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Abstract: As the penetration of renewable energy sources (RESs), particularly wind power, continues
to rise, the uncertainty in power systems increases. This challenges traditional optimal power
flow (OPF) methods. This paper proposes a Calibrated Safety Constraints Optimal Power Flow
(CSCOPF) model that uses the Improved Acceleration Coefficient-Based Bee Swarm algorithm
(IACBS) in combination with the equivalent current injection (ECI) model. The proposed method
addresses key challenges in wind-integrated power systems by ensuring preventive safety scheduling
and enabling effective power incident safety analysis (PISA). This improves system reliability and
stability. This method incorporates mixed-integer programming, with continuous and discrete
variables representing power outputs and control mechanisms. Detailed numerical simulations were
conducted on the IEEE 30-bus test system, and the feasibility of the proposed method was further
validated on the IEEE 118-bus test system. The results show that the IACBS algorithm outperforms
the existing methods in both computational efficiency and robustness. It achieves lower generation
costs and faster convergence times. Additionally, the CSCOPF model effectively prevents power grid
disruptions during critical incidents, ensuring that wind farms remain operational within predefined
safety limits, even in fault scenarios. These findings suggest that the CSCOPF model provides a
reliable solution for optimizing power flow in renewable energy-integrated systems, significantly
contributing to grid stability and operational safety.

Keywords: load flow control; power incident safety analysis (PISA); renewable energy sources (RESs);
improved acceleration coefficient-based bee swarm (IACBS)

1. Introduction

Wind energy generation is highly random and intermittent. As wind farms are
integrated into the power grid and their scale expands, this integration will inevitably
impact the operation of the power system [1]. This impact is significant across various
aspects, with the power dispatch of grid-connected wind farms being a basic critical issue.
Inaccuracies in wind power output forecasts and accidents in the power grid often cause
wind curtailment during dispatch [2]. Thus, solving this issue is fundamental for further
research on related topics. A key challenge is how to establish an optimized power dispatch
with preventive safety restrictions so that if a power system with a high proportion of
wind energy generation experiences a failure—especially in the most serious case—the grid
dispatcher does not need to make any dispatch changes, and the system can still operate
safely within limits.

The intermittent nature of renewable energy generation poses challenges to power
grid stability, as sudden fluctuations in power generation can impact the system. Without
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proper auxiliary services, these fluctuations can result in outages or even system collapse.
Yunus et al. [3] have focused on the impact of offshore wind farms, while Li et al. [4]
introduced a linear optimal power flow model for renewable energy integration. Recent
developments, such as the data-driven linear optimal power flow model, have been shown
to improve accuracy in distribution networks with high renewable energy penetration.
For example, Yunus et al. [3] and Li et al. [4] address uncertainty but fail to consider
non-linear dynamics in large-scale grids. Amr et al. [5] propose a stochastic optimal
power flow approach using the heuristic method Aquila Optimizer (AO) to optimize
wind farm scheduling and minimize total operating costs. Li [6] introduces an improved
adaptive Differential Evolution (DE) approach with a penalty constraint handling strategy
to address optimal power flow (OPF) challenges in an IEEE-30 bus system. Meanwhile,
Amr et al. [5] and Li et al. [6] present heuristic solutions that, while effective in small
to medium systems, might struggle with robustness in larger, more complex networks.
Khan [7] presents a heuristic algorithm aimed at efficiently solving the optimal power flow
problem while incorporating stochastic renewable energy sources. However, as noted by
Khan et al. [7], stochastic methods bring their own set of limitations, including potential
difficulties in guaranteeing robustness. Although these studies provide valuable insights,
they often have limitations. For example, ref. [8] proposes a robust OPF (RACOPF) model
based on robust optimization (RO) for power grids with uncertain wind power, achieving
lower expected power generation costs compared to AAROPF by employing second-order
programming techniques to transform RACOPF into a mixed-integer SOCP (MISOCP)
model. While ref. [8] offers a robust optimization framework, it relies on simplifying
assumptions that may not capture the full complexity of wind power variability in larger
systems. Additionally, the existing OPF models often overlook the mutual coupling effect,
which Chowdhury [9] addresses by proposing an AC-OPF model for three-phase radial
distribution networks based on second-order cone programming (SOCP). While these
models primarily focus on steady-state conditions, they do not directly consider potential
accidents or the dynamic behavior of the grid during faults [10].

Morshed et al. [11] proposed a probabilistic multi-objective approach for wind-PV-
PEV systems, effectively handling uncertainty, but overlooked real-world power flow
instability. Shi et al. [12] included wind power in OPF, though it did not address the
complexity of large-scale grids. Momoh et al. [13] reviewed non-linear OPF methods,
but their high computational complexity limits modern application. Pourakbari-Kasmaei
et al. [14] introduced a MINLP model for constrained OPF, though it may struggle with
efficiency in large grids. Cheng et al. [15] and Tang et al. [16] expanded MAS control
under uncertain conditions but face scalability issues. Ben Hmida et al. [17] used hybrid
algorithms for OPF in wind–solar systems, showing potential but requiring validation in
dynamic environments. Cheng et al. [18,19] proposed control strategies for systems with
hysteresis, though practical application remains untested. Avvari and DM [20] offered
a hybrid algorithm for OPF in renewable systems, effective in multi-objective cases but
needing refinement for real-world complexity. Abd-El Wahab et al. [21] and Deb et al. [22]
explored turbulent flow optimization for reactive power dispatch, effective in economic
dispatch, yet lacking comparison with other algorithms, particularly in dynamic settings.

In general, the conventional Newton–Raphson method is widely and extensively uti-
lized to address load flow issues in power systems, regardless of considerations such as grid
safety correction. A conic quadratic format has also been proposed to improve the load flow
equations for meshed networks, which simplifies some computational complexities [23].
The partial differentiation of bus voltage and angle is executed based on power, serving as
the slope of the approaching system solution. However, the resulting Jacobian matrix is
not constant. Consequently, during each iteration, all the elements in the Jacobian matrix
need to be updated and adjusted, necessitating a redo of the LU decomposition. When
dealing with large systems, this entire load flow-solving process becomes exceedingly
time-consuming and intricate. Load flow techniques based on the equivalent current injec-
tion (ECI) method have been successfully devised and applied in three-phase unbalanced
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systems [24]. Various decoupling laws have been formulated to cater to different character-
istics of the power system and can be implemented across different systems. Additionally,
a Gaussian Process Learning-Based Probabilistic Optimal Power Flow model has been
proposed to enhance the handling of uncertainties and improve computational efficiency
in large-scale systems [25]. The Jacobian matrix derived for load buses (PQ buses) in the
ECI-power flow method remains constant and independent of the system state, requiring
no updates to its elements during iteration. Additionally, the Jacobian matrix obtained for
voltage buses (PV buses) only necessitates modifications to a small number of elements in
each iteration, leading to significantly reduced solving time. Consequently, this method
exhibits excellent convergence properties, rapid decoupling characteristics, and minimal
memory requirements. Although the current injection network model can address speed
issues on a large scale, many studies have found the integer programming solutions for
control variables (discrete variables) to be unsatisfactory [26,27].

In recent years, numerous intelligent algorithms have been developed and applied
to the scheduling issues of power systems. Genetic Algorithm (GA) optimizes wind and
thermal dispatch to cut costs, considering wind variability and thermal constraints [28].
One article [29] discusses the application of a developed Grey Wolf Optimizer (GWO) to
solve non-smooth optimal power flow problems in energy systems. In [29], while effective
in solving non-smooth OPF problems, it may struggle with convergence speed and risks
getting trapped in local minima, especially in larger and more complex systems. Salkuti [30]
explores the use of a Multi-Objective Glowworm Swarm Optimization Algorithm (GSO)
for optimizing power flow in a power system integrated with wind energy. Furthermore,
the Glowworm Swarm Optimization algorithm discussed in [30], despite its multi-objective
capabilities, is highly sensitive to parameter tuning, and its performance can degrade
significantly if not properly calibrated for different system conditions. Both methods could
benefit from enhanced robustness to handle more diverse and dynamic grid environments.
Pham [31] introduces a Multi-Objective Coronavirus Herd Immunity Algorithm (CHI)
to address these aspects. This innovative approach aims to optimize the performance of
power networks by balancing costs. However, while the CHI algorithm brings novelty
in mimicking herd immunity strategies, it may face challenges in efficiently handling the
high-dimensional search spaces found in complex power systems, potentially leading to
slower convergence rates. Ahmad [32] presents a study on solving the optimal power
flow problem within a hybrid power system using a bio-inspired heuristic algorithm
(BIH). Although the BIH algorithm is effective in hybrid systems, it remains sensitive to
initial parameter settings, and its ability to maintain global optimality in diverse operating
conditions remains uncertain, particularly when applied to larger grid structures.

