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Abstract: The health risks associated with the presence of heavy metals in drinking water can be
severe. To address this issue, membrane separation technology is one of the consolidated alterna-
tives. Inorganic, porous membranes were found in applications where low energy consumption
is highly desirable. The selectivity of these membranes is attained by functionalisation. Graphene
oxide functionalised membrane technology is promising for removing heavy metal ions. This work
summarises, discusses and presents the relationship between adsorption and overall membrane
separation process performance for heavy metal ions removal from wastewater when a graphene
oxide-functionalised membrane is used. The separation performance depends on the hydrophobic
interactions of the membrane and the solute. The electrostatic interaction between the negatively
charged membrane surface and positively charged metal ions facilitates the adsorption, leading to
the rejection of these metal ions. The influences of the chemical nature of the modifiers of graphene
oxide layers are highlighted.

Keywords: heavy metal pollution; graphene oxide membrane; metal adsorption; graphene oxide
crosslinker; covalent linker

1. Introduction

The presence of heavy metals in drinking water can cause severe hazards to human
health. Although they are naturally occurring elements, their multiple uses in industry,
household, agriculture and medicine have contributed to their concentration in the environ-
ment close to industrial activity, thus increasing the recognition of their potentially harmful
effects on human life and the environment [1]. For example, exposure to elevated levels
of metallic, organic and inorganic mercury can damage the brain, kidneys and the devel-
oping foetus [2]. Various technologies, including precipitation−coagulation−flocculation,
adsorption, ion exchange, flotation and membrane-based separation, have been developed
to remove heavy metal ions (HMI) from wastewater [3–5]. The process of precipitation,
coagulation-flocculation and ion exchange work efficiently when pollutant concentration
is medium to high (over 100 ppm), thus requiring further remotion techniques to attain
the restrictive level needed in the case of heavy metals pollution. Alternatives for this last
removal step are adsorption- [6] and membrane-based [7] separation processes.

Nowadays, membrane process reverse osmosis (RO) is the dominant technique in
large-scale water treatment and is also applied to heavy metal removal [8–11]. The results
showed that RO could achieve up to 99% removal efficiency of Cu2+, Ni2+, Zn2+ and
As5+. However, the main limitation of RO application is the high power consumption and
operating cost [12,13] due to high pressures (15–75 bar). This drawback relies on the low
water permeability of RO membranes, showing fluxes around 2–5 L m−2 h−1 bar−1 [14].
On the other hand, the high permeability and selectivity of ceramic membranes could
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allow higher water flux (8–40 L m−2 h−1 bar−1 [15]) and show high recovery and improved
energy savings [16]. However, overcoming challenges such as reducing the capital cost [17],
long-term stability [18] and scalability [19] would enable ceramic membranes to consolidate
in the water treatment market. Graphene oxide (GO) stands out for its numerous properties
among ceramic materials. For this reason, a wide range of applications have been explored,
aiming at commercialisation [20] and offering significant environmental and economic
benefits [21]. The main problem with GO membranes is the loss of stability over long
periods of operation [22].

The long-term stability of GO membranes is mainly triggered by water molecules
connecting with oxygenated groups located elsewhere in the GO structure, thus promoting
the widening of nanochannels and allowing the transport of pollutant ions. This instability
can be overcome by incorporating covalent or non-covalent binding additives within the
GO matrix [23], commonly known as crosslinkers. Nevertheless, adding a new component
to the GO alters the chemical nature of the matrix, and it could be responsible for a new
behaviour towards rejecting specific contaminants.

Adsorption is the process taking place when a solute (adsorbate) accumulates on the
surface of a solid (adsorbent) and forms a molecular or atomic film [6], while membrane-
based separation is the process of using a barrier that inhibits the passage of certain
constituents while allowing other constituents to pass through [24]. These techniques are
commonly described as separate alternatives, but could they be related in their mechanisms
of operation?

In the literature, several works refer to the adsorption or nanofiltration of heavy metal
ions. However, none of the studies focus on the influence adsorption could have on the
performance of membrane-based processes for wastewater treatment. For example, Bu-
rakov et al. [6] present a detailed review of the adsorption of noxious heavy metal ions from
wastewater effluents using various adsorbents, such as conventional and nanostructured.
Xiang et al. [25] review the latest developments, discoveries and prospective applications
related to ultrafiltration, nanofiltration, reverse osmosis and electrodialysis, with an in-
depth focus on heavy metal removal. Abadi et al. [26] have summarised and analysed
processes in which nanofibers prepared by the electrospinning method were used as a
photocatalyst or adsorbent in wastewater treatment.

The present work aims to describe the connection between adsorption and membrane-
based processes, analysing experimental results for HMI removal from water when using
functionalised graphene oxide inorganic membranes and the effect of the modification of
the material with crosslinkers and covalent linkers between GO layers.

The review focuses on the relationship between adsorption and selectivity of GO
membranes and considers only the data available referring to membrane performance,
not including particular data for adsorption studies outside the context of membrane
separation processes.

2. Adsorption of Heavy Metal Ions on Graphene Oxide

Graphene oxide (GO) is a compound derived from graphene, a single layer of carbon
atoms arranged in a two-dimensional honeycomb lattice oxide. It usually contains hydroxyl,
carboxyl, and epoxide functional groups on its surface. In combination with its high surface
area, the material has a high adsorption capacity for the removal of HMI from aqueous
solutions [27].

