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Abstract: Capillary pressure curves are usually obtained through mercury injection experiments,
which are mainly used to characterize pore structures. However, mercury injection experiments
have many limitations, such as operation danger, a long experiment period, and great damage to
the sample. Therefore, researchers have tried to predict capillary pressure data based on NMR
data, but NMR data are expensive and unstable to obtain. This study aims to accurately predict
capillary pressure curves. Based on rock particle size data, various machine learning methods, such as
traditional machine learning and artificial neural networks, are used to build prediction models and
predict different types of capillary pressure curves, aiming at studying the best prediction algorithm.
In addition, through adjusting the amount of particle size characteristic data, the best amount of
particle size characteristic data is explored. The results show that three correlation coefficients of the
four optimal algorithms can reach more than 0.92, and the best performance is obtained using the
Levenberg–Marquardt method. The prediction performance of this algorithm is excellent, with the
three correlation coefficients being all higher than 0.96 and the root mean square error being only
5.866. When partial particle size characteristics are selected, the training performance is gradually
improved with an increase in the amount of feature data, but it is far less than the performance
of using all the features. When the interpolation increases the particle size characteristics, the best
performance is achieved when the feature data volume is 50 groups and the root mean square error
is the smallest, but the Kendall correlation coefficient decreases. This study provides a new way to
obtain capillary pressure data accurately.

Keywords: capillary pressure curve; rock particle size; artificial neural network; machine learning

1. Introduction

Capillary pressure curves are widely used to characterize reservoir pore structures.
Previous studies have used conventional mercury injection experiments to obtain pore
volume distribution ranges of different types of reservoirs [1]. For complex reservoirs such
as tight sandstone, high-pressure mercury injection experiments have been applied [2].
Mercury injection experiments are also often combined with other data to complete reser-
voir quality assessments. Some scholars combine mercury injection experiments with gas
adsorption to improve the accuracy of the assessments [3,4]. Subsequently, techniques
such as scanning electron microscopy, nuclear magnetic resonance, and a quenched solid
density function have also been applied to jointly characterize the pore characteristics of
unconventional reservoirs such as tight sandstone [5,6]. In addition, some scholars also
use a variety of technical means, including mercury injection experiments, to conduct
fractal dimension analyses on the pore distribution of tight sandstone reservoirs to further
evaluate the pore structure of the reservoirs [7,8].

Capillary pressure curves can be used to characterize the reservoir quality in an intu-
itive way, which can only be obtained through mercury injection experiments. However,
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mercury injection experiments have many limitations, including high safety risks, high
costs, and the potential for contaminating the core and limiting the performance of other
experiments. For this reason, some scholars have proposed a method for constructing
capillary pressure curves using a T2 distribution curve via nuclear magnetic resonance [9].
Subsequently, some scholars proposed a method of combining NMR logging data with
conventional logging data to predict pseudo-capillary pressure curves based on the es-
timated binary porosity [10]. However, this method can accurately construct capillary
pressure curves only at low mercury saturation. In order to solve this problem, researchers
have analyzed the possible causes of this situation in detail and made corresponding
improvements [11]. Among them, one scholar proposed a segmented power function
method, which has been widely used to predict pseudo-capillary pressure curves using the
inverse accumulation curve via nuclear magnetic resonance [12,13]. In addition, in order to
improve the prediction accuracy of complex reservoirs, researchers have also introduced a
segmented multi-parameter power function method [14]. In short, previous studies have
used the actual physical correlation between the two characteristics and used mathematical
methods to predict capillary pressure curves. In recent years, artificial intelligence methods
have also been applied to the prediction of capillary pressure curves [15].

Artificial intelligence methods, including a variety of machine learning models and
deep learning models, have been widely used in the fields of lithology identification
and data prediction. Based on logging data, previous studies have used a variety of
machine learning methods, such as support vector machines (SVMs) and decision trees
(DTs), to effectively identify igneous rocks [16,17]. Subsequently, for a variety of lithology
applications, researchers have adopted a variety of neural networks and other methods
to conduct research [18,19]. In the field of data prediction, previous studies have used
a variety of machine learning and neural network methods to effectively predict shear
waves [20,21]. In the prediction of pore structure, many scholars have adopted more
complex deep learning methods, including deep and shallow neural networks and time
series [22,23].

