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Abstract: In view of the phenomenon that adulterated lamb with other animal-derived meats in the
market could not be quickly identified, this study used visible near-infrared spectroscopy combined
with chemometric methods to quickly identify and quantify lamb rolls adulterated with chicken,
duck, and pork. The spectra of the visible–near-infrared band (350–1000 nm) and near-infrared band
(1000–1700 nm) of 360 lamb samples, which were mixed with chicken, duck, pork, and 10% lamb
oil separately in different increasing proportions, were collected. It was found that the qualitative
models of heterogeneous meat (adulterated with chicken, duck, and pork) in lamb were constructed
by the combination of first derivative and multiplicative scatter correction (MSC); the accuracy of
the validation set reached 100%; the meantime accuracy of the cross-validation set reached 100%
(pure lamb), 98.3% (adulterated with chicken), 98.7% (adulterated with duck), and 97.3% (adulterated
with pork). Furthermore, the correlation coefficient (R2c) of the adulterated chicken, pork, and duck
quantitative prediction models reached 0.972 (chicken), 0.981 (pork), and 0.985 (duck). In summary,
the use of Vis NIR can identify lamb meat mixed with chicken, duck, and pork and can quantitatively
predict the content of adulterated meat.

Keywords: visible and near-infrared reflectance spectroscopy; adulterated lamb; qualitative
identification; quantitative prediction; partial least squares discrimination analysis

1. Introduction

With the improvement in people’s living standards and the transformation of consump-
tion concepts, the diet structure has become more diversified, and food safety awareness
has grown stronger. The foundation of food safety assurance is the identification of food au-
thenticity. According to the data released by the National Bureau of Statistics of China, the
proportion of meat consumption in residents’ diet has been increasing year by year recently,
especially lamb with high nutritional value, which is increasingly favored by consumers. In
2021, the lamb production in China was 5.14 million tons, while apparent consumption was
about 5.55 million tons, and the per capita consumption was 3.93 kg, which is an increase of
4.93% from 2020 [1]. With the increase in lamb per capita consumption year by year, illegal
businessmen, in order to reduce costs and seek higher profits, make fake lamb through
various forms, disrupting the market [2]. Taking advantage of the fact that consumers do
not have the ability to identify fake mutton, presenting inferior products as superior, they
violate the interests of consumers and disrupt the market order [3,4]. Therefore, it is urgent
to develop a fast and non-destructive testing method to check the quality of meat products.

At present, the methods used for the meat origin identification of adulterated meat
mainly include PCR [5,6], ELISA [7,8], mass spectrometry [9–11], and near-infrared spec-
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troscopy [12–15]. Although the first three methods can follow national standards and
international standards [16,17], they all need to use large-scale instruments for qualita-
tive and quantitative identification, which limits their application scope. Near-infrared
spectroscopy (NIR) is a mature qualitative and quantitative analysis technology, which
can collect information on the structure and composition of samples [18] by detecting the
frequency doubling and sum frequency of C-H, N-H, O-H, and other hydrogen-containing
groups. It can analyze multiple components and parameters at the same time and has the
advantages of high efficiency, fast speed, low cost, non-destructive testing, and environ-
mental protection, which have attracted many researchers to apply it in the identification of
adulterated meat in recent years [19–22]. Dixit et al. [23] used a near-infrared spectroscopy
model to identify adulterated pork and lamb in beef, and the identification accuracy could
reach 100% after standard normal variance and de-trend preprocessing. Savoia et al. [24]
further identified beef and lamb adulterated with pork, chicken, and horse meat by near-
infrared spectroscopy and modeling by partial least squares qualitative discrimination
(PLS-DA). The results indicated that when the adulterated beef and lamb were less than
10%, the prediction ability of the model still had good accuracy, and the resolution of
the verification set could reach 78.95–100% for the prediction of different proportions of
adulterated meat. Many researchers further expanded the wavelength range to obtain more
information and improve the qualitative and quantitative accuracy [25–27]. For example,
Weng et al. [28] used reflection spectrum modeling in a visible–near-infrared band between
300 and 2500 nm to identify the types and adulteration amount of pork or viscera in ground
beef, and the model prediction set recognition rate of adulteration meat types could reach
99.0%. Furthermore, to expand the wavelength range, Alamprese [3] used UV–visible, NIR,
and MIR spectroscopy to detect minced beef adulteration with turkey by the partial least
squares (PLS) modeling method, which showed that the qualitative and quantitative effects
of NIR and MIR on adulterated turkey were better than those of UV–visible.