Table 1 shows the maximum adsorption capacity (qmax), which represents an adsor-
bent’s overall adsorption capability [28]. GO has a strong adsorption affinity to various
heavy metal ions, and the maximum adsorption capacities are generally more significant
than those of other adsorbents [5,6]. For example, Šljivić et al. [29] demonstrated that Cu(II)
adsorption in zeolite was 8.13 mg g−1 (pH 5.0, T 298 K), while in GO, it is 294.00 mg g−1 [30]
at the same conditions. Khosravi et al. [31] determined that amino-functionalized zeolite
imidazolate framework-8 (ZIF-8-EDA) possesses a maximum adsorption capacity of Cd(II),
equivalent to half the maximum adsorption capacity of GO. This can be explained by the
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negative charge on the surface of GO nanosheets in aqueous solutions due to the ionisation
of the carboxylic groups and the lone-pair oxygen atoms in GO. Consequently, GO is an
ideal sorbent to bind metal ions through ionic and coordinative interaction [32]. Also, the
complexation of heavy metal species with surface oxygenous functional groups (e.g., –OH
and –COOH) is also one possible adsorption mode [33].

Table 1. Maximum adsorption capacities of heavy metal ions using different sorbents.

Adsorbed Heavy
Metal Ions Type of Sorbent qmax (mg g−1) Operating

Conditions
Adsorption Isotherm

Models Reference

As(III) GO 1432.80 pH N.A., T N.A. Langmuir [34]
0.02 pH 7, T 298 K Langmuir [35]

Au(III) GO 149.20 pH N.A., T 298 K Langmuir [36]
Cd(II) GO 83.80 pH 5.7, T 305 K Langmuir [37]

530.00 pH 5.0, T 298 K Langmuir [30]
Ze-nWRT 270.00 pH 4.0, T 307 K Langmuir [38]

ZIF-8-EDA 294.11 pH 6.0, T N.A. Langmuir [31]
Co(II) GO 21.28 pH 5.5, T 298 K Freundlich [39]

LL-NaOH 25.40 pH 6.0, T 301 K Langmuir [40]
Cr(VI) GO 1.22 pH 4.0, T N.A. Langmuir [41]
Cu(II) GO 46.60 pH 5.0, T N.A. Langmuir [42]

72.60 pH 5.7, T 303 K Langmuir [37]
294.00 pH 5.0, T 298 K Langmuir [30]
117.50 pH 5.3, T N.A. Freundlich [43]

LC-Al2O3 15.69 pH 5.0, T 298 K Langmuir [44]
LVB 23.18 pH 5.0, T 298 K Langmuir [45]

Eu(III) GO 175.44 pH 6.0, T 298 K Langmuir [46]
TNRs 115.30 pH 5.0, T N.A. Langmuir [47]

Hg(II) GO 8.65 pH N.A., T 298 K Intraparticle diffusion [48]
Mn(II) GO 32.00 pH 5.0, T 298 K Langmuir [49]
Ni(II) GO 62.30 pH 5.7, T 304 K Langmuir [37]

38.61 pH 6.0, T 298 K Langmuir [50]
Pb(II) GO 250.00 pH 6.0, T 298 K N.A. [51]

842.00 pH 6.0, T 293 K Langmuir [52]
1119.00 pH 5.0, T 298 K Langmuir [30]

Sb(III) GO 8.06 pH 11.0, T 303 K Freundlich [53]
Sr(II) GO 5.93 pH 3.0, T 293 K Langmuir [54]

Th(IV) GO 58.59 pH 1.4, T 293 K Langmuir [55]
U(VI) GO 299.00 pH 4.0, T 298 K Langmuir [56]

5.12 pH 3.0, T 293 K Langmuir [54]
TNRs 282.50 pH 5.0, T N.A. Langmuir [47]

Zn(II) GO 246.00 pH 7.0, T 293 K Langmuir [57]
345.00 pH 5.0, T 298 K Langmuir [30]

qmax: maximum adsorption capacity; T: temperature of adsorption; N.A.: not available.

The adsorption capacity of a material is influenced by both pH and temperature.
Table 1 presents the operating conditions for achieving maximum adsorption capacity. To
increase the attraction between GO and HMI, the solution is brought to a pH above pHpzc
(point of zero charge), where the surface charge of GO is negative, and the electrostatic
interactions become stronger [30]. Furthermore, Table 1 presents the adsorption isotherm
models where the Langmuir model indicates that the adsorbent surface contains only a
certain number of active sites for a single molecule to be adsorbed, while the Freundlich
model indicates that there are several different adsorption sites on a heterogeneous adsor-
bent material. According to the data, metal ions fit the Langmuir model best, describing
the chemisorption process when ionic or covalent chemical bonds are formed between the
adsorbent (GO) and the adsorbate (HMI) [58].
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3. Adsorption of Heavy Metal Ions on Modified Graphene Oxide

Different materials have been used to modify graphene oxide and improve its sta-
bility and capacity. These compounds, called crosslinkers, have different characteristic
functional groups, which allow the structure and properties of the GO to be modified. The
modification of GO with carboxylic acids [59], diamines [59–61], dialdehydes [62], metal
groups [63,64], and amino acids [65] has been widely reported, where the functional group
is the main responsible for the cross-linking to the GO layer through chemical bonds or
physical interactions. Chemical functionalisation of GO nanosheets is usually carried out
in temperature-assisted solution [66], layer-by-layer deposition [67,68], use of the sol-gel
method [69] or immersion in solution with the crosslinker [70]. In addition to crosslinkers,
GO can also be improved by adding a second compound, called a covalent linker, which
increases the number of covalent bonds between the functionalised GO sheets and the
contaminants. The incorporation of a covalent linker within the functionalised GO mem-
brane structure can be performed directly into the synthesis GO-crosslinker solution or by
immersing the already functionalised GO-crosslinker membrane in a solution containing
the second functional material [70].