It is worth noting that there are many previous methods for constructing capillary
pressure curves, including segmented power functions, segmented multi-parameter power
functions, and artificial intelligence techniques, but they are all based on NMR data obtained
from core analysis. However, NMR itself is costly and susceptible to external interference,
and there may be insufficient data in the actual production process, which hinders the goal
of using NMR data to construct capillary pressure curves. Therefore, the research focus of
this paper turns to using rock particle size data.

The particle size data of rocks are often used to quantitatively describe the physical
properties of rocks. In order to further study the influence of particle size on the energy
evolution of coal mine waste rock, researchers designed a special compaction device [24].
Subsequently, they developed a bidirectional loading experimental system to systemati-
cally explore the relationship between particle size and porosity [25]. In the field of rock
mechanics, many scholars have used the discrete element method to conduct numerical
simulation research on particles [26–28]. To solve the problem of crack expansion caused by
particle size, researchers introduced CT scanning and microscopic analysis [29]. Recently,
some scholars found that there is a correlation between the particle size distribution curve
and T2 distribution via nuclear magnetic resonance, and the conversion coefficient between
them was obtained using a nonlinear fitting method [30].

The above studies give a clear indication that there is a strong correlation between
particle size data and NMR data, and NMR data can be applied to the construction of
capillary pressure curves. This further reflects a certain correlation between particle size
data and capillary pressure curves (i.e., mercury injection data). Therefore, this paper
proposes a new method for capillary pressure curve prediction based on rock particle size
data and using a variety of artificial intelligence techniques, including machine learning.
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2. Overview of the Study Area

The particle size and mercury injection data in this study were selected from the
Zhenwu–Caozhuang area of the Paleogene Danan Formation in the Gaoyou Depression
(Figure 1). The Gaoyou Depression, located in the central region of the Dongtai Depression
within the Subei Basin, covers an area of 2130 km2. It exhibits a roughly rhomboidal shape,
with its major axis oriented northeast. The depression forms a loop, characterized by steep
slopes in the south part and gentler slopes in the north.

Figure 1. Structural zoning map of the Gaoyou Depression. The red point in the upper left figure
represents the general position of the Gaoyou Depression, and the red area in the main figure is the
study area.

The lithology primarily consists of siltstone, constituting 40–70% of the total, with
pebbly siltstone and fine sandstone as the secondary components. The lithological section
is characterized by a tectonic rhythm of interbedded dark gray and dark brown mudstones.
The rock exhibits relatively good sorting, with a median particle size averaging 0.12 mm.
The primary bedding types include graded bedding, massive bedding, and parallel bed-
ding. The bases of some bedding sequences contain bands of gravel and mudstone, with
intersecting surfaces exhibiting scour marks with a thickness in the 10–30 cm range. Some
massive beds contain a small amount of fine gravel. Parallel bedding within siltstone
shows variations in grain size and the orientation of mica sheets or carbon chips, with
a typical thickness of about 10 cm. Core porosity ranges from 0.9% to 31.5%, with an
average porosity of 18.47% and a concentrated distribution of 12–26.8%. The average air
permeability is 844 × 10−3 µm2, with a wide distribution range. Some cores in the study
area are tight and characterized by low permeability and tightness, but the overall physical
properties are relatively favorable, as shown in Figure 2. Typical cores were deposited by
underwater distributary channels at the front of a fan delta (Figure 3).
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Figure 2. Scatter diagram showing the relationship between the porosity and air permeability of 
core samples. 
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Figure 2. Scatter diagram showing the relationship between the porosity and air permeability of core
samples.
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Figure 3. Typical cores deposited by underwater distributary channels in front of a fan delta:
(a) parallel bedding; (b) cross-bedding; (c) channel scouring surface; (d) massive bedding.
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3. Research Methods
3.1. Research Basis

Previous studies suggest a correlation between particle size and capillary pressure. This
link is verified by the statistical analysis of actual data (Figure 4). This finding indicates that
this relationship is appropriate for applying artificial intelligence methods for data fitting.
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capillary pressure curve.