Despite the advances in related research, many shortcomings and technical bottlenecks
still need to be overcome. For instance, the safety planning for the stable operation of power
grids containing renewable energy has not been fully considered in the event of a fault.
The process of solving the power flow method is both time-consuming and complicated,
and discrete variable issues persist in the power grid. Moreover, even when intelligent
algorithms are used to solve discrete problems, they are prone to falling into local optima.
These urgent problems need to be addressed. Therefore, this paper proposes a Calibrated
Safety Constraints Optimal Power Flow (CSCOPF) and applies the Improved Acceleration
Coefficient-Based Bee Swarm Algorithm (IACBS) to solve the optimal power flow problem
based on the ECI model, combined with calibrated safety constraints. This safety dispatch
strategy includes planning the system before accidents occur and establishing new power
incident safety analysis (PISA) protocols for the grid to identify and categorize all the
vulnerable parts of the system circuit based on power flow results, and to make safe
arrangements for the most severe incidents. In the event of an accident, it ensures that the
illegal operations of the power grid, including wind farms, can be avoided without making
any dispatch changes, allowing the system to operate safely within limits.

This study introduces a novel calibrated safety constraint mechanism, which enhances
the system’s reliability by ensuring that it operates within safety limits even under severe
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fault conditions. Unlike previous OPF models, this approach addresses both the preven-
tive and real-time stability of wind-integrated power systems. In addition, compared to
traditional algorithms like GA and PSO, IACBS provides faster convergence and more effec-
tively avoids the local optima, particularly in non-linear and complex systems. This study
demonstrates the superior performance of IACBS in large-scale wind-integrated power
systems, highlighting its ability to offer a more robust and efficient optimization solution.

To address these challenges, this paper proposes a novel approach with two key in-
novations. The first is the Calibrated Safety Constraints Optimal Power Flow (CSCOPF)
model, which enhances system reliability by incorporating calibrated safety constraints
to manage uncertainties during severe faults. Unlike traditional methods that primarily
focus on steady-state conditions, this approach addresses both preventive and real-time
stability, offering a robust solution for wind-integrated power systems. The second in-
novation is the Improved Acceleration Coefficient-Based Bee Swarm Algorithm (IACBS),
which significantly improves optimization performance in non-linear and complex systems.
Compared to traditional algorithms like GA and PSO, IACBS provides faster convergence
and more effectively avoids local optima, demonstrating superior efficiency in large-scale
systems. These innovations contribute both theoretically and practically by enhancing
system stability and reliability while addressing the existing research gaps.

2. Mathematical Model of CSCOPF

This section details the mathematical formulation of the CSCOPF model. The CSCOPF
model aims to optimize power flow while incorporating safety constraints to manage
system uncertainties effectively. The model uses the IACBS for optimization and the
current injection method for load flow constraints.

2.1. Load Flow Model Using ECI Method

The ECI method is utilized to solve load flow problems in transmission systems,
building on its successful application in distribution systems with three-phase unbalanced
loads. This section integrates the ECI method with the Newton–Raphson approach for
efficient load flow analysis.

A. Transmission line representation:

A transmission line connecting bus S to bus R is represented using a π model, as
shown in Figure 1. The resistance RSR and inductance LSR of the line are represented by the
transmission admittance GSR + jBSR. The line’s capacitance CT to ground is associated with
a susceptance jBC. The equivalent current injected at bus S is given by the following [24]:

IS(k) =
−SS

US(k)
∗ = IS,r(k) + jIS,i(k) (1)

where SS refers to the complex power injection at bus S, and US denotes the corresponding
terminal voltage. The superscript k indicates the iteration step, with r and i signifying the
real and imaginary parts, respectively.
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B. Rectangular coordinate form:

The rectangular coordinate form of the currents IS and IR injected at bus S is as follows:

IS = [GSR(US,r − UR,r)− BSR(US,i − UR,i)− BCUS,i]
+j[GSR(US,i − UR,i)− BSR(US,r − UR,r) + BCUS,r]

(2)

IR = [GSR(UR,r − US,r)− BSR(UR,i − US,i)− BCUR,i]
+j[GSR(UR,i − US,i)− BSR(UR,r − US,r) + BCUR,r]

(3)

Then, separate the complex currents IS and IR into their respective real (IS,r, IR,r) and
imaginary (IS,i, IR,i) components. This allows us to express the current Equations (1)–(3) in
a form compatible with the Newton–Raphson method. Specifically, by linearizing these
equations and calculating the partial derivatives with respect to the state variables US,r,
US,i, UR,r, and UR,i, we obtain the following Jacobian matrix:

∆Ir(k) = J11∆Ur + J12∆Ui
∆Ii(k) = J21∆Ur + J22∆Ui

(4)

where the Jacobian matrix elements Jij are constant and determined by the admittance
matrix between buses S and R.

For Equations (2) and (3), take partial derivatives with respect to the state variables
US,r, US,i, UR,r, and UR,i. The organized error equations are as follows:

∆IS,r
∆IR,r
∆IS,i
∆IR,i

=


GSR
−GSR

(B SR + BC)
−BSR

−GSR
GSR
−BSR

(B SR + BC)

−(BSR + BC)
BSR
GSR
−GSR

BSR
−(BSR + BC)

−GSR
GSR




∆US,r
∆UR,r
∆US,i
∆UR,i


= [JSR]

[
∆Ur
∆Ui

] (5)

From Equation (5), it becomes clear that the matrix functions as the Jacobian matrix
during the iterations, with its elements directly corresponding to the admittance matrix
between buses S and R.

C. Jacobian Matrix Efficiency:

The Jacobian matrix’s constancy across iterations provides significant computational
efficiency, as it avoids recalculation at each iteration. This constant nature simplifies the
load flow solution process, leading to faster convergence and reduced computational time.[

∆Ir(k)
∆Ii(k)

]
=

[
yG −yB
yB yG

][
∆Ur(k)
∆Ui(k)

]
(6)

D. Voltage Control Buses:

In a power system, generator buses (PV buses), which typically include independent
generators or wind generators, are integral components. However, the approach to deriving
the parameters for these voltage buses differs from that used for the load buses previously
discussed. When attempting to model these PV buses as current sources, challenges arise in
integrating the known parameters with the established load flow model. Consequently, it
is crucial to address the specific issues related to voltage buses within the framework of the
equivalent current injection method and to harmonize these with the previously developed
load bus model in order to create a comprehensive power system load flow model. To
resolve the challenges associated with PV buses in the equivalent current injection approach,
the real power injection at a PV bus can be expanded using a Taylor series, resulting in
the following:

∆PS = Ur·∆IS,r+Ui·∆IS,i+∆Ur·IS,r+∆Ui·IS,i (7)
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Substituting Equation (5) into Equation (7) and rearranging gives Equation (8):

∆PS = (U S,rGSR+US,iB′
SR + IS,r

)
∆US,r + (−U S,rB′

SR+US,iGSR + IS,i

)
∆US,i

+(−U S,rGSR−US,iBSR

)
∆UR,r + (U S,rBSR−US,iGSR

)
∆UR,i

(8)

where B′
SR = BSR + BC.

Then, performing a Taylor expansion on the generator terminal voltage |US|2 = U2
S,r +

U2
S,i yields the following:

∆|US|2 = 2US,r∆US,r + 2US,i∆US,i (9)

By reorganizing Equations (8) and (9), one can derive the Jacobian matrix associated
with voltage control buses, as well as the corresponding error equation, as depicted in
Equation (10). [

∆PS
∆|US|2

]
=

[
J1 J2
J3 J4

]
∆US,r
∆US,i
∆UR,r
∆UR,i

 (10)

where J1 =
[
(U S,rGSR+US,iB′

SR + IS,r) (−U S,rGSR−US,iBSR)
]
, J2 = [(−US,rB′

SR+US,iGSR
+IS,i)(US,rBSR−US,iGSR)], J3 = [2US,r0], and J4 = [2US,i0].

Using the above formula, calculate P and V to replace the left-hand side of Equation (5),
thus forming a complete load flow error equation, as shown in Equation (11).

∆I1,r
...

∆PS
...

∆IM,r
−−−

∆I1,i
...

∆|US|2
...