Table 2 shows the maximum adsorption capacities of most heavy metal ions on
modified GO. It can be observed that the adsorption capacity is higher than those on
unmodified GO (Table 1). This suggests that the materials used to modify GO enhance the
adsorption capacity of the modified GO composites. Figure 1a depicts the box plots for the
data presented in Tables 1 and 2, showing a clear difference between GO material with or
without additives. The addition of a crosslinker into the GO matrix increases the adsorption
of heavy metal ions, showing a median twofold superiority to unmodified GO. Crosslinkers
may incorporate more connection sites between the material and the heavy metal ion; for
example, nitrogen-based crosslinkers have one connection point per nitrogen atom, and
oxygen-based crosslinkers have two connection points per oxygen atom. Metal crosslinkers
have electrostatic interactions with metal ions. However, adding a second material seems to
decrease the adsorption, likely due to the bonding between the covalent linker and the GO
functionalised nanosheets (decreasing the connection sites for the metal ions). In the case of
GO, the maximum adsorption capacity is 253.58 ± 75.39 mg g−1, while for GO-crosslinker
and GO-crosslinker-covalent linker, the maximum capacity is 362.89 ± 48.86 mg g−1 and
128.41 ± 26.15 mg g−1.
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Figure 1. Box plot of (a) maximum adsorption capacities of GO and GO-based composites; (b) maxi-
mum adsorption capacities of Cu(II) and Pb(II) using GO-based composites.

Figure 1b depicts the box plot of the maximum adsorption of capacities for Cu(II) and
Pb(II) using GO-based materials. It is noticeable that, despite having the same ionic charges,



Processes 2024, 12, 2320 5 of 19

the adsorption has different values. This is because the qmax is related to the characteristics
of the metal ion, in addition to the properties of the GO-based sorbent [71].

In Table 2, both the crosslinker and covalent linker are classified in terms of the
dominant functional groups and are denoted according to the connecting element between
the compound and the GO nanosheet: nitrogen (N), oxygen (O) and metallic element (M).

Table 2. Maximum adsorption capacities of crosslinker and crosslinker-covalent linker-functionalised
GO for removing heavy metal ions.

Heavy
Metal Ion

Crosslinker
(Classification)

Chemical
Formula

Crosslinker *

Covalent
Linker (Classi-

fication)

Chemical
Formula
Covalent
Linker *

qmax (mg g−1) Operating
Condition Reference

As(V) Fe-NPs (M) Fe3O4 - - 73.42 pH 7.0, T 298 K [72]
Au(III) CS (N, O) C6H11NO4 - - 1076.65 pH 4.0, T 323 K [36]

PAM (N, O) C3H5NO - - 253.81 pH 5.0, T 298 K [73]
PEI (N) C2H5N PDA (N) C7H9NO2 106.00 pH 5.2–6.8 [74]

Fe-NPs (M) Fe3O4 EDA (N) C2H8N2 27.83 pH 6.0–7.0, T 293 K [75]
PDA (N) C7H9NO2 - - 210.00 T 298 K [76]
PDA (N) C7H9NO2 - - pH 6.0 [77]

Co(II) PPhDA (N) C6H8N2 - - 116.35 pH 6.0, T 298 K [78]
Cr(VI) MgAl-LDH (M) - - - 172.55 pH 2.0, 293 K [79]

Fe-NPs (M) Fe3O4 CS (N, O) C6H11NO4 162.00 pH 4.25, T 293 K [80]
TETA (N) C6H18N4 - - 219.50 pH 2.0, T 303 K [81]
PAAm (N) C3H7N - - 485.00 pH 4.0, T 298 K [82]
Fe-NPs (M) Fe3O4 EDA (N) C2H8N2 17.29 pH 1.0–3.0, T 293 K [75]

CDx (O) C42H70O35 CS (N) C6H11NO4 67.66 T 298 K [83]
Fe-NPs (M) Fe3O4 CS (N) C6H11NO4 107.99 pH 2.0, T 303 K [84]
Fe-NPs (M) Fe3O4 DACHTA (N) C14H22N2O8 83.66 pH 3.0, T 303 K [85]

Cu(II) Fe-NPs (M) Fe3O4 SAc (O) C6H6NO3S 62.73 pH 5.0, T 298 K [86]
EDTA (N, O) C10H14N2O8 - - 301.20 T 318 K [87]

Ca2+ (M) - SA (O) C6H9NaO7 60.20 [88]
TETA (N) C6H18N4 - - 209.10 pH 6.0, T 293 K [89]

SA (O) C6H9NaO7 - - 98.00 pH 5.0, T 303 K [90]
PAM (N, O) C3H5NO - - 68.68 pH 4.5, T 298 K [73]

PEI (N) C2H5N PDA (N) C7H9NO2 87.00 pH 5.2–6.8 [74]
PAAm (N) C3H7N - - 349.04 pH 6.0, T 293 K [91]

L-Trp (N, O) C10H12N2O2 - - 588.00 pH 5.0, T 293 K [92]
ATP (N, O) C6H7NS - - 99.17 pH 6.0, T 298 K [93]

APTES (N, M) C9H23NSiO3 - - 103.28 pH 6.0, T 298 K [93]
EDTA (N, O) C10H14N2O8 - - 108.70 pH 5.0 [94]

Hg(II) EDTA (N, O) C10H14N2O8 - - 268.40 T 318 K [87]
PPy (N) C8H6N2 - - 980.00 pH 3.0, T 293 K [95]
PEI (N) C2H5N PDA (N) C7H9NO2 110.00 pH 3.5–4.0 [74]

Co-NPs (M) Co3O4 CS (N, O) C6H11NO4 361.00 pH 7.0, T 323 K [96]
Fe-NPs (M) Fe3O4 EDA (N) C2H8N2 23.03 pH 6.0–7.0, T 293 K [94]

Mn(II) PAM (N, O) C3H5NO - - 18.29 pH 4.0, T 298 K [73]
Ni(II) Gly (N, O) C2H5NO2 - - 36.63 pH 6.0, T 293 K [50]

Fe-NPs (M) Fe3O4 EDA (N) C2H8N2 22.07 pH 6.0–7.0, T 293 K [94]
Pb(II) EDTA (N, O) C10H14N2O8 - - 508.40 T 318 K [87]