3.2. Research Ideas

In this study, 74 core samples from the study area were selected, of which 70 were
used for training, and the remaining 4 were used for prediction. The four predicted
samples exhibited different types of capillary pressure curves. The grain size accumulation
curve of the core samples was measured using sieve analysis. This method uses standard
screens arranged in descending order of pore size to classify the core samples [31]. By
weighing the mass of each grain size fraction, the cumulative distribution of the sample
was calculated. The capillary pressure curves of the core samples were measured using the
mercury injection experiment, which involves injecting mercury into the core sample at
varying injection pressures [32]. As the pressure gradually increases, mercury infiltrates
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pores of varying sizes to generate the capillary pressure curve. For this analysis, cumulative
particle size data comprising 21 sets of features were used as input, whereas the capillary
pressure data constituting 26 sets of features were used as output for regression learning.
Traditional machine learning and artificial neural network methods implemented using
MATLAB 2021b were employed to construct the mapping relationship between the particle
size accumulation curve and the capillary pressure curve (Figure 5).
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In traditional machine learning, models such as regression trees (RTs), support vector
machines (SVMs), Gaussian process regression (GPR), and regression tree integration
(RTI) are used to train the many-to-one regression learning strategy. The best algorithm is
determined based on the training performance, which is then used for the corresponding
prediction analysis. For artificial neural networks, the dataset is divided into training sets
(70% of the total data), validation sets (15%), and test sets (15%). Training is conducted
using the Levenberg–Marquardt (LM) method, Bayesian regularization (BR) method, and
quantized conjugate gradient (QCG) method through a many-to-many regression learning
strategy. In the many-to-one strategy, 21 particle size characteristics are used as inputs, and
26 capillary pressure characteristics are used as outputs. In each regression study, multiple
particle size characteristics correspond to capillary pressure characteristics on a one-to-one
basis, resulting in the establishment of 26 independent models to complete the prediction
task. The many-to-many strategy involves the simultaneous selection of multiple particle
size characteristics and multiple capillary pressure characteristics for regression learning,
allowing for the development of a comprehensive model to complete the prediction task.
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In addition, within the scope of machine learning, the prediction performance of
regression learning using partial particle size data features was analyzed based on the
model considered best. Meanwhile, particle size data in artificial neural networks were
interpolated and expanded to determine the influence of data expansion on the prediction
performance. Finally, through comparative analysis, the most effective artificial intelligence
method was identified and the optimal particle size data characteristics were determined
to accurately predict the capillary pressure curve.

4. Theoretical Basis
4.1. PCHIP Interpolation Method

Piecewise cubic Hermite interpolation polynomial (PCHIP) [33,34] is expressed as
follows:

H3(x) =
[(

1 + 2
x − x0

x1 − x0

)
y0 + (x − x0)y′0

](
x − x1

x0 − x1

)2
+

[(
1 + 2

x − x1

x0 − x1

)
y1 + (x − x1)y′1

](
x − x0

x1 − x0

)2
(1)

where x0 and x1 denote the measurement points before and after the points to be in-
terpolated; y0 and y1 correspond to the measurements before and after the points to be
interpolated; and y′0 and y′1 denote the first derivative values calculated from known data.

4.2. Principles of Machine Learning
4.2.1. Regression Tree

The Classification And Regression Tree (CART) is a machine learning model that uses
a tree data structure to illustrate decision rules [35,36]. A regression tree (RT), a specific type
of CART decision tree, mainly functions to predict unknown data by using the structural
characteristics of the data. The calculation process involves the recursive construction of a
binary tree.

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} (2)

First, the optimal segmentation variable j and the segmentation point s are determined
to obtain the minimum error (j, s).

minj,s

minc1 ∑
xi∈R1(j,s)

(yi − c1)
2 + minc2 ∑

xi∈R2(j,s)
(yi − c2)

2

 (3)

The sample features are then divided into two nodes based on the optimal (j, s), and
the aforementioned steps are repeated until the termination condition is satisfied. The
input space is ultimately divided into m regions to generate a decision tree.

cm = average(yi|xi ∈ Rm(j, s)) (4)

f (x) =
M

∑
m=1

cm I, X ∈ Rm (5)

4.2.2. Support Vector Machine

Support vector machines (SVMs) are supervised learning algorithms designed to
find the optimal hyperplane that divides different classes of data points. For nonlinear
problems, kernel functions can be introduced to perform inner product operations in
high-dimensional spaces [37]. In the current study, both the cubic kernel function and the
Gaussian kernel function in the polynomial kernel function are used, which are expressed
as follows:

K
(
xi, xj

)
=

(
xT

i xj + c
)d

(6)
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where d represents the order of the polynomial kernel.

