plant matrix [29,30]. Additionally, the increase
in the diffusion coefficient and mass transfer coefficient with increasing temperature in
the experimental range close to the values applied in this study is reported. Sharma and
Dash [31] reported an increase in the values of the diffusion coefficient from 5.704 m2 s−1

to 10.515 m2 s−1 with an increase in temperature from 40 to 70 ◦C, respectively. Raja and
Dash [32] found that increasing the temperature from 30 to 60 ◦C increased the effective
diffusion coefficient from 2.988 ± 0.015 m2 s−1 to 4.841 ± 0.020 m2 s−1 and mass transfer
coefficient from 2.004 ± 0.015 m s−1 to 2.807 ± 0.012 m s−1. It is also evident from the
thermodynamics analysis that the phenolic extraction process is spontaneous and feasible
due to the negative values of the variation in Gibbs free energy, which become more
negative with the increasing of the temperature [33,34].

3.2.2. Effect of Time

The favoring of EMY linked to the increase in extraction time is due to the high mass
transfer rate caused by the driving force of effortless acoustic cavitation [35]. Frohlich
et al. [36] observed that clove leaf extract increased with longer application, which may
have occurred in two periods, consisting of a superficial wash in the first period, in which
the soluble compounds of the vegetative surface are extracted. The second period involves
the transfer of mass from the interior of the matrix to the solvent by the phenomenon of
diffusion [37].

Increasing the time from 10 to 30 min favored PCY. However, when observing the
results obtained at 30 ◦C and with SLR of 10 mL g−1, when increasing the time from
10 to 30 min, there was an increase of ~34% in PCY, which can be explained by the total
removal of the extract in the first washing step. Sahin and Shamli [38] identified that 20 to
40 min of ultrasound removal of the olive leaf extract increased the number of phenolic
compounds by ~17%, which is explained by the two washing stages, in which the first
involves the dissolution of soluble compounds on the surfaces of the samples, called
“washing”, followed by the diffusion of the solute into the solvent.

3.2.3. Effect of Solvent to Leaf Ratio (SLR)

The SLR variable had a greater influence on EMY, as can be seen in the comparison of
the results of runs 5 and 7, 6 and 8, 9 and 11, and 10 and 12 (Table 1). This effect is due to
the increase in the concentration gradient, which in turn increases the mass transfer rate
and consequently the extraction efficiency [39,40].
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The extraction of phenolic compounds was also favored by the addition of solvent to
the extraction medium. Wang et al. [41] reported that mass transfer from solid to solvent
depends on their proportion, as an increase in solvent resulted in a more effective rate.
In addition, a large amount of cavitation bubbles was formed when a greater proportion
of solvent was applied to the extraction in relation to the solid. Shewale and Rathod [33]
obtained diffusion coefficient values of 1.869 and 2.026 × 10−12 m2 s−1 by increasing the
solid to liquid ratio from 1:10 to 1:20, respectively.

3.3. Verification Experiments

From the predicted equations (Equations (2) and (3)), the conditions that maxi-
mize EMY (9.94 wt%) and PCY (13.01 mg GAE g−1 leaf) were determined, which pre-
sented a desirability factor of 1.00 and 0.955, respectively; T = 60 ◦C, ET = 30 min, and
SLR = 1:15 g mL−1. Verification experiments conducted under these conditions resulted in
9.99 ± 0.42 wt% and 13.67 ± 0.22 mg GAE g−1 leaf for EMY and PCY, respectively, which
do not differ from the predicted values (p > 0.05).

3.4. Effect of Extractor Solvent Composition
3.4.1. Extraction Mass Yield

The use of AE, 75E, and 50E as extraction solvents led to obtaining EMY of 4.33 ± 0.42 wt%,
9.99 ± 0.42 wt%, and 8.92 ± 0.25 wt%, respectively. These results are due to the increase
in solvent polarity and the ability to dissolve more compounds with the increase in water
content [42,43]. The dielectric constant also changes as the water concentration increases,
which increases the extraction of polar compounds [44]. Mokaizh et al. [45] reported that
the addition of water to ethanol has two effects, the first of which increased the permeability
of the plant matrix, facilitating the process of extract removal, and the second disturbed
the relationship between the solutes and the plant matrix. Additionally, the constituents of
jambolan leaves belong to the class of polar compounds [46].