EDTA (N, O) C10H14N2O8 - - 479.00 pH 6.8, T 298 K [97]
CS (N, O) C6H11NO4 - - 120.00 pH 6.0, T 298 K [98]

PAM (N, O) C3H5NO - - 1000.00 pH 6.0, T 298 K [99]
CS (N, O) C6H11NO4 - - 99.00 T Room [100]
PVK (N) C14H11N - - 887.98 pH 7.0, T 298 K [101]

APTES (N, O, M) C9H23NSiO3 - - 312.50 pH 4–5, T 303 K [102]
PAM (N, O) C3H5NO - - 819.67 pH 6.0, T 293 K [103]

SA (O) C6H9NaO7 - - 267.40 pH 5.5, T 303 K [90]
CS (N, O) C6H11NO4 - - 216.92 pH 3.0, T 323 K [36]

PAAM (N, O) C3H5NO - - 568.18 pH 4.5, T 298 K [73]
LS (O) C20H24Na2O10S2 PANI (N) C6H5N 216.40 pH 5.0, T 303 K [104]
PEI (N) C2H5N PDA (N) C7H9NO2 197.00 pH 4.0–5.4 [74]

OPhDA (N) C6H8N2 PDA (N) C7H9NO2 228.0 [105]
PAM (N, O) C3H5NO - - 819.67 pH 6.0, T 293 K [103]
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Table 2. Cont.

Heavy
Metal Ion

Crosslinker
(Classification)

Chemical
Formula

Crosslinker *

Covalent
Linker (Classi-

fication)

Chemical
Formula
Covalent
Linker *

qmax (mg g−1) Operating
Condition Reference

L-Trp (N, O) C10H12N2O2 - - 222.00 pH 4.0, T 293 K [92]
Fe-NPs (M) Fe3O4 L-Cys C3H7NO2S 459.33 pH 6.0 [106]
HPEI (N) C2H5N - - 438.6 pH 5.5, T 298 K [107]

Fe-NPs (M) Fe3O4 EDA (N) C2H8N2 27.95 pH 6.0–7.0, T 293 K [94]
PDA (N) C7H9NO2 - - 365.00 T 298 K [76]
HPA (N) C5H15N3 - - 740.7 pH 5.9, T 298 K [108]
PDA (N) C7H9NO2 - - pH 6.0 [77]

EDTA (N, O) C10H14N2O8 - - 454.60 pH 3.0 [94]
Sr(II) PAM (N, O) C3H5NO - - 184.88 pH 8.5, T 303 K [109]
U(VI) Sep (M) - - - 161.29 pH 5.0, T 298 K [110]

Fe-NPs (M) Fe3O4 DETA (N) C4H13N3 141.12 pH 6.0, T 298 K [111]

qmax: Maximum adsorption capacity; (N): nitrogen-based compounds; (O): oxygen-based compounds; (M): metal-
based compounds; T: temperature of adsorption test; *: for crosslinkers/covalent linkers that are polymeric, the
chemical formula corresponds to the formula of the corresponding monomer.

The results presented in Table 2 can be analysed in terms of the influence of electro-
static forces (also known as Coulombic forces) on the adsorption process of oppositely
charged pollutants onto the binding sites [112]. The adsorbent surface enriched with active
functional groups contains electron donor elements, acting as adsorptive sites for metal
binding [27,113] through chemical interaction (ion exchange, surface complexation and
Lewis’s acid-base interactions) [112]. Indeed, the use of adsorbents possessing nitroge-
nous and oxygenated groups (e.g., –NH2, –OH, –COOH, –CONH2) allows coordination
or chemical bonding with heavy metal cations due to the vacant 3d orbital [114,115]. For
example, the incorporation of polyethyleneimine (PEI) as a crosslinker into the GO matrix
increased the sorption capacity by interacting with As(III) and As(V) through complexa-
tion and electrostatic interactions [116], where PEI showed that up to 70% of the polymer
links take part in complex formation [117]. However, pH values under 7.8 promote the
protonation of –NH2 (–NH3

+) and –OH (–OH2
+) functional groups, then attract anions and

repel cations [118]. Moreover, the high concentrations of H+ and H3O+ in solution would
compete with HMI to attach to the available binding sites of GO-based nanomaterials,
finally reducing the adsorption of metal ions at low pH [119]. The cationic-π binding
mechanism involves the non-covalent interaction between a positively charged pollutant
and the negatively charged electron cloud of the π system in GO-based sorbents [120].

In the case of GO modified by a metal-based crosslinker, HMI can be adsorbed by
forming surface complexes with one, two or multiple binding points [121]. For example,
the adsorption of As(V) for GO modified with gadolinium oxide (Gd2O3) is mainly due to
the electrostatic attraction of carbonyl groups with gadolinium oxide and the electrons of
the π–π bounds [122,123]. It has been reported that the adsorption capacity is increased by
having oxygenated groups along the surface, and this benefits the porous structure and
superparamagnetic properties [124]. Figure 2 summarises the HMI adsorption mechanisms
with GO materials functionalised with nitrogen, oxygen and metal compounds, where Mx+

represents a heavy metal cation and MOx
y− represents a heavy metal anion.

Concerning the chemical structure of crosslinker/covalent linker, the number of bind-
ing sites could be considered. For instance, the nitrogen groups have one bonding point
(one non-bonding electron pair), the oxygen groups have two bonding points (two non-
bonding electron pairs), and the benzene rings of the GO/crosslinker/covalent linker have
one bonding point (cation–π interaction). Then, the structure of the functionalised GO
can be related to the maximum adsorption capacity of this material. Figure 3 presents the
relationship between GO-crosslinker/covalent linker bonding points and the maximum
adsorption capacity from the data in Table 2.