∆IM,i



=



−−

JGr

−

JBi

−−

|
|
|
|
|
|
−
|
|
|
|
|
|

−

JBr

−

JGi

−−





∆U1,r
...

∆US,r
...

∆UM,r
−−−
∆U1,r

...
∆|US|2

...
∆IM,i



(11)

From Equation (11), in an M-bus system, when voltage control buses with wind
turbines and synchronous generators are introduced, the corresponding elements in the
Jacobian matrix must be updated during each iteration, rendering the matrix non-constant.
However, the number of elements requiring modification in this Jacobian matrix is fewer
compared to those in the traditional Newton–Raphson method. This is because although
the Jacobian matrix needs to be revised at each iteration, only the elements associated with
the voltage control buses require adjustment. This selective modification approach reduces
the computational burden, as only a small subset of the matrix is recalculated, leading to
faster convergence compared to the full matrix updates required in the traditional method.

2.2. Power Incident Safety Analysis (PISA)

The safety analysis involves simulating faults and adjusting the admittance matrix
accordingly. This section describes the modification of the admittance matrix for fault
scenarios. During the safety analysis of a system, simulating a specific fault requires
reasonable adjustments to the model affecting the system while maintaining its original
features unchanged. However, reconstructing the admittance matrix for all the components
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of the system for each fault would be time-consuming. Therefore, this document adopts
a method of directly modifying parts of the original admittance matrix related to the
fault model, thus avoiding extensive time spent on revising the system model. The fault
modification model is primarily divided into two parts for discussion: one is the generator
trip incidents, and the other is the transmission line trip incidents.

2.2.1. Generator Trip Incident Correction Model

When a generator trips, the affected bus becomes a PQ bus. Other generators adjust
to maintain system balance. At this time, in addition to the generators on the swing
bus automatically maintaining the system’s supply–demand balance by changing their
power output, other generators continue to maintain their original real power output and
generator bus voltage values.

PG_ f ault = PG|0| + ∆PG (12)

∆PG = −PG|0| (13)

where PG|0| represents the generator output before the incident, PG_ f ault is the remaining
generator output after the incident, and ∆PG is the real power correction amount in the
system following the generator trip.

2.2.2. Transmission Line Trip Incident Correction Model

When a transmission line trips, the admittance matrix is updated. Assuming the line
admittance from bus m to bus n is [Ymn], when this line trips

[Ymn] =

[
Gmn + j(Bmn − BC) −(Gmn+ jBmn)

−(Gmn+ jBmn) Gmn + j(Bmn − BC)

]
(14)

[
Yf ault

]
=

[
Y|0|

]
+ [∆Ymn] (15)

[∆Ymn] =



. . .
· · ·

· · ·

. . .

∆Ymm
...

∆Ynm

· · ·
. . .
· · ·

∆Ynm
...

∆Ynn

. . .

· · ·

· · ·
. . .

 (16)

where
[
Y|0|

]
is the system admittance matrix before the incident, and

[
Yf ault

]
is the system

admittance matrix after the incident. ∆Ymm = ∆Ynn − (Gmn+ jBmn), ∆Ymm = Gmn+ jBmn.

3. CSCOPF Problem
3.1. Objective Functions

The OPF problem in power systems involves adjusting variables such as voltage
levels and power outputs to manage the system efficiently within its physical and thermal
constraints. This non-linear constrained optimization challenge is akin to solving a com-
plex puzzle, where each component—such as generators and transmission lines—must
operate within specific operational and safety limits to prevent system overload and ensure
optimal performance.

This paper tackles the OPF problem using the ECI approach. It starts by assuming that
the active power generation of wind turbines is non-dispatchable, and these quantities are
treated as expected values within the framework of total power factor management. If the
mean value of the uncertainty in the prediction error for the real power generation of each
wind farm is zero, OPF operations are conducted precisely at predetermined ten-minute
intervals [32]. Consequently, the voltage levels at the wind turbine (WT) bus are expected
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to have a significant impact on OPF results. To further elucidate this point, a representative
mathematical equation is introduced [32].

Objective function:

FC(Pgj) =
ng

∑
j∈gj

AjP2
gj
+BjPgj + Cj (17)

where Pgj is the schedulable real power from the jth thermal power plant, while Aj, Bj, and
Cj are the cost coefficients associated with the power output of that specific plant.

3.2. Equality and Inequality Constraints

The goal of OPF is to minimize the objective function while satisfying the following
constraints:

A. Equality constraints:

The goal of OPF is to minimize Equation (17) under the conditions of equality con-
straint (18)–(21):

−Ides_r + Icom_r = 0 (18)

−Ides_i + Icom_i = 0 (19)

−Pdes_gen + PL + Pcom_gen = 0 (20)

−|Udes|2 + |Ucom|2 (21)

where Ides_r and Ides_i refer to the real and imaginary components of the designated equiva-
lent current injections, whereas Icoml_r and Icom_i refer to the real and imaginary components
of the currents as computed. Pcom_gen and |Ucom|2 represent the calculated real power injec-
tion and the generator terminal voltage at the PV bus, respectively. Pdes_gen and PL represent
the real power output of the generator and the real power load on the PV Bus. |Udes|2 is the
square of the absolute value of the voltage on the PV bus.

And
Ides_r =

P·Ur + Q·Ui

U2
r + U2

i
(22)

Ides_i =
P·Ui + Q·Ur

U2
r + U2

i
(23)

where Ur and Ui are the real and imaginary components of the bus voltage, respectively,
while P and Q correspond to the real and reactive power associated with the equivalent
injected at the load bus.

B. Inequality constraints:

S2
SR ≤ S2

SR (24)

S2
RS ≤ S2

RS (25)

Pgj ≤ Pgj ≤ Pgj (26)

∣∣∣Uj

∣∣∣2 ≤
(

U2
j,r + U2

j,i

)
≤

∣∣Uj
∣∣2 (27)

where
∣∣∣Uj

∣∣∣2 and
∣∣Uj

∣∣2, respectively, represent the lower and upper limits of the voltage

magnitude at bus j; Pgj and Pgj are the lower and upper limits of the schedulable real power

at bus j; (S, R) denotes the transmission line connecting bus S and bus R; S2
SR and S2

RS

indicate the apparent power on the transmission line (S, R) or (R, S); S2
SR and S2

RS are the
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upper limits of the apparent power on the transmission line (S, R) or (R, S), where S2
SR is

equal to S2
RS.

This paper introduces a continuous variable-type OPF with control variables consisting
of the schedulable real power output of any generator Pgj (j = 1: ng) and generator voltage
(WT)

∣∣Uj
∣∣ (j = 1: ng), and state variables being the real and imaginary parts of bus voltages

(Ur, Ui). The inequality constraints include generator and WT real power limits, bus voltage
limits, and transmission line capacity limits. This OPF, which omits fault analysis and
does not address integer issues, is classified as a continuous non-linear problem. The
mixed-integer programming problem presented in this paper includes both continuous
and discrete variables (shunt compensators, VARs).

3.3. Modeling of Wind Turbine Units

When the wind velocity (Γv) is measured, Equation (28) serves as a tool to determine
the power output Pw from a wind turbine (WT) [33]. This equation provides a method
for calculating the energy produced by the turbine based on the specific speed of the
wind encountered:

Pw(Γv) = Prated·
Γv − Γ

(Cut_in)
v

Γ
(Rated)
v − Γ

(Cut_in)
v

(28)

where Γ
(Cut_in)
v is the minimum wind velocity at which the turbine begins generating

electricity; Γ
(Rated)
v is the wind speed at rated power (Prated). When the wind speed at

the wind turbine is below the startup speed or above the cutoff speed, the turbine stops
generating electricity, and the power output is 0. This means that under these wind speed
conditions, the wind turbine does not produce any power output.

By utilizing the Weibull probability density function f (Γv) and distribution function
F(Γv) described in Equations (29) and (30), this study accurately describes and predicts
the variation and distribution characteristics of wind speed at specific locations. This
facilitates the determination of optimal installation sites for wind turbines, with the goal
of maximizing wind energy capture and electricity generation efficiency [34]. Moreover,
the study employs the bi-variate Weibull distribution, characterized by two parameters, to
effectively model wind power generation within the context of renewable energy systems.

f (Γv) =
S

CS ·Γ
S−1
v e−( Γv

C )
S

(29)

F(Γv) = 1 − e−( Γv
C )

S
(30)

where the shape parameter, denoted as k, and the scale parameter, denoted as c, are both
fundamental parameters characterizing the Weibull distribution.