3.4.2. Composition of Dry Extracts

Table 3 presents the results obtained from the composition of the extracts resulting from
the use of different solvents. As can be seen in this table, under the experimental conditions
evaluated, the extracts presented higher levels of phenolic compounds and flavonoids for
50E. As the amount of water added to the ethanol increases, the extraction efficiency can
improve, as it increases the removal of the phenolic content from the samples. This occurs
because the polarity of the mixture increases and consequently the solubility of the extracts
in the solvent [9], facilitating diffusivity due to the reduction in the dielectric constant of
the solvent [47]. The phenolic composition of the three extracts obtained from jambolan
leaves revealed the presence of some phenolic acids and quercetin. The composition of
the solvent used directly influenced the intensity of the compounds obtained, which were
generally greater when hydroethanolic solvents (18% and 56%) were applied, compared to
using AE.

The antioxidant potential showed similar behavior to phenolic compounds and
flavonoids, with higher values obtained using 50E as solvent, suggesting that these com-
pounds are responsible for the determined antioxidant potential. Studies confirm the
radical scavenging activity of trans-caffeic acid in relation to DPPH•, that is, it is influenced
by the number of hydroxyls in the aromatic ring; the greater the number of hydroxyl
groups, the greater the radical scavenging activity [48]. The antioxidant potentials of
sinapic, vanillic, and quinic acids, also identified in higher intensities in the samples, were
reported by Subramanian [49], Tai et al. [50], and Karaman et al. [51], respectively.

Squalene, α-tocopherol, β-sitosterol, and friedelin were identified in the extracts
obtained. The squalene content was quantified ~3000% higher in AE compared to 50E,
which can be justified by the solvent characteristic; the AE extract presented a nonpolar
characteristic compared to 50E, as the squalene molecule has hydrophobic properties [52].
Fernandes et al. [53] obtained high concentrations of squalene (23.28%) in extracts of
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Echinodorus macrophyllus using apolar solvent. This is consistent with the other com-
pounds, α-tocopherol, β-sitosterol, and friedelin. This study stated that AE is a good
solvent for the removal of apolar compounds, in agreement with the findings reported by
Milovanovic et al. [54], who detected a greater number of tocopherols in ethanolic extracts
obtained from dandelion seeds. According to a study carried out by Ravi et al. [55], the
compound β-sitosterol presents a hydrophobic and nonpolar behavior. The nucleus of this
compound can repel or avoid water molecules, which is confirmed in the results of this
work. Vieira et al. [56] identified the compound friedelin in Quercus cerris extracts and
observed that the highest concentration of this compound was in tests involving weakly
polar or nonpolar solvents.

Table 3. Characterization of dry extracts obtained with the application of solvents with differ-
ent compositions.

Property AE
Hydroethanolic Solvent

75E 50E

Phenolic compounds (mg GAE g−1 extract) 55.81 ± 1.6 a 136.86 ± 1.61 b 196.27 ± 1.48 c

Flavonoids (mg QE g−1 extract) 112.02 ± 0.90 a 190.35 ± 2.75 b 204.80 ± 1.99 c

Compounds identified
by UPLCLC-MS/MS
(Intensity per sample
concentration)/109

Gallic acid 7.64 5.54 5.70
Sinapic acid 26.58 26.77 45.05

trans-caffeic acid 4.40 6.67 12.95
p-Coumaric acid 2.33 3.00 3.24

Vanillic acid 7.64 13.23 15.30
Syringic acid 1.57 1.31 1.98

Quercetin 3.61 2.90 2.66
Quinic acid 9.35 16.00 13.75
Ellagic acid 2.83 2.61 2.43

Compounds quantified
by GC-FID

(mg 100 g−1 extract)