K
(
xi, xj

)
= exp(−

∣∣xi − xj
∣∣2

2σ2 ) (7)

where K
(

xi, xj
)

is the inner product kernel, where xi and xj are two different samples; σ is
a free parameter.

4.2.3. Gaussian Process Regression

Gaussian process regression (GPR) is a probability-based machine learning algorithm
that implements the prediction function by modeling the data as a series of Gaussian
processes. For an input sample set D = {xi, yi, i = 1, 2 . . . , n}, where i is the sample
sequence, GPR aims to determine the relationship f between the independent variables x
and y to complete the prediction. Let f obey the GPR F ∼ GPR(m, k), where m is the mean
value function, and k is the covariance function. The following formula is thus given:

y = f (x) + ε(1) (8)

ε = N
(

0, δ2
n

)
(9)

where ε is random noise and variance is δ2
n Gaussian distribution.

The prior distribution of y is expressed as

y ∼ N
(

0, K + δ2
n I
)

(10)

where K = K(X, X) is a symmetric positive definite covariance matrix of order n × n.

4.2.4. Regression Tree Integration

Regression tree integration (RTI) involves combining multiple independent regression
trees into a single model. The LSBoost algorithm, an ensemble learning method, integrates
multiple weak models to build more powerful prediction models [38,39]. The current study
uses the boosting tree model based on the LSBoost algorithm. Its estimation and regression
are expressed as follows:

f̂0(t) = argmin
n

∑
j=1

(
yj − γ

)2 (11)

where f̂0(t) represents the base model—that is, the initial model in the set. For predicting
the target value y, a constant γ is chosen to minimize the square error sum.

4.3. Principles of Artificial Neural Network

Neural network fitting refers to the application of an artificial neural network (ANN)
to fit a function. A neural network is a machine learning model that simulates a neural
network of the human brain, consisting of multiple neurons that fit a given function by
adjusting parameters such as weights and biases. In neural network fitting, the back-
propagation algorithm is typically used to optimize the parameters of the neural network,
thus minimizing the error between the predicted value and the actual value. Gradually
increasing the number of hidden layers and neurons improves the fitting ability of the
neural network.

The artificial neural network model employed in this study is essentially a deep
learning-based machine learning model with few layers. The network structure of the
model comprises an input layer, a hidden layer, and an output layer (Figure 6). A sigmoid
transfer function is used in the hidden layer, whereas a linear transfer function is used in
the output layer. The number of neurons in the hidden layer is determined by the size of
the layer.
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4.4. Evaluation Indicators
4.4.1. Root Mean Square Error

The root mean square error (RMSE) is a statistical index used to measure the deviation
between observed and actual values. In this study, RMSE was mainly used to evaluate
the training performance and the degree of deviation between the predicted and actual
values [40–42], calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (12)

where xi represents the input value, x̂i denotes the predicted value, and n is the number of
training data.

4.4.2. Correlation Coefficient

Correlation coefficients are statistical indicators that quantify the degree of linear
correlation between variables, typically applied to numerical data. In this study, correlation
coefficients are primarily used to evaluate the degree of fit of the model, thereby assessing
the training performance and predictive accuracy of the model. Numerous methods for
calculating the correlation coefficient have been developed, with the Pearson correlation
coefficient being the most widely used [42,43] and given as follows:

ρX,Y =
E(XY)− E(X)E(Y)√

E(X2)− (E(X))2
√

E(Y2)− (E(Y))2
(13)
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Equation (8) indicates that the Pearson correlation coefficient ranges between [−1, 1].
A correlation coefficient closer to 1 or −1 suggests a stronger correlation, whereas for values
nearer and vice versa, the correlation is weaker.