4. Improved Acceleration Coefficient-Based Bee Swarm Algorithm

The artificial bee colony algorithm (ABC) is a metaheuristic optimization algorithm
inspired by the behavior of honeybees. In this algorithm, a population of artificial bees
searches for the optimal solution to a given problem by mimicking the foraging behavior
of real bees. The algorithm consists of three main components: employed bees, onlooker
bees, and scout bees. The employed bees explore the solution space by exploiting known
good solutions, the onlooker bees choose solutions based on the quality of the employed
bee solutions, and the scout bees explore new regions of the solution space. Through
the collaborative efforts of these bees, the algorithm iteratively improves upon candidate
solutions until an optimal or near-optimal solution is found.
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4.1. Modeling of ABC Algorithm

The ABC algorithm models three types of bees: employed bees, onlookers, and scouts.
The position of a bee represents a possible solution to the optimization problem and the
nectar amount corresponds to the quality (fitness) of the solution.

(1) Employed Bees: These bees are associated with specific food sources (i.e., solutions)
and search for new, nearby food sources (new solutions).

(2) Onlooker Bees: These bees wait in the hive and choose food sources depending on
the information shared by employed bees. They select food sources with a higher
probability if those sources have higher nectar (better solutions).

(3) Scout Bees: These bees perform random searches to discover new food sources. This
role is taken by an employed bee when its food source is exhausted (i.e., when the
solution cannot be improved further).

The Bee Colony Algorithm, also known as the Bee Algorithm, is a population-based
search algorithm that mimics the food-foraging behavior of honeybees to find the optimal
solution to numerical problems. Here is how it works:

(1) Solution update for employed and onlooker bees: The position update, which repre-
sents a solution modification, is given by the following:

p(j)
i = p(j)

i,min + φ

[
p(j)

i,max − p
(j)

i,min

]
(31)

where p(j)
i , p(j)

i,min, and p(j)
i,max are the new position, current position lower limits, and

current position upper limits of the i-th bee on the j-th dimension. φ is a random
number between [−1, 1] that controls the perturbation size, influencing how far the
new position will be from the current one.

(2) Fitness Evaluation: Each solution’s fitness is evaluated to determine its quality. Typi-
cally, the fitness function is problem-specific, designed to evaluate how well a given
solution meets the optimization objectives.

(3) Probability Selection for Onlooker Bees: Once all the employed bees have searched
and evaluated their solutions, they share this information with onlooker bees. Each
onlooker bee selects a food source based on a probability Pb(j) proportional to the
fitness of the food source:

Pb(j) =
1
Fj

∑N
j=1

1
Fj

(32)

where Fj is the fitness value of the j-th variable combination. N is the total population
size.

(4) Scout Bee Phase: If a food source (solution) cannot be improved further after a
certain number of trials (controlled by a parameter called the “limit”), the associated
employed bee becomes a scout and abandons the source. The scout bee then randomly
generates a new solution, helping to diversify the search and avoid the local optima.

If a bee swarm lacks diversity during the search process, with bees overly concentrated
in local regions, they might overlook the global optimum. This issue could stem from
restricted search ranges for the bees, compounded by the inherently non-linear, multimodal,
and complex nature of the optimization problem, such as power scheduling. These charac-
teristics make the ABC algorithm more prone to falling into local optima. In light of this,
this paper proposes the Improved Acceleration Coefficient-based Bee Swarm algorithm
(IACBS) to enhance the algorithm’s global search capability and address the potential for
local optima trapping.

4.2. Modeling of IACBS Algorithm

Due to the fact that the artificial bee colony (ABC) algorithm, despite having three
different types of groups, primarily relies on worker bees for the main search process,
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the original ABC algorithm’s neighborhood search in Equation (31) is based entirely on a
random search concept, which lacks a solid foundation. Therefore, the IACBS algorithm
modifies the various bee working modes to enhance neighborhood search and avoid
premature convergence to local optima.

A. Mathematical model of worker bee operation:

In this paper, the proposed IACBS algorithm aims to enhance the exploration of
potentially overlooked search areas by incorporating a repulsion force. This modification
allows worker bees to follow the currently identified optimal positions for their search, as
specified in Equations (33) and (34). When the randomly generated value rand exceeds the
predetermined pr value, a reverse search is initiated. The pr parameter is set to 0.8 in this
study, with j representing the worker bee population variable.

P(j)
i (k + 1) = P(j)

i (k) + sign

 α·rand
(

pbest(j)
i − P(j)

i (k)
)

+β·rand
(

gbest(j)
i − P(j)

i (k)
) (33)

sign =

{
1, if rand(·) ≤ pr
−1, else

(34)

where α represents the cognitive ability of the worker bee itself, while β denotes the
cognitive ability acquired after interacting with other worker bees. pbest(j)

i refers to the

best search position of the worker bee itself, while gbest(j)
i is the best search position of the

entire worker bee population. sign is the criterion for random search by the worker bee. k
represents the current iteration number.

The acceleration coefficients in Equation (33) of the worker bee operation model have
been modified. Initially, these acceleration coefficients were fixed values set by the user. Ac-
cording to the literature [32], these coefficients are now set as linearly increasing/decreasing
variables. The focus of the search is placed near the local optimum region in the early stages
of the solution, and near the global optimum region in the later stages. The acceleration
coefficients are calculated using Equations (35) and (36).

α = (α f − αi)·
k

kmax
+ αi (35)

β = (β f − βi)·
k

kmax
+ βi (36)

Using Equations (35) and (36), Equation (33) is rewritten as Equation (37).

P(j)
i (k + 1) = P(j)

i (k) + sign

 (
α f − αi

)
· k

kmax
+ αi·rand

(
pbest(j)

i − P(j)
i (k)

)
+
(

β f − βi

)
· k

kmax
+ βi·rand

(
gbest(j)

i − P(j)
i (k)

) (37)

B. Mathematical model of follower bee operation:

The follower bee also uses Equation (32) to determine whether to follow the worker
bee for foraging. However, in the IACBS, the worker bee mode is changed to only follow
rather than join the worker bee population. In the follower bee operation model, a repulsion
force search is also added to increase the search area. The variable z represents the follower
bee population variable.

P(z)
i (k + 1) = P(z)

i (k) + sign
[

β·rand
(

P(e)
i (k)− P(z)

i (k)
)]

(38)

where P(e)
i is the follower position selected through Equation (32), but the variable N in

Equation (32) is changed to represent the total number of worker bees.
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C. Mathematical model of scout bee operation:

In the IACBS algorithm, the scout bee operation model will no longer involve arbitrary
random searches. Instead, the scout bee operation model is modified to generate new posi-
tions for scout bees based on comparisons between the global best solution and the average
position of the entire group. The variable s represents the scout bee population variable.

P(s)
i (k + 1) = P(s)

i (k) + sign[rand(gbesti − µ·M(k))] (39)

µ = round[1 + rand(0, 1)] (40)

where M is the average position of all the groups at iteration k.

4.3. The IACBS Algorithm Solves the Power Flow Problem

This paper proposes the IACBS algorithm to solve the optimized power flow based on
calibrated safety constraints. The system can preemptively adjust and schedule for specific
incidents with the highest risk based on the results of optimized power flow. In the event
of an accident, it can prevent the power system containing wind turbines from operating in
a state that violates constraints without changing any dispatch, ensuring safe operation
within limits. The control variables of the system can be divided into continuous variables
(the real power output of synchronous generators and wind turbines, and voltage at the
generator bus) and discrete variables (parallel capacitor banks). The steps for solving this
are as follows:

Step 1: Establish system data

Input the data for the problem, including the transmission line data, parameters
of each synchronous generator unit and wind turbine generator unit, and various con-
straint conditions.

Step 2: Incident analysis

Utilize the ECI load flow and the simplified correction function for generator and
transmission line tripping incidents to perform incident analysis. Develop a new safety
analysis tool and add new analysis functions. During the execution of safety analysis,
unlike traditional methods that are limited to only one or two Newton iterations, the
method can directly converge, significantly improving simulation accuracy. Additionally, it
can further rank the severity of incidents based on the analysis.

Step 3: Selection of the most severe case for the system

Identify the most severe (congested) case. Suppose that when a line or a generator
fails, it causes one of the grid’s lines to overload, and this incident leads to a greater
overload than other incidents. In this scenario, we select this case as the most severe case.
Generally, OPF cannot simultaneously handle the original system (without considering
faults) and the system after an incident. Therefore, the IACBS algorithm is introduced to
solve this problem.