Squalene 161.38 ± 0.36 a 45.82 ± 0.12 b 5.12 ± 0.10 c

α-tocopherol 124.28 ± 4.72 a 40.36 ± 0.50 b 8.32 ± 0.64 c

β-sitosterol 480.83 ± 14.61 a 196.60 ± 0.53 b 42.47 ± 5.20 c

Friedelin 311.68 ± 9.39 a 72.00 ± 0.74 b 10.08 ± 0.18 c

Antioxidant potential
(µmol TEAC g−1 extract)

DPPH• 531.97 ± 4.83 a 708.67 ± 9.43 b 832.82 ± 14.50 c

FRAP 479.32 ± 9.05 a 619.00 ± 9.43 b 724.00 ± 7.07 c

GAE: gallic acid equivalent; QE: Quercetin equivalent. TEAC: Trolox equivalent antioxidant capacity; AE:
Absolute ethanol. 75E: 75% v·v−1 ethanol; 50E: 50% v·v−1 ethanol. Means followed by different letters on the
same line indicate a significant difference (p < 0.05).

3.4.3. Inhibition of Enzymes

Table 4 shows the inhibition of the enzymes α-glucosidase and α-amylase that ex-
presses the antidiabetic activity of jambolan leaf extracts. As observed, as the water
concentration increased, there was also an increase in the inhibition of the α-amylase en-
zyme. For α-glucosidase, the concentration of ethanol in the solvent, in the tested extract
concentration, did not interfere with the inhibition of this enzyme.

Table 4. Antidiabetic activity of jambolan leaf extracts.

Solvent
(% Inhibition)

α-Amylase α-Glucosidase

AE 26.90 ± 3.42 a 99.76 ± 0.09 a

75E 39.04 ± 3.01 b 99.65 ± 0.12 a

50E 37.52 ± 2.33 b 99.47 ± 0.25 a

AE: Absolute ethanol; 75E: 75% v·v−1 ethanol; 50E:50% v·v−1 ethanol. Means followed by different letters on the
same column indicate a significant difference (p < 0.05).
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The observed effects may be due to the higher concentrations of phenolic and flavonoid
compounds in the extracts, as well as the constituents identified by GC/FID. Kwon et al. [57]
indicate that the content of flavonoids and polyphenols in plant extracts has strong in-
hibitory effects on α-amylase and α-glucosidase. Han et al. [58] show that quinic acid pre-
sented a 40% inhibition of α-glucosidase 1.05 mg mL−1 and Aleixandre et al. [59] obtained
60% and 80% inhibitions of this enzyme with vanillic and syringic acids at concentrations
of 1.38 mg mL−1 and 1.78 mg mL−1, respectively. Additionally, Smruthi et al. [3] found
that the compounds friedelin, β-sitosterol, and quercetin showed inhibition of α-amylase.
Kumar et al. [60] obtained from molecular docking that friedelin is a promising candidate
for developing new antidiabetic inhibitors targeting α-glucosidase and α-amylase.

3.4.4. Antibacterial Activity

Table 5 presents the results of the antibacterial activity of the extracts obtained, in
which it is observed that bacterial growth was inhibited at the same concentrations for
E. coli. For S. aureus, the MIC values did not differ between the samples obtained with the
solvents AE and 75E; however, this strain was the most susceptible to the extract obtained
at 50E. P. aeruginosa presented the same MIC for extracts 75E and 50E, which was lower
than that obtained using AE.

Table 5. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
for jambolan leaf extracts.

Microorganisms AE
Hydroethanolic Solvent

75E 50E

MIC/MBC (µg mL−1)
Escherichia coli 31.25 ± 0.00/>500 31.25 ± 0.00/>500 31.25 ± 0.00/>500

Staphylococcus aureus 31.25 ± 0.00/125 31.25 ± 0.00/>500 7.81 ± 0.00/125
Pseudomonas aeruginosa 62.50 ± 0.00/125 31.25 ± 0.00/>500 31.25 ± 0.00/125

AE: Absolute ethanol. 75E: 75% v·v−1 ethanol. 50E:50% v·v−1 ethanol.