In addition to the Pearson correlation coefficient, the determination coefficient [41],
Kendall correlation coefficient [44], and Spearman correlation coefficient [45,46] are used in
the current study. The formulas for calculating the three are presented below:

R2 = 1 − ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − xi)

2 (14)

where R2 represents the coefficient of determination, xi denotes the input value, xi indicates
the average value, n is the number of training data points, ∑ n

i=1(xi − x̂i)
2 denotes the

sum of squared differences between the actual and predicted values, and ∑ n
i=1(xi − xi)

2

represents the sum of squares of the actual values and the mean.

τ =
2

n(n − 1) ∑
i<j

sgn
(
Xi − Xj

)
sgn

(
Yi − Yj

)
(15)

where τ denotes the Kendall correlation coefficient, n is the sample size, and sgn
(
Xi − Xj

)
and sgn

(
Yi − Yj

)
represent

(
Xi − Xj

)
and

(
Yi − Yj

)
, respectively. If

(
Xi − Xj

)
> 0, then

sgn
(
Xi − Xj

)
= 1; otherwise, sgn

(
Xi − Xj

)
= −1. The same applies to Y.

γs = 1 −
6 ∑ d2

i
n(n2 − 1)

(16)

where γs represents the Spearman correlation coefficient, di = Xi −Yi denotes the difference
between two variables, and n is the number of samples.

Similar to Pearson’s correlation coefficient, both the Kendall and Spearman correlation
coefficients have values in the [−1, 1] range, with the correlation criteria remaining consis-
tent. However, the determination coefficient falls within the [0, 1] range. A result closer to 1
indicates a better fit, whereas that closer to 0 suggests a poorer fit. The Pearson correlation
coefficient applies to variables with a non-zero standard deviation and is typically used for
variables with linear relationships or normal distributions. By contrast, both the Kendall
and Spearman correlation coefficients can reflect the linear and nonlinear relationships of
the variables that do not follow a normal distribution, rendering them suitable for a wider
range of applications [47].

5. Research Results
5.1. Machine Learning Method
5.1.1. Machine Learning Model Fitting

To determine the most suitable machine learning model, this study adopted the
resubstitution verification method based on all the particle size characteristic data. The
RT, SVM, GPR, and RTI machine learning models were employed to perform regression
learning on 26 groups of capillary pressure characteristic data individually.

The results presented in Table 1 indicate that the optimal algorithm for each model is
selected using the criteria that the RMSE is less than 9, and the coefficient of determination
(R2) is greater than 0.5. Among the algorithms, the fine tree algorithm demonstrates the best
performance within the regression tree model. Meanwhile, the cubic SVM is identified as
the most optimal algorithm in the SVM model. The training performance of the GPR model
indicates an overall deviation, with the optimal model identified as the quadratic rational
GPR. In the regression tree integration model, the boosting tree algorithm is considered
optimal. Among the evaluated algorithms, the boosting tree algorithm exhibits the best
training fitting performance, achieving a maximum R2 of 0.579 and a minimum RMSE of
8.291. The cubic SVM follows, with an R2 of 0.541. The fine tree ranks third, with an R2
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of 0.521. The other machine learning models generally yield poor fitting results, with R2

below 0.5. Through statistical analysis, three algorithms with the best training performance
are identified: the fine tree, cubic SVM, and boosting tree. Subsequently, a prediction study
was conducted using these three algorithms (Figure 7).

Table 1. Training performance of each machine learning model.

Model Regression Tree Model Support Vector
Machine Model

Gaussian Process
Regression Model

Regression Tree
Integration Model

Algorithm Rough
tree

Medium
tree Fine tree

Fine
Gaussian

SVM

Cubic
SVM

Quadratic
rational

GPR

Square
index
GPR

Bagging
tree

Boosting
tree

RMSE 13.452 11.681 8.786 9.089 8.4399 11.326 12.896 10.543 8.291
R2 0 0.217 0.521 0.462 0.541 0.238 0.052 0.352 0.579
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The boosting tree algorithm performs well across the four prediction samples, and the
fine tree and cubic support vector machine fail to maintain stable prediction performance
with different types of capillary pressure curves, resulting in large fluctuations (Figure 7).