Compared with the existing literature, this study significantly improves the quanti-
tative prediction accuracy of different types of adulterated components in lamb meat by
optimizing the spectral acquisition interval and adopting advanced mathematical prepro-
cessing methods based on near-infrared spectroscopy analysis. The constructed model can
not only identify whether other meats are adulterated in lamb meat but also accurately
identify the types of adulterated meats. In order to accelerate the industrial application
of NIR spectroscopy technology, application costs should be reduced by shortening the
wavelength range under the premise of ensuring the accuracy of the model as much as
possible. With this purpose, two portable NIR devices were used in this study to collect the
spectral information of 350–1000 nm and 1000–1700 nm spectra, comparing the result of
visible–shortwave NIR and NIR identification models. Using the features of the wavelength
range instead of the wavelength point method for screening the optimal bands, lamb/non-
lamb qualitative identification models, identification models of adulteration meat type
(chicken, duck, and pork), and quantitative prediction models of adulterated components
were built to quickly identify adulterated mutton with the purpose of providing technical
support for practical application in industry.

2. Materials and Methods
2.1. Sample Preparation

The sheep thick flank meat, pork tenderloin, chicken breast, duck leg, and sheep fat
used in the experiment were purchased from Beijing Hualian Supermarket. The purchased
meats were trimmed to remove surface fat, fascia, and epidermis. They were then cut into
3 cm × 3 cm pieces and ground into minced meat using a meat mincer (QSJ-C04K3, Bear
Electric Appliance Co., Ltd., Foshan, China) for subsequent use. Additionally, sheep oil,
with the blood portion removed, was cut into small pieces, twisted into sludge and set aside
for utilization. Chicken, duck, pork, and 10% sheep fat were individually incorporated into
minced lamb, adhering to the SBT11093-2014 standard [29] for central reserve frozen rolled
lamb. The precise proportions of these ingredients are outlined in Table 1. The mixture
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was thoroughly blended to ensure that the proportions of the adulterated meat (chicken,
duck, or pork) were accurately represented at 0%, 10%, 30%, 50%, 70%, and 90% within the
samples. The prepared samples were placed into sample bags, put into the meat box mold
(180 mm × 80 mm × 40 mm), pressed, and frozen in a −20 ◦C refrigerator. After 8 h, the
samples were removed, vacuum-sealed to form square bricks, and then frozen at −20 ◦C
for 48 h.

Table 1. Summary of meat mixtures prepared.

Mixture Type Group Proportion of
Chicken/Duck/Pork (%)

Proportion of
Lamb (%)

Proportion of
Lamb Fat (%)

Lamb mixed with
chicken

0% Chicken/Pure lamb 0 90 10
10% Chicken 10 80 10
30% Chicken 30 60 10
50% Chicken 50 40 10
70% Chicken 70 20 10
90% Chicken 90 0 10

Lamb mixed with duck

0% Duck/Pure lamb 0 90 10
10% Duck 10 80 10
30% Duck 30 60 10
50% Duck 50 40 10
70% Duck 70 20 10
90% Duck 90 0 10

Lamb mixed with pork

0% Pork/Pure lamb 0 90 10
10% Pork 10 80 10
30% Pork 30 60 10
50% Pork 50 40 10
70% Pork 70 20 10
90% Pork 90 0 10

2.2. Spectra Acquisition

The frozen square bricks were slightly melted and placed on the slicer (BQPJ-I, Aibo
Stainless Steel Mechanical Engineering Co., Ltd., Jiaxing, China). They were then cut into
1 mm thick slices and laid flat on a table with a black background for collection.

The portable spectrometer (Detector: AvaSpec-2048x14; band: 350–1000 nm; spectral
resolution: 0.05 nm; Avantes, Apeldoorn, The Netherlands; Self-built large area annular
light source: 20 W halogen tungsten lamp reflector cup) and handheld spectrometer
(Detector: MicroNIR; band: 900–1700 nm; Double-integrated vacuum tungsten light source;
JDSU, Milpitas, CA, USA) were used to collect the spectral data of 350–1000 nm and
900–1700 nm bands of samples, which were collected in real time with the AvaSoft 8.7 and
MicroNIR 1.5.7 software of the instruments.

Before collection, the spectrometer was preheated for 20 min, and the black-and-white
reference correction was performed on the spectrum acquisition system. The collection
parameters were set as follows: for the portable spectrometer (band range: 350–1000 nm;
integration time: 100 ms, average number: 5); for the handheld spectrometer (band range:
900–1700 nm, integration time: 38 ms, scanning times: 50). The reflectance spectrum data
from three different sites were collected for each sample, and the average spectrum was
calculated as the representative spectrum of the sample. Due to the high noise signal in the
spectral information 900–1000 nm from the handheld spectrometer, the 900–1000 nm band
was removed, and the more stable 1000–1700 nm band was retained.

2.3. Spectral Data Preprocessing

The acquisition of original spectral data often involves unavoidable interference, such
as ambient light reflection. To minimize the impact of noise and irrelevant information
on modeling, it is crucial to employ appropriate mathematical processing methods for
preprocessing the original spectral data. This preprocessing step is vital for eliminating in-



Processes 2024, 12, 2307 4 of 15

terference factors in the spectral data, enhancing the precision and stability of the predictive
model [30].