Processes 2024, 12, 2320 7 of 19

Processes 2024, 12, x FOR PEER REVIEW 7 of 20 
 

 

finally reducing the adsorption of metal ions at low pH [119]. The cationic-π binding 
mechanism involves the non-covalent interaction between a positively charged pollutant 
and the negatively charged electron cloud of the π system in GO-based sorbents [120]. 

In the case of GO modified by a metal-based crosslinker, HMI can be adsorbed by 
forming surface complexes with one, two or multiple binding points [121]. For example, 
the adsorption of As(V) for GO modified with gadolinium oxide (Gd2O3) is mainly due to 
the electrostatic attraction of carbonyl groups with gadolinium oxide and the electrons of 
the π–π bounds [122,123]. It has been reported that the adsorption capacity is increased 
by having oxygenated groups along the surface, and this benefits the porous structure and 
superparamagnetic properties [124]. Figure 2 summarises the HMI adsorption mecha-
nisms with GO materials functionalised with nitrogen, oxygen and metal compounds, 
where Mx+ represents a heavy metal cation and MOxy− represents a heavy metal anion. 

 
Figure 2. Heavy metal ion adsorption mechanism using GO-based materials functionalised with 
nitrogenous or oxygenated crosslinker (left) and metal-based crosslinker (right). 

Concerning the chemical structure of crosslinker/covalent linker, the number of bind-
ing sites could be considered. For instance, the nitrogen groups have one bonding point 
(one non-bonding electron pair), the oxygen groups have two bonding points (two non-
bonding electron pairs), and the benzene rings of the GO/crosslinker/covalent linker have 
one bonding point (cation–π interaction). Then, the structure of the functionalised GO can 
be related to the maximum adsorption capacity of this material. Figure 3 presents the re-
lationship between GO-crosslinker/covalent linker bonding points and the maximum ad-
sorption capacity from the data in Table 2. 

At first glance, adding the covalent linker decreases the adsorption of HMI despite 
the higher number of bonding points. Excessive cross-linking not only disrupts and blocks 
water transport within the GO nanochannels [23], but it can also decrease the adsorption 
capacity of HMI due to the disruption of binding sites caused by the covalent linker in the 
GO-cross-linking structure [125]. In addition, the molecular structure of GO-crosslinker-
covalent linker adsorbent is generally large and unstable, which leads to structural dam-
age in the adsorption process [126]. 

Figure 2. Heavy metal ion adsorption mechanism using GO-based materials functionalised with
nitrogenous or oxygenated crosslinker (left) and metal-based crosslinker (right).

Processes 2024, 12, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. Scatter plot between the bonding points of functionalised GO-based compounds and the 
maximum adsorption capacity of heavy metal ions. 

4. Separation of Heavy Metal Ion Performance by Modified Graphene Oxide  
Functionalised Membranes 

In membrane separation processes, rejection refers to the ability of a membrane to 
block specific solutes from passing through, allowing only solvent permeation. Essen-
tially, the percentage of the solute prevented passage through the membrane. Conversely, 
flux is the permeate flow rate through the membrane per unit area. These two parameters 
are essential in understanding the efficiency and effectiveness of the membrane separation 
processes. 

Table 3 presents the HMI rejection of GO membranes modified by different crosslink-
ers/covalent linkers. 

Table 3. Performance and operating conditions of crosslinker and crosslinker-covalent linker-func-
tionalised GO membranes for removing heavy metal ions. 

Heavy Metal Ion Crosslinker (Classification) Covalent Linker 
(Classification) 

Rejection (%) Operating 
Condition 

Reference 

As(III) TETA (N) CuFe2O4 (M) 81.2% 4.0 bar [127] 
 QT (O) - 67.0% 1.0 bar [128] 

As(V) TETA (N) CuFe2O4 (M) 87.9% 4.0 bar [127] 
 H2SO4 (O) - 79.0% 2.0 bar [129] 

Cd(II) QT (O) - 75.0% 1.0 bar [128] 
 IPDI (N) - 52.8% 1.0 bar [130] 
 PMMA (O) - 68.0% 5.0 bar [131] 
 EDA (N) PEI (N) 90.5% 1.0 bar [132] 
 CR (N, O) Ca2+ (M) 99.5% 5.0 bar [133] 

Cr(II) POSS (M) PERI (N) 80.0% 4.5 bar [134] 
 IPDI (N) - 71.1% 1.0 bar [130] 

Cr(VI) QT (O) - 70.0% 1.0 bar [128] 
 H2SO4 (O) - 37.5% 2.0 bar [129] 
 EDA (N) - 100.0% 21.0 bar [135] 

Cu(II) MeF (N) Fe3O4 (M) 92.0% 4.0 bar [136] 
 POSS (M) PERI (N) 55.0% 4.5 bar [134] 
 IPDI (N) - 46.2% 1.0 bar [130] 
 UR (N, O) - 81.0% 1.0 bar [137] 

Figure 3. Scatter plot between the bonding points of functionalised GO-based compounds and the
maximum adsorption capacity of heavy metal ions.

At first glance, adding the covalent linker decreases the adsorption of HMI despite
the higher number of bonding points. Excessive cross-linking not only disrupts and blocks
water transport within the GO nanochannels [23], but it can also decrease the adsorption
capacity of HMI due to the disruption of binding sites caused by the covalent linker in the
GO-cross-linking structure [125]. In addition, the molecular structure of GO-crosslinker-
covalent linker adsorbent is generally large and unstable, which leads to structural damage
in the adsorption process [126].

4. Separation of Heavy Metal Ion Performance by Modified Graphene Oxide
Functionalised Membranes

In membrane separation processes, rejection refers to the ability of a membrane to block
specific solutes from passing through, allowing only solvent permeation. Essentially, the
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percentage of the solute prevented passage through the membrane. Conversely, flux is the
permeate flow rate through the membrane per unit area. These two parameters are essential
in understanding the efficiency and effectiveness of the membrane separation processes.