Step 4: Initialization of the IACBS algorithm

Initialize the population and set the iteration number k = 1. Initialize the popula-
tion ratio with three types of bee groups and generate the initial positions of the bee
groups randomly.

Step 5: Calculation of the fitness function value

Calculate the fitness value according to the objective function, as shown in Equation (32).

Step 6: Selection of pbest and gbest

Based on the fitness function value, select and record pbest and gbest. If it is not the
first iteration, compare and update pbest and gbest.
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Step 7: Find the bee group to which pbest belongs

Based on the bee group to which pbest belongs, increase the number of bees in that
group and decrease the number of bees in the other groups, ensuring compliance with the
specified constraints.

Step 8: Check if the number of bees in each group reaches the maximum limit

If the number of bees in a group reaches the maximum limit, do not record the change
in the number of bees, and set ct = ct + 1; otherwise, set ct = 0. If ct reaches the maximum
limit, revert the bee group ratio to the initial ratio.

Step 9: Update the positions of bees in each group

Each bee group will search according to its working mode and update its position, i.e.,
the equations for worker bees (33) and (37), follower bees (38), and scout bees (39).

Step 10: Check if the maximum number of iterations is reached

Check if the maximum number of iterations is reached. If not, set k = k + 1 and return
to Step 5 to continue executing. If the maximum number of iterations is reached, output
the best solution.

The flowchart of the proposed IACBS algorithm for solving CSCOPF is shown in
Figure 2.
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5. System Testing and Case Analysis

This section evaluates the proposed Calibrated Safety Constraints Optimal Power Flow
(CSCOPF) method through comprehensive system testing and case analysis using the IEEE
30-bus system (Figure 3). The system comprises 6 generators, 41 transmission lines, and
9 capacitor banks. Parameters for the generators, bus voltage limits, and transmission line
flow limits are sourced from previous studies [32], while wind farms connected to buses 5
and 11 are modeled with rated powers of 75 MW and 60 MW, respectively. The Weibull
distribution parameters and average wind speeds for these farms are also included [35].
The objective of this section is to verify the feasibility and performance of the CSCOPF
method and to compare the IACBS algorithm with the Genetic Algorithm with Chaos
Optimization (GACO) and Modified Particle Swarm Optimization (MPSO) methods to
assess its robustness. The research utilized MATLAB R2016b for simulations, conducted on
a computer with an i5 CPU clocked at 2.9 GHz and 16 GB of RAM.

Processes 2024, 12, x FOR PEER REVIEW 15 of 30 
 

 

with Chaos Optimization (GACO) and Modified Particle Swarm Optimization (MPSO) 
methods to assess its robustness. The research utilized MATLAB R2016b for simulations, 
conducted on a computer with an i5 CPU clocked at 2.9 GHz and 16 GB of RAM. 

G1 G2 D1

1 2

D2 D3

3 4

57
D4 G36

28

D5

8

G4

9 11

G5

D8

T3

T1

D9

D7

15

14

12 13

18

D12

19

D13

G6

D10 D11

1716

D14

2010

23

D16

D17

24212225

26

D15

D18

D6

D19 D20

27 29 30

T2

T4

 
Figure 3. IEEE 30-bus system. 

5.1. Case 1: Ignore Contingency Analysis and Do Not Consider Integer Issues in OPF 
In this case, the continuous-variable CSCOPF problem was analyzed without consid-

ering contingency analysis or integer variables. The objective was to minimize the gener-
ation cost while optimizing the active power outputs and voltages of generators. The state 
variables included the real and imaginary parts of the bus voltages, and the constraints 
encompassed generator power limits, bus voltage limits, and transmission line capacity 
limits, with reactive power limits being disregarded. The CSCOPF model ensures that 
even under normal operational conditions, without fault analysis, the system maintains 
stable power flow and optimal generator dispatch. 

The IACBS algorithm was applied to solve the CSCOPF problem, and it demon-
strated superior performance compared to GACO and MPSO. Specifically, IACBS inte-
grated with CSCOPF achieved the lowest generation cost and the fastest convergence. The 
process involved running 50 test runs to measure performance metrics like execution time, 
convergence speed, and generation cost, ensuring comparability across different algo-
rithms. 

The optimal generation cost achieved by IACBS was USD 487.4315 per hour, with an 
average solution cost of USD 487.7347 per hour, which was lower than both MPSO’s USD 
487.7567 per hour and GACO’s USD 487.89 per hour. IACBS also demonstrated superior 
convergence, requiring an average of 179.1 iterations, compared to MPSO (220.7 itera-
tions) and GACO (235.6 iterations). The execution time for IACBS was 92.1 s, significantly 

Figure 3. IEEE 30-bus system.

5.1. Case 1: Ignore Contingency Analysis and Do Not Consider Integer Issues in OPF

In this case, the continuous-variable CSCOPF problem was analyzed without consider-
ing contingency analysis or integer variables. The objective was to minimize the generation
cost while optimizing the active power outputs and voltages of generators. The state
variables included the real and imaginary parts of the bus voltages, and the constraints
encompassed generator power limits, bus voltage limits, and transmission line capacity
limits, with reactive power limits being disregarded. The CSCOPF model ensures that even
under normal operational conditions, without fault analysis, the system maintains stable
power flow and optimal generator dispatch.
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The IACBS algorithm was applied to solve the CSCOPF problem, and it demonstrated
superior performance compared to GACO and MPSO. Specifically, IACBS integrated with
CSCOPF achieved the lowest generation cost and the fastest convergence. The process
involved running 50 test runs to measure performance metrics like execution time, conver-
gence speed, and generation cost, ensuring comparability across different algorithms.

The optimal generation cost achieved by IACBS was USD 487.4315 per hour, with an
average solution cost of USD 487.7347 per hour, which was lower than both MPSO’s USD
487.7567 per hour and GACO’s USD 487.89 per hour. IACBS also demonstrated superior
convergence, requiring an average of 179.1 iterations, compared to MPSO (220.7 iterations)
and GACO (235.6 iterations). The execution time for IACBS was 92.1 s, significantly faster
than MPSO (126.4 s) and GACO (147.8 s). These results clearly highlight the efficiency of
CSCOPF when combined with IACBS in maintaining low operational costs even under
standard power flow conditions.

Table 1 shows the active power outputs of synchronous generators (G1, G2, G4, and
G6) and wind generators (G3 and G5), while Tables 2 and 3 present the optimal power flow
distribution, as well as the state of bus complex power and power flow in the OPF analysis,
respectively. Figure 4 demonstrates that all the transmission line flows remain within
system limits. This confirms that the CSCOPF model, supported by IACBS, ensures system
stability and operational safety without the need for contingency analysis. The results
also highlight the practical value of CSCOPF in achieving economic efficiency and system
stability under typical operational scenarios. Table 4 demonstrates the robust performance
of the IACBS algorithm, with shorter execution time, consistent cost outcomes, and fewer
iterations compared to GACO and MPSO.The clear steps and performance comparisons
make the analysis replicable, further supporting the robustness and practicality of the
proposed approach (Figure 5).

Table 1. The OPF result of the synchronous generators and wind generators in case 1.

Parameters
Synchronous Generators/Wind Generators

G1 G2 G3 G4 G5 G6

PG (MW) 19.257 76.916 21.22 38.425 45.576 30
|UG| (p.u.) 1.0038 1.0934 1.0042 1.0358 1.0061 1.0038

Table 2. State of bus complex power in OPF.

Bus No. Voltage Level
(p.u.)

Degrees
(◦)

Generator Complex Power
(p.u.)

Load Complex Power
(p.u.)

1 1.00000 0.00000 0.19257 − j0.09389 0.00000
2 1.00380 −0.19788 0.76916 + j0.26236 0.22785 + j0.12700
3 0.99146 −1.73650 0.00000 0.02520 + j0.01200
4 0.99020 −2.04809 0.00000 0.07980 + j0.01600
5 0.98861 −1.83370 0.38425 + j0.06901 0.00000
6 0.98176 −2.41184 0.00000 0.00000
7 0.97481 −2.75291 0.00000 0.23940 + j0.10900
8 0.96902 −2.92206 0.30000 + j0.09058 0.31500 + j0.30000
9 0.98952 −2.52170 0.00000 0.00000

10 0.99359 −2.57857 0.00000 0.06090 + j0.02000
11 0.98952 −2.52170 0.15576 + j0.11916 0.00000
12 1.03255 −2.78157 0.00000 0.11760 + j0.07500
13 1.09340 −1.27373 0.21220 + j0.47801 0.00000
14 1.01916 −3.19388 0.00000 0.06510 + j0.01600
15 1.02059 −2.76551 0.00000 0.08610 + j0.02500
16 1.00870 −3.00165 0.00000 0.03675 + j0.01800
17 0.99269 −2.93110 0.00000 0.09450 + j0.05800
18 0.99802 −3.47351 0.00000 0.03360 + j0.00900
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Table 2. Cont.