In this study, we utilized several preprocessing techniques, including the first deriva-
tive, second derivative, multiplicative scatter correction (MSC), and standard normal variate
(SNV), to improve the stability of the constructed model. The first derivative processing
technique is primarily used to eliminate baseline offsets in the original spectrum, which can
distort the true shape of the spectral peaks. By applying the first derivative, we can obtain
a more accurate representation of the spectral features. The second derivative processing
method helps to separate overlapping peaks and emphasize peak characteristics, making it
easier to identify distinct spectral signatures. MSC is employed to correct for variations
in scattering caused by differences in particle size and surface roughness. This technique
ensures that the spectral data are more representative of the actual chemical composition
of the samples rather than being influenced by physical factors. Similar to MSC, SNV
is used to normalize the spectral data by removing the effects of non-uniform scattering
interference. It achieves this by scaling the spectral data such that the mean is zero and
the variance is one for each sample [31,32]. The choice of these preprocessing methods
was based on their ability to enhance the quality of the spectral data and, consequently,
improve the predictive power of the models.

2.4. Near-Infrared Model Development

For the development of the lamb/non-lamb qualitative identification model, a total
of 360 samples were randomly divided into two subsets: a calibration set comprising
270 samples and a prediction set containing 90 samples, adhering to a ratio of 3:1. Specifi-
cally, the calibration set served to train the model, whereas the prediction set was utilized
to assess its performance. In machine learning and statistical modeling, it is usually rec-
ommended to divide the data set into a calibration set and a prediction set to evaluate the
model’s generalization ability. The 3:1 ratio is a common method as it provides sufficient
data to train the model while also having a considerable amount of data to validate the
model’s predictive ability. The 3:1 ratio is to strike a balance between the bias and variance
of the model. If the prediction set is too small, the model may overfit, resulting in poor
generalization ability on unseen data. On the contrary, if the calibration set is too small, the
model may underfit and fail to capture key patterns in the data [33,34].

Similarly, for the identification models of adulterated meat types (chicken, duck, and
pork), 120 samples were allocated per model with 90 samples in the calibration set and
30 samples in the validation set. This division enabled the development and subsequent
validation of models capable of distinguishing between pure lamb and lamb adulterated
with chicken, duck, or pork. The calibration set samples were used to construct the quanti-
tative analysis model, and the prediction set samples were used to validate and evaluate
the model’s performance. The qualitative model was constructed using partial least squares
discriminant analysis (PLSDA), which was developed based on PLSR. PLSDA matrices
refer to the category information of the samples in the form of codes, applying linear statis-
tical modeling of spectral information with the categories and finding a certain number
of principal factors that most accurately characterize the original data set; therefore, the
qualitative discriminant models built are more effective and have efficient discriminatory
capability [30,31].The quantitative model was constructed using the partial least squares
regression analysis (PLSR) method, which is the most widely used in NIR spectral analysis
as a representative of linear correction methods that maximize the correlation between the
spectral data and the parameters to be quantified [14,35].

2.5. Model Evaluation

The performance evaluation of the model focuses on accuracy, stability and predictive
ability. The main qualitative model evaluation parameters are Root Mean Square Error
of Calibration (RMSEC), Root Mean Square Error of Prediction (RMSEP), Sensitivity and
Specificity, as well as Root Mean Square Error of Cross-Validation (RMSECV). In addition,
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quantitative model evaluation parameters mainly include the correction set correlation
coefficient (Rc), prediction set correlation coefficient (Rp), RMSEC and RMSEP. Sensitivity
is the rate at which the group of samples can be correctly identified. Specifically, specificity
is the accuracy of identifying samples that are not in the group. These two parameters can
be calculated by the following formula:

Sensitivity =
IT

IT + UT
(1)

Specificity =
IF

IF + UF
(2)

where IT (Identified True) is the number of samples belonging to this class and identified;
UT (Unidentified True) is the number of samples belonging to this class and unidentified; IF
(Identified False) is the number of samples unbelonging to this class and identified; and UF
(Unidentified False) is the number of samples unbelonging to this class and unidentified.

2.6. Data Processing

All data analysis and model building are performed using MATLAB R2014a (Math-
Works, Inc., Natick, MA, USA) with PLS Toolbox 9.3.1 (Eigenvector Research Company,
Wenatchee, WA, USA).

3. Results and Discussion
3.1. Original Spectral Analysis of Adulterated Meat with Different Proportions in Two Bands

To ensure consistency and minimize variability, the spectra of 20 repeated samples
were averaged for each meat type to obtain representative spectra, which were then used to
analyze group differences in this study. Among them, the samples with 0% adulteration of
chicken, duck, and pork represent the lamb group, and the samples with 90% adulteration of
chicken, duck, and pork are considered as pure chicken, duck, and pork groups, respectively.
The representative NIR spectra of the chicken, duck, pork and lamb groups in the two bands
of 350–1000 nm and 1000–1700 nm are shown in Figure 1.
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Figure 1. The near infrared spectra of chicken, duck, pork and lamb. (a) The near infrared spectra of
chicken, duck, pork and lamb in 350–1000 nm wavelength, (b) the near infrared spectra of chicken,
duck, pork and lamb in 1000–1700 nm wavelength.