5.1.2. Fitting of Partial Particle Size Characteristics

In this section, regression learning training was conducted based on the boosting tree
model. A part of particle size data from 21 groups of features was selected to perform
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fitting training with capillary pressure data from 26 groups of features. This approach
aimed to evaluate the influence of some feature data on the fitting performance of the
model. Figure 8 presents the regression learning process with a three-to-one example:
the first, second, and third particle size features correspond to the first capillary pressure
feature, arranged from left to right, continuing until the ninth capillary pressure feature.
The 19th, 20th, and 21st particle size features correspond to the 26th capillary pressure
feature, arranged from right to left, continuing until the 18th capillary pressure feature.
The median of the particle size characteristic data was determined to be 11, and the 10th,
11th, and 12th particle size characteristics were subsequently selected to correspond to the
remaining capillary pressure characteristics (denoted by the red dotted frame in Figure 8).
This selection was made because the particle size accumulation curve and capillary pressure
curve exhibited greater consistency in the middle region.
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As the number of features increases, the RMSE value gradually decreases, whereas the
R2 value gradually rises, indicating an improvement in the training performance, as shown
in Table 2. However, when 19 groups of feature data are used for regression learning, the
R2 value is 0.556, which is lower than that of all the feature data for regression learning.
At the same time, the RMSE value of 19 groups of feature data is lower than that of all the
feature data.

Table 2. Training performance of partial particle size characteristics.

Feature
Quantity 3-1 5-1 7-1 15-1 17-1 19-1

RMSE 10.814 10.297 9.895 8.756 8.615 8.503
R2 0.340 0.390 0.425 0.528 0.548 0.556

5.2. Artificial Neural Network Method
5.2.1. Artificial Neural Network Fitting

This section shows the use of all the particle size characteristic data and three artificial
neural network algorithms for conducting fitting learning on 26 groups of capillary pressure
characteristic data. The aim is to assess the effects of different algorithms and the number
of hidden layer neurons on training fitting and prediction performance to determine the
optimal artificial neural network model. Through systematic experiments, the number of
hidden layer neurons is adjusted step by step, and the optimal number of hidden layer
neurons for achieving the best training performance for each algorithm is determined.
The LM, BR, and QCG methods performed best with 15, 10, and 15 hidden layer neurons,
respectively (Table 3).
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Table 3. Training performance of three kinds of artificial neural networks.

Algorithm LM Algorithm BR Algorithm QCG Algorithm

Training 0.93754 0.99247 0.89952
Verify 0.88275 —— 0.85773
Test 0.82719 0.75711 0.89228
All 0.91111 0.94887 0.89110

Overall, the highest fitting R-value of 0.948 was obtained using the BR method, fol-
lowed by 0.911 obtained using the LM method, and 0.891 obtained using the QCG method
(Figure 9). Specific analysis indicates that when the number of hidden layer neurons was
10, the BR method demonstrated the best-fitting performance; however, the test set for
this method exhibited greater volatility during training. The LM method performed best
when the number of hidden layer neurons reached 15. With the same number of neurons,
the QCG method also performed well; however, increasing the number of neurons did
not significantly influence its fitting performance. In addition, the training time for both
the LM and QCG methods was maintained at about 5 s, which was exceeded by the BR
method. The training time was gradually extended as the number of hidden layer neurons
increased. When the number of hidden layer neurons reached 30, the training time could
extend to approximately 300 s.
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The prediction performance of the LM method is slightly superior to that of the QCG
method. Meanwhile, the BR method is significantly inferior to the other two methods
(Figure 9). Specifically, the LM method yielded better prediction results across different
types of capillary pressure curves, highlighting its robust generalization performance.

5.2.2. Interpolation Particle Size Characteristic Fitting

Given the significant superiority of the LM method to the machine learning algorithm
and other artificial neural network algorithms in prediction, this section selects the LM
method with 15 hidden layer neurons as the basis for the model. PCHIP interpolation was
employed to interpolate and expand the particle size features from 21 groups (the original
number) to 30, 40, 50, 60, and 70 groups (Figure 10).
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Figure 10. Interpolation diagram of 21 particle size characteristic groups extended to 50 groups.