Bus No. Voltage Level
(p.u.)

Degrees
(◦)

Generator Complex Power
(p.u.)

Load Complex Power
(p.u.)

19 0.98837 −3.70021 0.00000 0.09975 + j0.03400
20 0.98874 −3.48049 0.00000 0.02310 + j0.00700
21 0.99854 −2.20990 0.00000 0.18375 + j0.11200
22 1.00420 −1.96189 0.00000 0.00000
23 1.03580 −1.03590 0.00000 0.03360 + j0.01600
24 1.00349 −2.09175 0.00000 0.09135 + j0.06700
25 0.99936 −2.54506 0.00000 0.000000.00000
26 0.98105 −3.02512 0.00000 0.03675 + j0.02300
27 1.00610 −2.53532 0.00000 0.00000
28 0.98221 −2.58483 0.00000 0.00000
29 0.98507 −3.89364 0.00000 0.02520 + j0.00900
30 0.97294 −4.84581 0.00000 0.11130 + j0.01900

Table 3. State of power flow in OPF.

Line
No.

Complex Power
(p.u.)

Line
No.

Complex Power
(p.u.)

Line
No.

Complex Power
(p.u.)

Line
No.

Complex Power
(p.u.)

Line1–2 0.03303 − j0.08924 Line2–1 −0.03290 + j0.05953 Line3–1 −0.15826 − j0.01034 Line18–15 −0.08657 − j0.05872
Line1–3 0.15954 − j0.00465 Line16–17 0.02489 + j0.07452 Line4–2 −0.19177 − j0.01829 Line19–18 −0.05265 − j0.04903
Line2–4 0.19402 + j0.00479 Line15–18 0.08778 + j0.06114 Line4–3 −0.13288 + j0.00238 Line20–19 0.04717 − j0.01486
Line3–4 0.13306 − j0.00166 Line18–19 0.05297 + j0.04972 Line5–2 −0.15050 − j0.04522 Line20–10 −0.07027 + j0.00786
Line2–5 0.15173 + j0.03026 Line19–20 −0.04710 + j0.01503 Line6–2 −0.22520 − j0.05071 Line17–10 −0.07010 + j0.01537
Line2–6 0.22846 + j0.04079 Line10–20 0.07073 − j0.00678 Line6–4 −0.19386 − j0.15829 Line21–10 0.10271 + j0.02687
Line4–6 0.19451 + j0.16089 Line10–17 0.07025 − j0.01495 Line7–5 −0.14921 − j0.05364 Line22–10 0.08615 + j0.03120
Line5–7 0.15050 + j0.04712 Line10–21 −0.10237 − j0.02608 Line7–6 −0.09019 − j0.05536 Line22–21 0.28748 + j0.14091
Line6–7 0.09053 + j0.04669 Line10–22 −0.08557 − j0.02995 Line8–6 −0.27173 − j0.23975 Line23–15 0.16011 + j0.00115
Line6–8 0.27313 + j0.24534 Line21–22 −0.28646 − j0.13888 Line9–6 −0.00887 + j0.03660 Line24–22 −0.01060 + j0.00313
Line6–9 0.00887 − j0.03629 Line15–23 −0.15772 + j0.00363 Line10–6 −0.00507 + j0.02100 Line24–23 −0.10427 − j0.06923
Line6–10 0.00507 − j0.02074 Line22–24 0.01062 − j0.00310 Line11–9 0.00000 Line25–24 −0.02342 + j0.00108
Line9–11 0.00000 + j0.00000 Line23–24 0.10629 + j0.07343 Line10–9 −0.00887 + j0.03676 Line26–25 −0.03675 − j0.02300
Line9–10 0.00887 − j0.03660 Line24–25 0.02353 − j0.00090 Line12–4 −0.05034 + j0.16852 Line27–25 0.01391 + j0.02499
Line4–12 0.05034 − j0.16098 Line25–26 0.03724 + j0.02374 Line13–12 0.21220 + j0.47801 Line27–28 0.00214 + j0.06009
Line12–13 −0.21220 − j0.44598 Line25–27 −0.01382 − j0.02482 Line14–12 −0.04395 − j0.03212 Line29–27 −0.06390 − j0.01520
Line12–14 0.04429 + j0.03287 Line28–27 −0.00214 − j0.05866 Line15–12 −0.03746 − j0.07378 Line30–27 −0.07298 − j0.01352
Line12–15 0.03792 + j0.07464 Line27–29 0.06488 + j0.01706 Line16–12 −0.06164 − j0.09252 Line30–29 −0.03832 − j0.00548
Line12–16 0.06273 + j0.09495 Line27–30 0.07484 + j0.01701 Line15–14 0.02130 − j0.01599 Line28–8 0.04355 + j0.04217
Line14–15 −0.02115 + j0.01612 Line29–30 0.03870 + j0.00620 Line17–16 −0.02440 − j0.07337 Line28–6 −0.04142 + j0.01649
Line8–28 −0.04327 − j0.06025 Line6–28 0.04146 − j0.02600
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Table 4. Performance comparison of the IACBS algorithm.

Method
Execution Time (s) Cost (USD/h) Number of Iterations

Max_Time Min_Time Avg_Time Worst Best Avg. Max_Count Min_Count Avg_Count

GACO 166.534 97.861 147.842 487.5984 487.4315 487.8900 310 214 235.6
MPSO 141.265 90.681 126.403 487.5691 487.4315 487.7567 286 195 220.7
IACBS 121.905 73.563 92.100 487.5740 487.4315 487.7347 227 85 110.1
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5.2. Case 2: Considering Contingency Analysis but Ignoring the Integer Aspects of the
CSCOPF Problem

In this case, we examine the optimal dispatch for the CSCOPF problem, incorporat-
ing contingency analysis while excluding integer variables. The approach begins with
conducting a contingency analysis on the IEEE 30-bus system, utilizing the ECI load flow
analysis program developed in this study. This program, capable of handling generator
and transmission line outages, enhances the system’s computational efficiency, reduces
memory requirements, and provides robust modeling, thus significantly improving simu-
lation accuracy compared to traditional methods that rely on limited Newton iterations.
Table 5 presents the original system data used in the analysis.By integrating the CSCOPF
model, this approach ensures that system reliability is maintained, even under severe
fault scenarios.

Table 5. Original system data.

Parameters
Synchronous Generators/Wind Generators

G1 G2 G3 G4 G5 G6

PG (MW) 35.82 60.97 37.00 21.59 49.20 26.91
|UG| (p.u.) 1.00 1.00 1.00 1.00 1.00 1.00

The PISA framework involved performing 46 load flow calculations, which were
completed in a swift 0.551 s per calculation. The results, detailed in Table 6, rank the
potential hazards based on their severity. The most critical scenario identified was a
fault on Line 10–22, leading to a significant overload of 4.9134 MW on Line 21–22. This
systematic fault analysis highlights the strength of CSCOPF in identifying and mitigating
system vulnerabilities before they escalate. The IACBS algorithm, integrated with the
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CSCOPF model, was applied to manage the system’s response to severe contingencies,
optimizing the preventive scheduling process.

Table 6. Severity ranking under PISA.

No. Faulty Component Overloaded Transmission Line Overloaded Power Flow (MW)

1 Line10–22 Line21–22 4.9134
2 Line6–8 Line6–28 3.0416
3 Line15–23 Line21–22 1.641
4 Line4–6 Line21–22 1.5349
5 Line12–13 Line15–23 1.5177
6 G1 Line21–22 1.3771
7 Line15–18 Line21–22 0.8459
8 Line2–6 Line21–22 0.7945
9 Line6–28 Line21–22 0.6262
10 G2 Line15–23 0.5157

Figures 6 and 7 illustrate that the optimal dispatch, derived from the analysis, suc-
cessfully maintains system stability under both normal and fault conditions. The IACBS
algorithm, in conjunction with the CSCOPF model, effectively manages the system’s re-
sponse to severe contingencies, ensuring that voltages and power flows remain within
acceptable limits. Even when subjected to the most severe faults, the system operates
within safe boundaries, showcasing the robustness of the IACBS algorithm in handling
complex scenarios and ensuring system security. This highlights CSCOPF’s preventive
scheduling capabilities, minimizing risks under fault conditions.