Reflectance intensities across the 350–1000 nm and 1000–1700 nm bands varied among
species with a notable decrease from chicken to lamb. The minimal variations between
lamb and duck/pork are attributed to species-specific pigmentation and matrix compo-
sition, which significantly influence the NIR reflectance patterns [36,37]. The relation
for spectral region and chemical compound is displayed in Table 2. The NIR spectra of
lamb adulterated with varying proportions of chicken, duck, and pork across two bands
(350–1000 nm and 1000–1700 nm) are presented in Figures 2 and 3. Reflectance ratio in-
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tensities showed a general trend of convergence toward that of the adulterating meat
with the most pronounced changes observed in the 1000–1700 nm band. Species-specific
myoglobin contents and protein compositions contribute to the distinct NIR reflectance
patterns with less pronounced correlations observed for duck and pork adulteration in the
1000–1700 nm band compared to chicken [38,39]. Notably, the 1080 nm peak, associated
with N-H bonds, showed pronounced changes with varying adulteration levels, highlight-
ing protein composition discrepancies between species, which is the same as the findings
of Kademi et al. [40].

Table 2. Relation for spectral region and chemical compound.

Spectral Region (nm) Primary Absorbing Species/Chemical Bonds Chemical Substances Description

430 Absorption bond related to myoglobin Reflects trace amounts of myoglobin
574 Absorption of oxymyoglobin Reflects the content of oxymyoglobin
630 Absorption of metmyoglobin Reflects the content of metmyoglobin
1000–1200 Vibrational absorption of C-H, N-H bonds Reflects protein variability information
1450 Overtone absorption of O-H bonds Reflects water composition
1080 N-H bond Reflects protein differences
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duck and pork in 350–1000 nm wavelength. (a) Lamb adulterated with different proportions of
chicken; (b) lamb adulterated with different proportions of duck; (c) lamb adulterated with different
proportions of pork.

Processes 2024, 12, x FOR PEER REVIEW 6 of 15 
 

 

Reflectance intensities across the 350–1000 nm and 1000–1700 nm bands varied 
among species with a notable decrease from chicken to lamb. The minimal variations be-
tween lamb and duck/pork are attributed to species-specific pigmentation and matrix 
composition, which significantly influence the NIR reflectance patterns [36,37]. The rela-
tion for spectral region and chemical compound is displayed in Table 2. The NIR spectra 
of lamb adulterated with varying proportions of chicken, duck, and pork across two bands 
(350–1000 nm and 1000–1700 nm) are presented in Figures 2 and 3. Reflectance ratio in-
tensities showed a general trend of convergence toward that of the adulterating meat with 
the most pronounced changes observed in the 1000–1700 nm band. Species-specific myo-
globin contents and protein compositions contribute to the distinct NIR reflectance pat-
terns with less pronounced correlations observed for duck and pork adulteration in the 
1000–1700 nm band compared to chicken [38,39]. Notably, the 1080 nm peak, associated 
with N-H bonds, showed pronounced changes with varying adulteration levels, high-
lighting protein composition discrepancies between species, which is the same as the find-
ings of Kademi et al. [40]. 

 
(a) (b) (c) 

Figure 2. The near-infrared spectra of lamb adulterated with different proportions of chicken, duck 
and pork in 350–1000 nm wavelength. (a) Lamb adulterated with different proportions of chicken; 
(b) lamb adulterated with different proportions of duck; (c) lamb adulterated with different propor-
tions of pork. 

 
(a) (b) (c) 

Figure 3. The near-infrared spectra of lamb adulterated with different proportions of chicken, duck 
and pork in 1000–1700 nm wavelength. (a) Lamb adulterated with different proportions of chicken; 
(b) lamb adulterated with different proportions of duck; (c) lamb adulterated with different propor-
tions of pork. 
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duck and pork in 1000–1700 nm wavelength. (a) Lamb adulterated with different proportions of
chicken; (b) lamb adulterated with different proportions of duck; (c) lamb adulterated with different
proportions of pork.
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3.2. Screening of Characteristic Wavelength Ranges

The NIR spectra were analyzed over specific intervals designed to retain valid spectral
information and minimize noise. Samples, categorized into pure lamb and adulterated
groups with varying percentages of chicken, duck, and pork, underwent a 5-point smooth-
ing pre-treatment prior to PLSDA model construction [39].