Jassim et al. [61] determined MICs for jambolan leaf extracts of 208, 208, and 104 µg mL−1

of E. coli, P. aeruginosa and S. aureus, respectively. Oliveira et al. [62] reported MIC values
of 200, 200, and 90 µmg mL−1 when the hydroalcoholic extract of Syzygium cumini leaves
was applied to strains of E. coli, S. aureus, and P. aeruginosa, respectively, and indicated
that the extract has potential as a topical antibacterial therapy to promote the healing of
skin wounds. In this study, hydroalcoholic extracts were also used; however, the results
obtained were superior to those reported in the literature, which can be explained by the
concentration of the ethanol and water mixture used.

The antibacterial activity present in this plant may be due to the presence of tannins
and other phenolic constituents [62]. Engels et al. [63] indicate the inhibitory effect of sinapic
acid against Gram-positive and Gram-negative bacteria. Bai et al. [64] demonstrated that
quinic acid is capable of interacting with the cell membrane of S. aureus, leading to the
dysfunction of oxidative phosphorylation, which favors the use of this acid as a potential
antibacterial agent. This can be explained by the degree of polarity of the extracts with 50%
ethanol and water and the polarity of the membranes of Gram-negative bacilli [65].

3.4.5. Cell Viability

The cell viability results (Figure 2) indicated that the extracts obtained are non-toxic,
despite the samples AE and 75E differing significantly from each other. However, all
samples showed cell viability > 90%. The extract produced with 75E and 50E showed
an increase in cell viability, suggesting possible cell proliferation compared to the extract
obtained with AE, which may be related to the presence of a higher number of bioactive
compounds in the extract (Table 2). According to ISO 10993-5 [66], cell viability values
lower than 70% indicate cytotoxic potential. Therefore, the extracts are considered safe at
the tested concentration. Santos et al. [67] valuated the cytotoxicity of freeze-dried jambolan
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leaves and reported that, at the tested concentrations (0.1 to 10 µg/mL), the extract did
not affect cell viability according to the MTT assay results, indicating that the extract is
considered non-toxic.

Figure 2. Results of cell viability. AE: absolute ethanol; 75E: 75% v·v−1 ethanol; and 50E: 50% v·v−1

ethanol. Means followed by different letters indicate a significant difference (p < 0.05) for the different
extracts tested (AE, 75E, and 50E).

4. Conclusions

The preparation of extracts with a high phenolic content was effectively carried out
using the selected extraction technique and considering the evaluated process parameters.
The leaf to solvent ratio had a greater influence on obtaining extract mass and the tempera-
ture on the extraction of phenolics. The time variable had little influence on the evaluated
responses, possibly due to greater extraction in the initial washing stage. Therefore, it was
possible to obtain 9.94 wt% of extract from the leaves with 136.86 mg GAE per g under
maximized conditions. The addition of water to the solvents had a notable effect on the
antioxidant capacity of the extracts, with an increase of ~50%. Based on the composition
of the extracts obtained, it is evident that the use of a solvent with a higher water content
allowed for greater removal of phenolic acids and flavonoid compounds. However, on the
other hand, an extract with a higher concentration of liposoluble compounds can be ob-
tained with the use of absolute ethanol. Finally, extracts obtained did not show a cytotoxic
effect, which was evaluated by cell viability tests. These findings demonstrate the potential
of jambolan leaves as a viable option for obtaining valuable compounds for functional food,
nutraceutical, cosmetic, and pharmaceutical applications due to their composition and
antioxidant potential. Therefore, future research should focus on its applicability, as well as
on the purification of the extract aiming to enhance its phytochemical characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr12102270/s1; Figure S1. Model diagnostic charts for extraction
mass yield (EMY): (a) Raw Residual normal probability plot and (b) Predicted vs. observed values;
Figure S2. Model diagnostic charts for phenolic compounds yield (PCY): (a) Raw Residual normal
probability plot and (b) Predicted vs. observed values.
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