When incorporating the most severe contingency into the CSCOPF framework and
solving it using the proposed IACBS algorithm, the optimal dispatch results of CSCOPF,
without considering discrete variables (such as ignoring shunt capacitor banks), can be ob-
tained as shown in Table 6. Although the generation cost of CSCOPF is slightly higher than
that of OPF without contingency analysis under normal operating conditions, CSCOPF’s
preventive dispatch strategy ensures system safety during critical contingencies, avoiding
system collapse that traditional OPF might lead to in extreme scenarios. According to the
comparisons in Figures 6 and 7, the system voltage and power flow under the optimal
dispatch of CSCOPF remain within the specified limits, regardless of whether the most
severe contingency occurs.
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As shown in Table 7, the optimal dispatch results obtained using the IACBS algorithm
comply with the generator constraints. Although the active power outputs of synchronous
generator 2 (80 MW) and wind farm generator 5 (60 MW) have reached the system’s upper
limits, they remain within the system’s permissible range. Figure 6 indicates that the bus
voltages are within the allowable range, both in normal operation and during the most
critical contingency, with only the voltage at bus 13 being slightly higher (1.0743 p.u.),
but still within the system voltage limit of 1.1 p.u. The other bus voltages perform well.
Figure 7 shows that the system power flows are also maintained within limits during both
normal and fault conditions, with the power flow on Line21–22 reaching its upper limit.
Since the most severe contingency occurs on Line10–22, Figure 7 shows that only the power
flows in the nearby region (Line10–21, Line10–22, and Line21–22) exhibit significant changes
before and after the fault, while the areas further away are less affected. These results
demonstrate that CSCOPF, coupled with IACBS, ensures system stability and maintains
power flow within constraints, even in the most critical fault scenarios.

Table 7. The OPF result of the synchronous generators and wind generators in case 2.

Parameters
Synchronous Generators/Wind Generators

G1 G2 G3 G4 G5 G6

PG (MW) 23.342 80.000 20.887 28.151 60.000 19.245
|UG| (p.u.) 1.0000 1.0031 1.0812 0.9963 1.0239 1.0942

Additionally, the proposed IACBS algorithm demonstrates superior convergence
results compared to other stochastic algorithms in the literature under this test scenario,
as evident from Table 8. Further comparison of the convergence performance of the three
stochastic search algorithms, as illustrated in Figure 8, indicates that the CSCOPF algorithm
outperforms the GACO algorithm, while IACBS surpasses CSCOPF. Although IACBS
takes longer to converge in this test scenario, it achieves better results. This highlights the
superiority of IACBS in addressing multiple constraints and ensuring global optimization,
avoiding the local optima that traditional algorithms might fall into. The proposed IACBS
overcomes this limitation, showing a higher probability of achieving the global optimum,
further demonstrating its robustness.
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Table 8. Performance comparison of the IACBS algorithm in case 2.

Method
Execution Time (s) Cost (USD/h) Number of Iterations

Max_Time Min_Time Avg_Time Worst Best Avg. Max_Count Min_Count Avg_Count

GACO 186.166 114.882 149.325 488.9452 487.4421 487.8900 341 245 280.4
MPSO 171.577 101.144 132.723 488.9385 487.4369 487.7912 275 194 211.6
IACBS 211.517 133.395 153.185 488.9371 487.4327 487.7651 287 65 81.9
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5.3. Case 3: Considering Contingency Analysis and the Integer Aspects of the CSCOPF Problem

In this case, the study developed a method for solving the CSCOPF problem by
incorporating the IACBS algorithm. This approach utilizes the current injection method to
control load flow, with the primary objective of minimizing generation costs. The system
employs a preventive scheduling strategy, optimized for the most significant potential
contingencies, such as a fault on the line between bus 10 and bus 22. This case introduces
discrete variables, specifically shunt capacitors with capacities ranging from 0 to 5 MVAR,
installed across nine buses with an adjustment step of 1 MVAR. The inclusion of these
discrete variables highlights CSCOPF’s ability to handle both continuous and discrete
variables simultaneously, ensuring system robustness under various conditions.

The results of this case are detailed in Tables 9 and 10. The optimal configuration of
shunt capacitors resulted in an operating cost of USD 487.561 per hour, while the worst
configuration had an operating cost of USD 488.9431 per hour. The average operating
cost across 50 calculations was USD 487.9801 per hour. These results are compared with
the performance of the GACO and MPSO algorithms in Table 11 and Figure 9. The
results clearly show that CSCOPF integrated with IACBS achieves superior cost efficiency,
especially when dealing with discrete variables. The IACBS algorithm, despite requiring a
longer convergence time, demonstrated superior performance in terms of cost efficiency
and convergence. It effectively managed both continuous and discrete variables, confirming
its robustness and ability to handle complex scheduling problems. This robustness ensures
that CSCOPF remains an effective solution for power flow optimization even in challenging
fault scenarios involving multiple constraints.
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Table 9. The optimal dispatch results of CSCOPF in case 3.

Parameters
Synchronous Generators/Wind Generators

G1 G2 G3 G4 G5 G6

Best solution
PG (MW) 21.678 80.000 20.180 31.114 60.000 12.169
|UG| (p.u.) 1.0000 1.0077 1.0591 1.0046 1.0315 0.99921

Cost (USD/h) 54.415 200.150 56.747 77.389 60.0507 38.809

Worst solution
PG (MW) 17.776 75.715 24.101 30.125 60 16.349
|UG| (p.u.) 1.0000 0.99913 1.0377 0.99400 1.0092 0.99238

Cost (USD/h) 49.641 194.683 65.708 77.416 60.05 45.845

Table 10. Capacitor optimal and suboptimal configuration.

Shunt No. 1 2 3 4 5 6 7 8 9
Bus No. 10 12 15 17 20 21 23 24 29

Optimal Csh (Mvar)
IACBS 5 4 4 5 5 5 5 4 1
MPSO 5 1 2 4 5 5 5 5 4
GACO 5 1 4 5 5 5 4 3 3

Suboptimal Csh (Mvar)
IACBS 3 2 5 5 0 5 5 5 0
MPSO 4 3 4 5 5 1 0 2 2
GACO 2 2 1 4 1 5 0 5 3

Table 11. Performance comparison of the IACBS algorithm in case 3.

Method
Execution Time (s) Cost (USD/h) Number of Iterations

Max_Time Min_Time Avg_Time Worst Best Avg. Max_Count Min_Count Avg_Count

GACO 235.860 126.592 217.161 495.9527 487.9116 488.1902 562 121 205.5
MPSO 185.082 93.882 161.156 493.3661 487.9622 488.0521 381 66 180.7
IACBS 200.778 100.371 186.520 488.9431 487.5610 487.9801 287 65 101.9
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The performance comparison illustrates that the IACBS algorithm outperforms both
GACO and MPSO in terms of achieving lower costs and faster convergence. This further
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emphasizes the strength of the CSCOPF model in optimizing scheduling decisions when
integer aspects, such as shunt capacitor configurations, are included. This underscores
the effectiveness of IACBS in optimizing scheduling when discrete variables are included,
providing a reliable solution for the CSCOPF problem.

The test results indicate that MPSO outperformed GACO in terms of average execution
time (161.156 s), average solution (488.0521), and average convergence times (180.7 times).
Among these two stochastic search algorithms, IACBS demonstrated superior performance.
Figure 9 shows that although MPSO can rapidly approach the optimal solution using
Equation (28), relying solely on this equation may lead to fast convergence to a local
optimum, failing to find the global optimum. This limitation highlights the importance
of CSCOPF’s integration with IACBS, which provides a more thorough search process
and ensures global optimization. Therefore, in terms of detailed search, Equation (36)
provides a mechanism that can escape the local optima and more accurately search for the
global optimum.