Cross-validation confirmed the stability and predictive accuracy of our models, par-
ticularly within the 400–1000 nm and 1000–1400 nm bands where RMSECV values were
minimized. It can be observed from Table 3 that the RMSECV of the model in the visible-
NIR band is smaller than that in the NIR band as a whole, and the model constructed in
the visible-NIR band in the 400–1000 nm band has the highest stability with an RMSECV of
0.172; the model constructed in the NIR band in the 1000–1400 nm band has the highest
stability with an RMSECV of 0.232. The specificity of the pure lamb group in the valida-
tion set indicates the recognition accuracy of non-lamb samples with values closer to 1
indicating better discrimination between pure and adulterated lamb. The optimal band of
NIR is 1000–1400 nm, the sensitivity values of chicken adulterated, duck adulterated and
pork adulterated are 100%, 83.3%, 95.8%, respectively. By comparing the modeling results
obtained by the stepwise regression analysis method, it was found that the sensitivity of
the lamb group and specificity of the adulterated group were both lower than the models
constructed by the characteristic wavelength ranges screening method at 350–1000 nm and
1000–1700 nm, while the RMSECV was higher. Further analysis shows that four fifths of
the 25 characteristic wavelength points screened by stepwise regression analysis method
from 350 to 1000 nm are in the optimal wavelength range of 400–1000 nm, and 12 of the
13 characteristic wavelength points screened from 1000 to 1700 nm are in the optimal
wavelength range of 1000–1400 nm, which proves that the characteristic wavelength data
are also effectively screened by the characteristic wavelength ranges screening method,
and the model built in this way has better accuracy. Therefore, the subsequent study will
further examine modeling and optimization based on these two bands, respectively, and
the optimal solution to solve this research problem will be obtained.

Table 3. Comparison of model parameters in different wavelength ranges.

Method
Wavelength Range

(nm) Factor Number RMSECV
Sensitivity of Lamb Adulterated with Others (%)

Pure Lamb Chicken Duck Pork

Feature Band
Selection

350–1000 11 0.186 98.6 84.2 100 96.0
450–1000 12 0.172 98.6 100 100 100
550–1000 12 0.182 100 94.7 100 96.0
650–1000 13 0.205 98.6 100 100 100
750–1000 15 0.214 94.2 89.5 72.0 88.0

1000–1700 17 0.242 98.5 100 79.2 95.8
1000–1600 16 0.234 98.5 100 79.2 95.8
1000–1500 16 0.237 98.5 100 83.3 95.8
1000–1400 14 0.232 98.5 100 83.3 95.8
1000–1300 14 0.237 100 100 87.5 87.5

Stepwise
Regression
Analysis

350–1000
(25 Feature

Wavelength)
16 0.253 0.889 0.826 0.793 0.828

1000–1700
(13 Feature

Wavelength)
13 0.320 0.792 0.810 0.714 0.643

Note: The bolded part is the best parameter.

3.3. Construction of Lamb/Non-Lamb Identification Model

Pure lamb samples were taken as the lamb group, and samples of lamb mixed with
other meat were classified as the non-lamb group (adulterated lamb). A lamb/non-lamb
qualitative identification model was then constructed. For this model, samples within
the 450–1000 nm range were randomly divided into a calibration set (270 samples) and a
prediction set (89 samples). Similarly, samples within the 1000–1400 nm range were also



Processes 2024, 12, 2307 8 of 15

randomly divided into corresponding sets. The original spectra of these samples under-
went various preprocessing steps, including 15-point smoothing, first derivative, second
derivative, standard normal variate (SNV) transformation, multiplicative scatter correction
(MSC), as well as combinations of first derivative + SNV and second derivative + MSC. The
partial least squares discriminant analysis (PLSDA) method was employed for modeling.

In general, an optimal model should have fewer principal components to reduce the
dimensionality of data operation. Additionally, the coefficient of determination (R2) should
be greater than 0.9 with values closer to 1 indicating a better fit. Smaller root mean square
error of cross-validation (RMSECV) and cross-validation error (Err CV) values suggest a
lower error in cross-validation, excluding the possibilities of underfitting or overfitting.
A high identification rate is the ultimate criterion for selecting the final model [4,12]. The
analysis of the results, presented in Table 4, shows that the optimal model within the
450–1000 nm range is the one preprocessed with the first derivative and SNV, containing
seven principal components. This model achieves a 100% identification rate for both lamb
and non-lamb groups. For the lamb group, the RMSECV, Err CV, and R2 values are 0.153,
0.002, and 0.916, respectively. Within the 1000–1400 nm range, the optimal model, also
preprocessed with the first derivative and SNV, contains four principal components and
achieves a 100% identification rate for both groups. However, for the lamb group, the
RMSECV, Err CV, and R2 values are 0.261, 0.017, and 0.707, respectively. These results
indicate that the stability and resolution of the visible-near infrared interval model within
the 450–1000 nm range are superior to those within the 1000–1400 nm range.

Table 4. Lamb/non-lamb identification models.