This section evaluates the R2 value for each feature count during training and the average
Pearson correlation coefficient during prediction to indicate the optimal number of features.
The aim is to further investigate the effect of the number of particle size features on training
and prediction results. As shown in Figure 11, as the number of feature data rises, the training
performance decreases in volatility, Meanwhile, the prediction performance is relatively
optimal with 50 groups of features. Accordingly, this section presents the prediction results
using 50 feature groups across four prediction samples, as shown in Figure 12.
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6. Discussion

In this study, two artificial intelligence models—traditional machine learning and
ANN—were used to construct a prediction model for the capillary pressure curve. The best
algorithm for each method was determined based on the research findings. In traditional
machine learning, the boosting tree was identified as the best algorithm. Regression
learning was then performed using partial particle size characteristic data based on the
aforementioned algorithm. Among the ANN methods, the LM method demonstrated the
best performance. This algorithm was thus used as the basis for performing the regression
learning of the interpolated expanded particle size characteristic data. The four evaluation
indicators of these four algorithms across the four prediction samples were statistically
analyzed. The average and cumulative values of each indicator were then calculated
(Table 4 and Figure 13).

Table 4. Average values of each evaluation index for four prediction samples evaluated using four
algorithms.

Model Traditional Machine Learning Artificial Neural Network

Algorithm BT (21-1) BT (19-1) LM (21-26) LM (50-26)

Average RMSE 6.645 8.128 5.866 5.797
Average Pearson 0.990 0.983 0.987 0.987
Average Kendall 0.944 0.931 0.960 0.920

Average
Spearman 0.986 0.984 0.993 0.985
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Although the correlation coefficients of the traditional machine learning algorithm are
on par with those of the artificial neural network algorithm, its RMSE is notably inferior to
that of the artificial neural network. The interpolation expansion algorithm based on the
LM method performs best when the average RMSE value is 5.797; however, its correlation
coefficient is not ideal (Table 4). Without interpolation expansion, the mean Pearson,
mean Kendall, and mean Spearman correlation coefficients for this algorithm exceed 0.95.
Moreover, while the cumulative RMSE values of the two methods are similar, the Pearson
cumulative and Spearman cumulative values are also comparable. However, the Kendall
cumulative value of the former is slightly better than that of the interpolation method
(Figure 13). This finding indicates that while interpolation can slightly reduce RMSE, the
process may lead to a reduction in the Kendall correlation coefficient.

In this study, a capillary pressure curve prediction model was developed based on
particle size data by using traditional machine learning and artificial neural network
algorithms. The major difference from predecessors lies in the innovative use of rock particle
size as input data for prediction [11–14]. However, the particle size data in the current study
were obtained by sieve analysis, and the research object was sand conglomerate, limiting
the applicability of the findings to other lithologies, such as igneous and metamorphic
rocks. The sieve analysis method can also damage samples while extracting particle size
information, potentially limiting subsequent core experiments. However, particle size
information can also be obtained using other nondestructive or low-loss techniques, such
as laser diffraction or image analysis [48]. These techniques may be more suitable for
measuring particle size across different rock types while preserving sample integrity for
further study. The diameter of the rock may be strongly correlated with the pore diameter
distribution as the capillary pressure curve reflects the pore diameter distribution of the
core. However, this hypothesis is not supported by conclusive evidence in this study.
In future research, we will further investigate the feasibility of a predictive relationship
between rock particle size and pore size distribution.

7. Conclusions

This study compares traditional machine learning and artificial neural network models
to evaluate the significant ability of artificial intelligence methods in predicting capillary
pressure curves based on particle size data.
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(1) Machine learning uses the boosting tree model as the optimal algorithm, achieving
an average RMSE of 6.645. Fitting training on selected particle size features shows
improved training and prediction performances as the number of features increases;
however, performance remains inferior to that of the full feature data.

(2) The optimal configuration for the ANN model is the LM method with 15 hidden
layer neurons, achieving an average RMSE of 5.797. This finding indicates better
performance than that of the best machine learning algorithm. After the interpolation
of the original particle size data, the prediction performance improved when expanded
to 50 groups of features, resulting in a cumulative RMSE of 23.189. However, this
interpolation method led to a slight reduction in the Kendall correlation coefficient,
indicating that interpolation introduces volatility that affects the prediction results.

(3) A comparison of the two artificial intelligence methods—machine learning and artifi-
cial neural networks—demonstrates superior performance in training and fitting. In
addition, its prediction process is more efficient and quick, resulting in the highest
predictive performance.
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