By applying the optimal scheduling results from Table 9 to the simulated load flow, the
system’s state during normal operation and under maximum risk conditions was observed,
including system voltage conditions before and after faults, as shown in Figure 10, and
flow conditions, as shown in Figure 11. This step-by-step approach ensures that CSCOPF’s
optimization process is clear and replicable. Figures 10 and 11 indicate that under the
optimal scheduling of CSCOPF, all voltages and line flows operated within safe limits,
whether during normal operation or under maximum risk conditions. This demonstrates
the practical effectiveness of CSCOPF in maintaining system stability even in the presence
of discrete control elements like shunt capacitors. Except for the automatic adjustment of
the swing bus’s power output to balance supply and demand, no changes were required in
the power output or voltage values of synchronous generators and wind farms, allowing
the system to operate normally within safe limits.
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5.4. The Higher-Order System Test for the IEEE 118-Bus System

To enhance the validation of the proposed method, the IEEE 118-bus system was
utilized, which contains 54 generators, 186 transmission lines, and 99 load buses [36].
This system provides a comprehensive platform to assess the method’s performance in
optimizing power flow and ensuring system stability under various operational conditions,
including fault scenarios. The use of such a large-scale system highlights CSCOPF’s ability
to manage complex power networks efficiently.

In this case, we examine the optimal dispatch for the CSCOPF problem on the IEEE
118-bus system, incorporating contingency analysis. This PISA first conducts a contingency
analysis on the IEEE 118-bus system, utilizing the ECI load flow analysis program devel-
oped in this study. This program is capable of handling generator and transmission line
outages, enhancing system computational efficiency, reducing memory requirements, and
providing robust modeling capabilities, thus significantly improving simulation accuracy
compared to traditional methods that rely on limited Newton iterations. By integrating
CSCOPF with PISA, the system ensures that even under high-risk contingencies, the power
flow optimization remains robust and reliable.

The results of the load flow calculations performed by PISA are detailed in Table 12,
where the top 10 potential hazards are ranked according to severity. The analysis revealed
that the most critical hazard was a fault on Lines 71–72, leading to a significant overload
of 13.7591 MW on Lines 69–75. This study focuses on line overloads to determine the
most critical cases, intentionally excluding other factors such as voltage deviations to avoid
confusion and maintain clarity in the analysis. This method ensures that critical risks are
prioritized, allowing the CSCOPF model to mitigate the most severe impacts effectively.

The testing results on the IEEE 118-bus system show that the algorithm successfully
minimized generation costs while maintaining stability. The voltage levels remained within
the acceptable range during both normal operations and fault conditions. Additionally,
the preventive scheduling implemented in the system contributed significantly to its
reliability, confirming that the proposed method is applicable to complex and large-scale
power networks. This demonstrates CSCOPF’s scalability and effectiveness in managing
preventive actions across large systems (Figures 12 and 13).
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Table 12. Severity ranking under PISA for the IEEE 118-bus system.

No. Faulty Component Overloaded Transmission Line Overloaded Power Flow (MW)

1 Line71–72 Line69–75 13.7591
2 Line6–8 Line90–91 8.8512
3 Line1–3 Line3–5 7.4112
4 Line3–12 Line7–12 5.8516
5 G2 Line4–5 4.5137
6 G21 Line54–55 4.1089
7 Line105–108 Line105–107 3.8519
8 Line100–103 Line100–104 1.8477
9 G45 Line100–101 0.9502
10 G40 Line92–93 0.7018
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The results of this case are detailed in Table 13. The optimal resulted in an operating
cost of USD 130,170.96 per hour, while the worst configuration had an operating cost of
USD 133,573.08 per hour. The average operating cost across 50 calculations was USD
132,663.57 per hour. These results are compared with the performance of the GACO
and MPSO algorithms in Table 13 and Figure 14. The comparison clearly shows that the
IACBS algorithm, integrated with CSCOPF, provides superior cost efficiency and stability,
even in large-scale power systems. The IACBS algorithm, despite requiring a longer
convergence time, demonstrated superior performance in terms of cost efficiency and
convergence. It effectively managed the variables, confirming its robustness and ability to
handle complex scheduling problems. The algorithm’s ability to escape the local optima
and find global solutions, even in larger networks like the IEEE 118-bus system, underscores
its practical applicability.

Table 13. The optimal dispatch results of CSCOPF for the IEEE 118-bus system.

Method
Execution Time (s) Cost (USD/h) Number of Iterations

Max_Time Min_Time Avg_Time Worst Best Avg. Max_Count Min_Count Avg_Count

GACO 357.052 114.07 297.445 133,511.91 132,055.18 132,727.84 605 116 287.0
MPSO 389.258 187.211 350.889 134,107.55 130,170.96 132,681.60 476 134 290.0
IACBS 360.217 190.591 321.029 133,573.08 128,884.57 132,663.57 405 121 299.0
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6. Conclusions and Suggestion
6.1. Summary

This study introduced and evaluated the Calibrated Safety Constraints Optimal Power
Flow (CSCOPF) method, employing the Improved Acceleration Coefficient-Based Bee
Swarm Algorithm (IACBS). Several key objectives were addressed, and the findings are
summarized as follows:

The primary objective was to minimize the fuel cost of energy units while optimizing
power flow within the system. The results showed that the CSCOPF model effectively
reduced generation costs, achieving an optimal cost of USD 487.4315 per hour. The IACBS
algorithm demonstrated superior performance in this regard, offering the lowest cost and
the fastest convergence speed compared to alternative methods such as GACO and MPSO.
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Another critical focus was the impact of integrating wind turbines on system per-
formance. The study revealed that adding wind turbines significantly influences voltage
levels and power flows. The equivalent current injection (ECI) method accurately modeled
these effects, enabling the optimization process to accommodate the variability introduced
by wind power generation.

Furthermore, the effectiveness of the proposed model was evaluated under various
operational scenarios, including contingencies and the inclusion of integer variables. The
CSCOPF model proved robust in managing these scenarios, maintaining system stability
under severe fault conditions, and optimizing the scheduling of discrete variables, such as
shunt capacitors. This ensures that the system remains operational and within safe limits
even during critical contingencies.

In summary, the IACBS algorithm exhibited superior performance in terms of solution
quality and computational efficiency. The CSCOPF method enhances the safety and stability
of power systems, particularly under extreme conditions. This approach not only fulfills
the study’s objectives but also provides a reliable framework for managing complex power
systems effectively.

6.2. Practical Applications and Recommendations

Based on the findings of this study, the following practical applications and recom-
mendations are proposed:

1. Integration of wind power with system optimization:

The research demonstrates the effectiveness of the Calibrated Safety Constraints
Optimal Power Flow (CSCOPF) method in managing the integration of wind power into
the grid. Utilities and grid operators can apply the CSCOPF model to optimize power
dispatch and reduce generation costs while ensuring system stability. This approach is
particularly useful for grid systems with high renewable energy penetration, providing a
robust framework for managing variable wind power outputs.

2. Preventive scheduling for contingency management:

The study’s findings highlight the importance of preventive scheduling to handle
potential contingencies. Power system operators can use the developed methodology
to perform contingency analysis and implement preventive measures, such as adjusting
generator outputs and optimizing capacitor settings. This proactive approach can help
mitigate the impact of unexpected faults and enhance the overall system reliability.

3. Application of discrete variables in power flow optimization:

The incorporation of discrete variables, such as shunt capacitors, into the optimiza-
tion process is shown to improve system performance. Grid operators should consider
integrating discrete control elements into their optimization models to achieve better cost
efficiency and system stability. The results suggest that optimizing the placement and sizing
of capacitors can significantly enhance power flow management and system resilience.

4. Enhanced modeling for real-time applications:

The use of the ECI load flow analysis program provides high computational efficiency
and robustness. This tool can be adapted for the real-time monitoring and control of power
systems. By implementing real-time analysis capabilities, utilities can better respond to
dynamic changes in system conditions and maintain optimal performance.

These recommendations provide a practical framework for applying the results of this
research to real-world power system management. By implementing these suggestions,
utilities and grid operators can enhance system efficiency, stability, and cost-effectiveness.
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Nomenclature
P Active power
Q Reactive power
V Voltage magnitude
θ Voltage angle
I Current
Z Impedance
f Frequency
IACBS Improved Acceleration Coefficient-Based Bee Swarm Algorithm
CSCOPF Calibrated Safety Constraints Optimal Power Flow
PISA Power Incident Safety Analysis
E Electromotive force
∆P Power mismatch
S Apparent power
T Time
R Resistance of transmission line
L Inductance of transmission line
C Capacitance of transmission line
GSR Conductance between buses
BSR Susceptance between buses
BC Capacitive susceptance of transmission line to ground
∆Ii Imaginary component of current difference
∆Ir Real component of current difference
Ur, Ui Real and imaginary parts of bus voltages
J Jacobian matrix (used in Newton–Raphson method)
X Reactance
Y Admittance
Pmax Maximum active power output
Pmin Minimum active power output
λ Lagrange multiplier
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