Wavelength
(nm)

Preprocessing Factors R2
c

Pure Lamb Group Prediction
Sensitivity of
Pure Lamb/%

Prediction
Sensitivity of
Non-Lamb/%Err CV RMSECV

450–1000

Smoothing (15) 8 0.795 0.007 0.196 95.0 97.1
1st der 7 0.891 0.002 0.172 100.0 100.0
2nd der 7 0.876 0.010 0.217 100.0 97.1

SNV 7 0.841 0.000 0.176 100.0 98.6
MSC 7 0.841 0.000 0.176 100.0 98.6

1st der + SNV 7 0.916 0.002 0.153 100.0 100.0
1st der + MSC 7 0.912 0.002 0.156 100.0 100.0

1000–1400

Smoothing (15) 10 0.762 0.022 0.235 100.0 98.5
1st der 10 0.759 0.017 0.238 98.5 100.0
2nd der 12 0.805 0.017 0.234 100.0 98.5

SNV 5 0.773 0.021 0.231 100.0 98.5
MSC 6 0.804 0.017 0.217 100.0 96.9

1st der + SNV 4 0.707 0.017 0.261 100.0 100.0
1st der + MSC 4 0.698 0.017 0.272 100.0 98.5

Note: The bolded part is the best parameter.

For the identification of adulterated lamb, businesses and consumers in the circulation
chain terminal only need to determine whether the lamb is adulterated without the need to
identify the specific type of adulteration. Therefore, the constructed lamb/non-lamb identi-
fication model satisfies the requirements of the meat industry chain terminal. Additionally,
considering the lower price of visible near-infrared components, the model leverages
visible-near infrared spectrum data to meet the demands of both a high discriminant rate
and low cost.

3.4. Construction of Foreign Bodies Kind Identification Model of Adulterated Meat

The experimental samples consisted of four types: pure lamb, lamb adulterated with
chicken, lamb adulterated with duck, and lamb adulterated with pork. These samples were
randomly divided into 270 calibration sets and 86 prediction sets according to a 3:1 ratio.
Various spectral pretreatment methods, combined with the PLS method, were utilized to
create models within the Vis-NIR range of 450–1000 nm and the NIR range of 1000–1700 nm.
The results are presented in Table 5.
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Table 5. Chicken, duck and pork identification models of adulterated meat.

Wavelength
(nm) Preprocessing Groups Factors Cross Validation

Sensitivity/% RMSECV Prediction
Sensitivity/%

450–1000

Smoothing (15)

pure lamb

11

100.0 0.202 100.0
lamb/chicken 96.6 0.210 100.0
lamb/duck 96.0 0.249 100.0
lamb/pork 97.3 0.242 96.0

1st der

pure lamb

10

100.0 0.182 100.0
lamb/chicken 98.3 0.182 100.0
lamb/duck 96.0 0.218 100.0
lamb/pork 97.3 0.220 100.0

2nd der

pure lamb

14

100.0 0.215 100.0
lamb/chicken 94.9 0.211 89.5
lamb/duck 97.3 0.226 92.0
lamb/pork 94.7 0.244 96.0

SNV

pure lamb

11

100.0 0.155 100.0
lamb/chicken 98.3 0.186 100.0
lamb/duck 97.3 0.198 100.0
lamb/pork 98.7 0.186 100.0

MSC

pure lamb

11

100.0 0.156 100.0
lamb/chicken 98.3 0.186 100.0
lamb/duck 97.3 0.198 100.0
lamb/pork 98.7 0.187 100.0

1st der + SNV

pure lamb

10

100.0 0.167 100.0
lamb/chicken 98.3 0.182 100.0
lamb/duck 98.7 0.216 100.0
lamb/pork 97.3 0.231 100.0

1st der + MSC

pure lamb g

10

100.0 0.171 100.0
lamb/chicken 98.3 0.185 100.0
lamb/duck 98.7 0.217 100.0
lamb/pork 96.0 0.233 100.0

1000–1400

Smoothing (15)

pure lamb

10

98.6 0.239 100.0
lamb/chicken 86.0 0.277 94.1
lamb/duck 85.1 0.341 83.3
lamb/pork 77.8 0.343 91.7

1st der

pure lamb

10

98.6 0.245 100.0
lamb/chicken 80.0 0.280 100.0
lamb/duck 71.6 0.344 75.0
lamb/pork 77.8 0.343 91.7

2nd der

pure lamb

11

98.6 0.237 100.0
lamb/chicken 82.0 0.261 94.1
lamb/duck 82.4 0.351 70.8
lamb/pork 83.3 0.329 91.7

SNV

Pure lamb

7

98.6 0.238 100.0
lamb/chicken 90.0 0.312 94.1
lamb/duck 75.7 0.461 79.2
lamb/pork 80.6 0.428 87.5

MSC

pure lamb

7

98.6 0.243 100.0
lamb/chicken 90.0 0.313 94.1
lamb/duck 75.7 0.467 79.2
lamb/pork 81.9 0.430 87.5

1st der + SNV

pure lamb

13

98.6 0.447 100.0
lamb/chicken 86.0 0.476 100.0
lamb/duck 85.1 0.424 83.3
lamb/pork 91.7 0.746 91.7