Table 3 presents the HMI rejection of GO membranes modified by different crosslink-
ers/covalent linkers.

Table 3. Performance and operating conditions of crosslinker and crosslinker-covalent linker-
functionalised GO membranes for removing heavy metal ions.

Heavy Metal Ion Crosslinker
(Classification)

Covalent Linker
(Classification) Rejection (%) Operating

Condition Reference

As(III) TETA (N) CuFe2O4 (M) 81.2% 4.0 bar [127]
QT (O) - 67.0% 1.0 bar [128]

As(V) TETA (N) CuFe2O4 (M) 87.9% 4.0 bar [127]
H2SO4 (O) - 79.0% 2.0 bar [129]

Cd(II) QT (O) - 75.0% 1.0 bar [128]
IPDI (N) - 52.8% 1.0 bar [130]

PMMA (O) - 68.0% 5.0 bar [131]
EDA (N) PEI (N) 90.5% 1.0 bar [132]
CR (N, O) Ca2+ (M) 99.5% 5.0 bar [133]

Cr(II) POSS (M) PERI (N) 80.0% 4.5 bar [134]
IPDI (N) - 71.1% 1.0 bar [130]

Cr(VI) QT (O) - 70.0% 1.0 bar [128]
H2SO4 (O) - 37.5% 2.0 bar [129]
EDA (N) - 100.0% 21.0 bar [135]

Cu(II) MeF (N) Fe3O4 (M) 92.0% 4.0 bar [136]
POSS (M) PERI (N) 55.0% 4.5 bar [134]
IPDI (N) - 46.2% 1.0 bar [130]

UR (N, O) - 81.0% 1.0 bar [137]
EDA (N) - 59.0% 1.0 bar [137]

PMMA (O) - 58.0% 5.0 bar [131]
K+ (M) - 97.5% 1.0 bar [138]

Ba2+ (M) - 96.4% 1.0 bar
Ca2+ (M) - 96.2% 1.0 bar
Mg2+ (M) - 95.7% 1.0 bar
CR (N, O) Ca2+ (M) 99.0% 5.0 bar [133]

Ni(II) PMMA (O) - 73.0% 5.0 bar [131]
EDA (N) PEI (N) 96.0% 1.0 bar [132]
K+ (M) - 94.3% 1.0 bar [138]

Ba2+ (M) - 93.4% 1.0 bar
Ca2+ (M) - 93.3% 1.0 bar
Mg2+ (M) - 92.4% 1.0 bar
CR (N, O) Ca2+ (M) 98.0% 5.0 bar [133]

Pb(II) QT (O) - 74.0% 1.0 bar [128]
POSS (M) PERI (N) 78.0% 4.5 bar [134]
IPDI (N) - 66.4% 1.0 bar [130]
EDA (N) PEI (N) 95.7% 1.0 bar [132]
K+ (M) - 92.2% 1.0 bar [138]

Ba2+ (M) - 91.9% 1.0 bar
Ca2+ (M) - 92.5% 1.0 bar
Mg2+ (M) - 91.2% 1.0 bar
CR (N, O) Ca2+ (M) 98.0% 5.0 bar [133]

Zn(II) PMMA (O) - 79.0% 5.0 bar [131]
EDA (N) PEI (N) 97.4% 1.0 bar [132]

(N): nitrogen-based compounds; (O): oxygen-based compounds; (M): metal-based compounds.

In general, nitrogenous and oxygenated crosslinkers have been the most widely
used for HMI nanofiltration processes because covalent crosslinking between nitrogen-
containing (–NH2) or oxygen-containing functional groups (–OH, –COOH, –COC–) with
GO [139], is stronger than the non-covalent crosslinking (Van der Waals forces, hydrophobic
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interaction, π–π interactions, electrostatic and hydrogen bonding) of the metal-based
crosslinker and GO [23].

Enhancing the hydrophilicity of hydrophobic surfaces has been widely regarded as an
effective strategy for improving water permeability [140]. The non-oxidized GO surface and
the hydrophilic functional groups of GO induce water molecules to cross the membrane to
increase their transfer rate [141,142], such as a “sliding effect”, which is detrimental when
treating hydrated ions. Water molecules are generally viewed as vehicles for ion transport
in an aqueous environment, which can form a shell around ions with the help of hydrogen
bonds [143]. This may result in an increase in ionic flow, which would be controlled by pore
size and the transmembrane pressure [144]. On the other hand, Donnan exclusion involves
a local equilibrium in the membrane, which results in the exclusion of almost all co-ions
at the membrane entrance while counter-ions are absorbed and transported [145]. In the
case of HMI, electrostatic attraction between the nanocomposites and cations will occur,
while electrostatic repulsion will occur with anions [118]. For example, the introduction
of –NH3

+ groups makes the GO membrane impermeable to Fe2+ successfully [143]. This
phenomenon can be explained due to the protonation of amine and carboxylic groups of
GO functionalised by an N-based crosslinker, which confers to the membrane a positive
charge [146].

Figure 4a depicts the box plots for the data presented in Table 3. In the case of HMI
rejection, incorporating the covalent linker leads to increased metal ion removal compared
to GO-crosslinker-only membranes due to the precise control of interlayer spacing [147,148].
For this reason, the rejection of GO-crosslinker-covalent linker membranes is higher than
that of GO-crosslinker membranes.
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The following question arises from the previous section: can the performance of func-
tionalised GO membranes be related to the adsorption of metal contaminants? Figure 4b
presents the relationship between the maximum adsorption capacity of GO-crosslinker/
covalent linker and the rejection of HMI with these membranes. Membranes with GO-
crosslinker-covalent linkers show a lower adsorption capacity, but higher HMI rejection
than functionalised GO with a crosslinker. However, there is a need to study what happens
in pollutant removal processes with functionalised GO membranes.
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5. Phenomenological Aspects of the Membrane Separation Process

Several principal equations are commonly used to describe and analyse the phenom-
ena involved in membrane separation processes. Equation (1) describes the three transport
mechanisms involved simultaneously in the nanofiltration process for ionic solutes: diffu-
sion, convection, and electro-migration [149]. All equations use S.I. units.