1st der + MSC

pure lamb

12

98.6 0.465 100.0
lamb/chicken 84.0 0.434 100.0
lamb/duck 86.5 0.438 83.3
lamb/pork g 91.7 0.636 87.5

In the 450–1000 nm range, selecting 10 or 11 principal factors, models using most
pretreatment methods could effectively distinguish between the groups with the excep-
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tion of the second derivative. The optimal model employed the first derivative + SNV
pretreatment method, selecting 10 principal factors. This model achieved a 100% identifi-
cation rate for both the adulterated and pure lamb groups. During cross-validation, the
identification rates for the adulterated lamb groups (chicken, duck, and pork) were 98.3%,
98.7%, and 98.3%, respectively, which were higher than those of other models. Additionally,
the RMSECV for all groups was below 0.25. In the 1000–1400 nm range, while ensuring a
high identification rate, the model using the first derivative + SNV pretreatment method
was optimal. With 13 principal factors, the model achieved a 100% identification rate for
the pure lamb and chicken adulteration groups in the prediction set, 83.3% for the duck
adulteration group, and 91.7% for the pork adulteration group. During cross-validation,
the identification rates were 98.6% for pure lamb, 86.0% for chicken adulteration, 85.1% for
duck adulteration, and 91.7% for pork adulteration.

Upon comparing the models built within the two wavelength ranges, it was observed
that in the near-infrared range of 1000–1400 nm, the identification rate for the adulterated
groups did not exceed 90% simultaneously. Notably, the identification rate for the duck
adulterated group was lower than that of the other groups with only 83.3% in the optimal
model. Furthermore, the RMSECV for each group in the 1000–1400 nm model was higher
than that of the 450–1000 nm model, indicating that the model within the 450–1000 nm
range exhibited better prediction ability and higher stability.

In conclusion, within the 450–1000 nm range, using the first derivative + SNV as the
pretreatment method, the PLS model constructed with 10 main factors was more effective
in detecting the type of adulterated meat (chicken, duck, pork) or determining if it was
pure lamb.

3.5. Construction of Quantitative Prediction Model for Adulteration of Lamb

The quantitative prediction models for lamb mixed with chicken and duck are de-
scribed as follows. The model for lamb mixed with chicken consists of 98 samples with
varying proportions of chicken included. Specifically, 74 samples are used in the calibration
set, and 24 samples are used in the prediction set. Similarly, the model for lamb mixed with
duck comprises 120 mixed samples, which are divided into 90 samples for the calibration
set and 30 samples for the prediction set. The distribution and number of samples in these
sets are consistent with those in the pork adulteration model. The optimal parameters for
all three PLSR models are presented in Table 6.

Table 6. The optimum models for adulteration of lamb (chicken, duck and pork) in 450–1000 nm.

Optimum Models Optimum
Preprocessing PC Number R2c RMSEC RMSECV R2p RMSEP

Adulterated with chicken 1st der + SNV 6 0.991 0.031 0.052 0.972 0.054
Adulterated with duck SNV 8 0.994 0.023 0.042 0.985 0.040
Adulterated with pork MSC 10 0.997 0.018 0.040 0.981 0.044

In the quantitative models, RMSECV typically decreases as the number of principal
factors increases, which is followed by a slight increase and then a continued decrease. The
fluctuation in RMSECV later on is attributed to the inclusion of background noise in the
modeling due to the addition of more principal factors, which is undesirable even if the
fitting effect is satisfactory [41]. Therefore, the minimum RMSECV value observed during
the first reduction is chosen as the optimal number of principal factors. By comparing the
best principal factor models derived from different pretreatment methods, the optimal
quantitative model can be obtained. For the quantitative prediction model of lamb mixed
with varying proportions of chicken, the combination of the first derivative and Standard
Normal Variate (SNV) preprocessing is employed. The correlation coefficients (R2c and
R2p) for the calibration and prediction sets are 0.991 and 0.972, respectively. The root mean
square errors for the calibration set, prediction set, and cross-validation set are 0.031, 0.054,
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and 0.052, respectively (Figure 4). Similarly, for the model of lamb mixed with varying
proportions of duck, SNV preprocessing is used. The R2c and R2p for the calibration and
verification sets are 0.994 and 0.985, respectively, with RMSEC, RMSEP, and RMSECV
values of 0.023, 0.040, and 0.042, respectively (Figure 5). The pork adulteration quantitative
model utilizes the MSC method, yielding R2c and R2p values of 0.997 and 0.981 for the
calibration and verification sets, respectively, with RMSEC, RMSEP, and RMSECV values
of 0.018, 0.044, and 0.040, respectively (Figure 6). These three adulteration quantitative
models exhibit high accuracy and stability, demonstrating good prediction capabilities for
adulteration in unknown samples.
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When comparing the performance of the models developed in this study to existing
literature, significant improvements and novel insights are evident. Previous studies, such
as Cozzolino [36] in 2004, utilized visible and near-infrared spectroscopy to distinguish
muscle samples of cattle, sheep, pigs, and chickens, achieving an accuracy of 80% using
the partial least squares method for qualitative analysis. However, this study not only
achieves higher accuracy but also provides quantitative predictions for adulteration levels
within a broader range (0–90%). Alamprese et al. [3] identified adulterated beef with turkey
using UV, NIR, and IR with adulteration levels ranging from 5% to 50%. Their UV-visible
model had an average prediction accuracy of 54.6% for beef adulteration levels of 0–50%,
with a cross-validation accuracy of 71.3%, while the near-infrared and infrared models
had average prediction accuracies of 71.2% and 65.2%, respectively. In contrast, NIR-based
models in this study demonstrate superior performance with cross-validation sensitivities
of 100% for pure lamb, 98.3% for chicken adulteration, 98.7% for duck adulteration, and
97.3% for pork adulteration. Furthermore, this study introduces new insights by comparing
different pretreatment methods and models, ultimately identifying the optimal combination
for each type of adulteration. These findings emphasize the novelty and impact of this
work in improving adulteration detection using NIR spectroscopy.