Ji = −Di,p · ∇ci + Ki,c · ci · Jp −
zi · F
R · T

· Di,p · ci · ∇ψ (1)

where Ji is the flux per unit area of ion i, Di,p is the diffusivity of species i within the
membrane pore, ci is the concentration of species i in the pore, zi is the valence of species i,
R is the universal gas constant, T is the absolute temperature, F is Faraday’s constant, ψ is
the Donnan potential of the membrane, Ki,c is the hindrance factor for the convective term
and Jp is the permeate flow rate. To determinate Di,p, this can be calculated by Equation (2).

Di,p = Ki,d · Di,∞ (2)

where Di,∞ is the diffusivity of species i in the bulk solvent, Ki,d is the hindrance factor for
the diffusive term. The hindrance factors Ki,d and Ki,c are functions of the ratio between the
solute radius (ri) and the membrane pore radius (rp) (Equation (3)).

λ =
ri
rp

(3)

Equations (4) and (5) allow for the determining of hindrance factors for 0 < λ < 0.8.

Ki,d = 1.0 − 2.30 · λ + 1.154 · λ2 + 0.224 · λ3 (4)

Ki,c = (2 − Φ) · (1.0 + 0.054 · λ − 0.998 · λ2 + 0.441λ3) (5)

where Φ is the steric partition coefficient, representing the likelihood of a solute, smaller
than the pore, successfully entering the pore (Equation (6)).

Φ =

{
(1 − λ)2, ri < rp

0 , ri ≥ rp
(6)

Regarding the electroneutrality principle and electrostatic interaction between solutes
and membrane pores, the Poisson–Nernst–Planck (PNP) equation determines the change in
ion concentration over time (Equation (7)) [150]. This equation could be used to predict the
content of metal ions in both the membrane structure and the permeate by a mass balance.

∂ci
∂t

+∇ · Ji = 0 (7)

Replacing Equation (1) in Equation (7), we obtain Equation (8).

∂ci
∂t

= Di,p · ∇2ci + Ki,c · (ci · ∇Jp +∇ci · Jp)−
zi · F
R · T

· Di,p · (∇ci · ∇ψ + ci · ∇2ψ) (8)

Regarding Donnan potential, if the electric potential gradient is uniform for all ions
within the membrane, this gradient results in Equation (9) [149]:

∇ψ =
∑n

i=1

(
zi ·Jv
Di,p

·
(
Ki,c · ci − Ci,p

))
F

RT · ∑i=1 n
(
z2

i · ci
) (9)
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where Ci,p is the concentration of the species i in the permeate. Considering that Donnan
potential is usually very low (∇ψ ≈ 0), the system is an incompressible fluid (∇Jp = 0),
and ∇2ψ can be calculated by Equation (10), and Equation (8) is reduced to Equation (11).

∇2ψ = −ρe

ε
(10)

∂ci
∂t

= Di,p · ∇2ci − Ki,c · Jp · ∇ci +
zi · F
R · T

· Di,p ·
ρe

ε
· ci (11)

where ρe is the charge density, and ε is the permittivity of the membrane. The change in con-
centration in the permeate would be related to adsorption by means of the charge density.
Zhang et al. [151] investigate the effect of layer charge density and cation concentration on
the structures and dynamics of Pb2+, Ba2+ and Cs+ adsorbed in the interlayer and nanopore
of montmorillonite. The results show that the higher the charge density, the higher the
adsorption amount. Therefore, there is a direct relationship between metal adsorption and
charge density [152], e.g., Kalaitzidou et al. [153] determined that the adsorption capacity
of iron oxy-hydroxides (FeOOH) for Se(IV) is strongly related to positive surface charge
density when the metal is as SeO3

2− and increases when synthesis pH is lowered (more
positive surface charge density).

On the other hand, Osorio et al. [154] proposed a model to determinate the relationship
between membrane charge density and cation concentration, where the membrane charge
density is defined as a function of the local concentration of divalent cations (Equation (12)).

ρe = ρe,0 ·
1 − Kb · ci
1 + Kb · ci

(12)

where ci—concentration of divalent cation, Kb—the membrane-cation binding constant and
ρe,0—the bare membrane charge density (the charge in the absence of cations in solution).
Additionally, Li et al. [155] demonstrated by means of molecular dynamics simulations
that the higher the surface charge density, the greater the passage of metal ions in graphene
membranes. This provides a direct relationship between the surface charge density and the
permeate of metal ions, which is described by Equation (11).

Another model for determining the surface charge density is by correlating the bulk
ion concentration with the membrane surface charge density through the Freundlich-
type isotherm. This model is acceptable at low electrolyte concentrations, but for real-life
brackish or saline water, the bulk concentration is quite high [156]. Finally, the zeta potential
can be used to measure the membrane charge density. Then, the charge density can then
be incorporated into a model based on the Teorell–Meyer–Sievers theory to calculate
the rejection of nanofiltration membranes under the assumption of constant membrane
potential [157].

In summary, the phenomenological analysis shows that an increase in surface charge
density leads to increased adsorption and flux of metal ions in functionalised GO membrane
systems, thus reducing the membrane selectivity. This concurs with the experimental data
collected and displayed in Figure 3. However, there are no studies in the literature that
relate the characteristics of the functionalising compound (crosslinker and covalent linker)
to the surface charge density and, consequently, to the adsorption and permeation of heavy
metal ions. Under this logic, it is recommended to study the effects that crosslinkers or
covalent linkers would have considering Equations (1)–(12). In addition, it is known that
membrane desorption and regeneration cause secondary pollution [158] and the decrease in
adsorption performance due to the loss of adsorbent material during multiple cycles [159],
the dissolution of adsorbent in the treated flow [160] or the loss of functional groups [161].
So, it is necessary to study the enhanced reuse of functionalized GO membranes and the
final disposal of the waste generated.
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6. Conclusions

Membrane separation includes the linked phenomenon of adsorption and filtration;
this fact is confirmed after an analysis of published results with modified graphene oxide-
functionalised inorganic membrane. In this material separation, performance depends on
the hydrophobic interactions of the membrane and the solute [162].

The underlying mechanism that governs the interaction between graphene oxide
membrane and heavy metal ions is directly linked with the adsorption phenomena through
different mechanisms, including both ionic and coordinative interaction and metal com-
plexation with oxygenate functional groups. These interactions are affected by the chemical
modification arising from the functionalization procedures.

The nature of the crosslinker directly affects the performance of functionalised GO
membranes, where the adsorption of heavy metal ions is determined by the attachment
points of the crosslinker.

Adsorption of heavy metal ions changes the charge density of the membrane, leading
to an increase in ions in the permeate. Depending on the material, the change in charge
density will be different.

Further research effort is still necessary to obtain a complete description of the rela-
tionship between nanofiltration and HMI adsorption performance when using inorganic
GO-functionalised membranes that have been modified with different crosslinkers to offer
a predictive tool for designing new materials.

This predictive tool must support the development of many relevant areas which
need more research for massive industrial applications of the inorganic functionalised
membrane technology, such as improved life cycle and recyclability, scalable commercial
manufacturing and the real-scale demonstration of the energetic benefits in comparison of
dense polymeric membranes.
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Nomenclature

Abbreviation Name
APTES 3-aminopropyltriethoxysilane
ATP 4-aminothiophenol
CDx Cyclodextrin
Co-NPs Co nanoparticles
CR Congo Red
CS Chitosan
CuFe2O4 Copper ferrite
DACHTA 1,2-diaminocyclohexanetetraacetic acid
DETA Diethylenetriamine
EDA Ethylenediamine
EDTA Ethylene diamine tetraacetic acid
Fe-NPs Fe nanoparticles
Gly Glycine
HPA Hyperbranched polyamine
HPEI Hyperbranched polyethyleneimine
IPDI Isophorone diisocyanate
Lc-Al2O3 Lignocellulosic-Al2O3 hybrid biosorbent
L-Cys L-cysteine
LL-NaOH Leucaena leucephala treated with NaOH
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LS Lignosulfonated
L-Trp L-tryptophan
LVB Lagenaria vulgaris biosorbent
MeF Metformin
MgAl-LDH MgAl-layered double hydroxides
OPhDA Ortophenylenediamine
PAAm Polyallylamine
PAM Polyacrylamide
PANI Polyaniline
PDA Polydopamine
PEI Polyethyleneimine
PERI Polyetherimide
PMMA Hydrolyzed polymethylmethacrylate
POSS Octa glycidyloxypropyl-silsesquioxane
PPhDA Paraphenylenediamine
PPy Polypyrrole
PVK Poly(N-vinylcarbazole)
QT Quercertin
SA Sodium alginate
SAc Sulfanilic acid
Sep Sepiolite
TETA Triethylenetetramine
TNRs Titanate nanorings
UR Urea
Ze-nWRT Zeolite functionalised with nanostructured water treatment residual
ZIF-8-EDA Zeolite imidazolate framework-8 functionalised with ethylenediamine
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lignocellulosic biosorbent: Characterization and application for simultaneous removal of copper (II), Reactive Blue 19 and
cyprodinil from water. Wood Sci. Technol. 2019, 53, 619–647. [CrossRef]

https://doi.org/10.1016/j.desal.2017.07.023
https://doi.org/10.3390/ma11010074
https://doi.org/10.3390/molecules26113331
https://doi.org/10.1016/j.seppur.2018.02.041
https://doi.org/10.1007/s40843-019-9462-9
https://doi.org/10.3390/membranes13040429
https://doi.org/10.1016/j.memsci.2023.121761
https://doi.org/10.1039/D0MA00191K
https://doi.org/10.1016/j.jiec.2019.03.029
https://doi.org/10.1016/j.jwpe.2022.103023
https://doi.org/10.1016/j.jtice.2022.104625
https://doi.org/10.1016/j.envpol.2019.05.050
https://doi.org/10.1016/j.biortech.2019.01.002
https://doi.org/10.1016/j.clay.2008.07.009
https://doi.org/10.1039/c3dt33097d
https://doi.org/10.1038/s41598-024-59982-9
https://doi.org/10.3390/molecules25102411
https://www.ncbi.nlm.nih.gov/pubmed/32455827
https://doi.org/10.1016/j.molliq.2017.01.064
https://doi.org/10.33263/BRIAC125.61966210
https://doi.org/10.3390/c9010010
https://doi.org/10.1016/j.talanta.2012.02.051
https://www.ncbi.nlm.nih.gov/pubmed/22483922
https://doi.org/10.1016/j.jhazmat.2015.04.068
https://www.ncbi.nlm.nih.gov/pubmed/25978188
https://doi.org/10.1007/s13201-024-02123-4
https://doi.org/10.1016/j.hydromet.2015.10.021
https://doi.org/10.1016/j.molliq.2022.120419
https://doi.org/10.1007/s13201-020-1142-2
https://doi.org/10.1016/j.jcis.2010.07.042
https://www.ncbi.nlm.nih.gov/pubmed/20705296
https://doi.org/10.1007/s11270-012-1372-5
https://doi.org/10.1007/s00226-019-01093-0


Processes 2024, 12, 2320 15 of 19
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