Furthermore, Liang et al. [42] used near-infrared spectroscopy technology combined
with orthogonal partial least squares discriminant analysis (OPLS-DA) to identify chicken
and duck meat mixed in beef and mutton. They found that through specific preprocessing
methods, the identification accuracy of the model can be significantly improved, providing
an effective means for the rapid detection of meat adulteration. The study by Fengou
et al. [43] used multispectral imaging (MSI) technology combined with support vector
machine (SVM) classification to detect the adulteration of pork and chicken in different
states (fresh, stored, cooked). Their research showed that the combination of MSI and
SVM has high potential in quickly identifying adulterated meat samples with accuracy
rates exceeding 93%. Feng et al. [44] conducted a detailed analysis of chicken adulteration
in chilled mutton using NIR spectroscopy. They employed a comprehensive approach,
including spectral preprocessing, feature wavelength extraction, and modeling using PLS
and support vector machines (SVMs). Their study, which focused on samples with different
fat-to-lean ratios, achieved remarkable results. Ainara et al. [25] employed NIRS and PCA
and PLS-DA to identify meat adulteration in minced lamb and beef, and the research
achieved high classification accuracies of 78.95% to 100%. Their study highlighted the
effectiveness of NIRS and PLS-DA in detecting meat fraud, especially for pork, Lidia breed
cattle, and foal meat at 2% and 1% levels or higher. Compared with these studies, this study
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not only covers the detection of adulteration in chicken and duck meat but also includes
pork, which is more common in the market. In addition, dual band spectral acquisition
was used to provide richer information for the model. This study expanded the scope
of analysis to include a wider range of adulterants and concentrations, enhancing the
robustness of our model; the model constructed in this study achieved 100% validation
set accuracy in identifying pure and adulterated lamb meat, which is leading in existing
research. These improvements indicate that this study has made significant progress in
improving the accuracy and applicability of meat adulteration detection.

4. Conclusions

In this study, three kinds of models at different levels were constructed at 350–1000 nm
to identify adulterated lamb and obtain the best results. The lamb/non-lamb identifica-
tion model applied at the end of the industrial chain can accurately judge whether the
sample is lamb or not. For the adulterated lamb with chicken, duck and pig at any pro-
portion, the identification rate of the optimal model reaches 100%, which is the first-order
derivative + SNV data processing method with seven main factors and an RMSECV of
0.153. The foreign bodies identification model of adulterated meat is used in the pre-
liminary prediction of mass testing for quality inspection institutions. The identification
model that can well distinguish the species of adulterated meat (chicken, duck and pork)
adopts the first-order derivative + SNV data processing method with 10 main factors. The
cross-identification rates of adulteration of chicken, duck and pork were 98.3%, 98.7% and
97.3%, respectively. After determining the adulteration meat was chicken, duck or pig,
sometimes it is necessary to further quantify the proportion of adulteration. Three quanti-
tative prediction models adopted first-order derivative + SNV, SNV and MSC pretreatment
methods, respectively, and selected 6, 8 and 10 factors. Under these conditions, the correla-
tion coefficients (Rp) for the prediction model of chicken, duck and pork adulterated lamb
were 0.972, 0.985 and 0.981, respectively.

The experimental results show that using spectral technology combined with model
construction technology can effectively identify adulterated lamb and accurately predict the
adulteration ratio. However, this study also has certain limitations, such as the experimental
samples mainly coming from specific regions, which may not fully represent all types of
lamb meat and their adulteration in the market. In the future, sample sources and quantities
can be expanded to improve the generalization ability and applicability of the model. In-
depth research can be conducted on spectral data preprocessing and feature wavelength
screening methods to further optimize the model structure, improving prediction accuracy
and stability. This study will help promote the development of quality control technology
for meat products, safeguarding consumer rights and the market order.
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