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Abstract: Leveraging data-driven methods such as Response Surface Methodology (RSM) has consid-
erable potential for sustainable building cooling via mitigating energy consumption and environmen-
tal impacts. This research focuses on using the RSM to improve liquid desiccant dehumidification
for sustainable building cooling performance using a D-optimal design. Specifically, the research
intends to investigate the actual influence of the inlet air conditions and desiccant concentration on
the performance of liquid desiccant dehumidification systems, i.e., the moisture removal rates and
dehumidifier efficiency. To systematically conduct this research, a set of experimental data gathered
from the open literature is utilised. This includes a specific set of inlet parameters of air temperature
(27–34.5 ◦C), ratio of air humidity (20.5–25 g/kg), and solution temperature (27.5–38.5 ◦C) as the
independent variables. Also, the feedback variables include the moisture removal rates (MRR) and
efficacy (ϵ). The associated results of the analysis of variation indicate that the ratio of air humidity
has the greatest influence on the moisture removal rate. However, the solution temperature and the
ratio of air humidity have the most influence on efficacy. In the event of response optimisation, the
result at MRR and (ϵ) are 0.54 g/s and 0.50, respectively, with a minimum desirability of 0.992 and 1.

Keywords: desiccant; dehumidification; RSM; D-optimal; desirability

1. Introduction

Liquid desiccant dehumidifiers are effective in removing moisture from the air by
using a liquid solution to absorb water vapour. The liquid desiccant dehumidifier’s
performance of desiccant used can be determined via allocating the flow rate of the air
and solution, and the temperature and humidity of the incoming air [1–3]. One advantage
of liquid desiccant dehumidifiers is that they can operate at lower temperatures and
humidity levels than other dehumidification technologies. They are also more energy-
efficient than refrigerant-based dehumidifiers, which require a lot of energy to cool the
air and remove moisture [4]. However, liquid desiccant dehumidifiers require a source
of heat to regenerate the desiccant solution and release the captured moisture [5]. This
heat source can be provided by a waste heat recovery system, solar collectors, or other
sources of renewable energy. Liquid desiccant dehumidifiers can also be more complex
and require more maintenance than other dehumidification technologies, as the liquid
desiccant solution needs to be monitored and periodically replaced. Nevertheless, they are
a good option for applications where low temperature and humidity levels are required,
such as in the food and pharmaceutical industries, as well as for indoor air quality control
in commercial and residential buildings.

Generally, the standard symmetrical designs cannot be used when the experimental
domain is irregularly in form, or when the number of experiments appointed by a classical
design is large. To sort out this issue, the principal notion of D-optimality can be used to
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select the proper design [6]. In hot and humid climates, the humid air is dehumidified
with a strong liquid or solid dry, and the warm-dry air is cooled by evaporating water into
it, which results in an acceptable final humidity and temperature. Dehumidification is a
process that occurs when humid air interacts with a desiccant solution. The efficacy (ϵ)
of the dehumidification process is measured using two indicators: the moisture removal
rate (MRR) and efficacy of (ϵ) [7]. Several systems of liquid desiccant dehumidification for
sustainable building cooling were constructed and improved during the last 30 years to
improve the efficiency of classical air condition systems. According to Jain et al. [8], on
account of the pressure vapour between the desiccant solution and air, the liquid desiccants
absorb moisture from the air. The liquid desiccants available are used at slight temperatures,
roughly between 50 ◦C and 80 ◦C [9]. Thus, the heat sources with a low temperature could
be used to power the regeneration process at roughly 70 ◦C via using several techniques
such as solar energy, waste heat, and geothermal power.

The aim of the current research is to study the effects of inlet air temperature (27–34.5 ◦C)
and humidity (20.5–25 g/kg) on the moisture removal rate (MRR) and dehumidifier efficiency (ε),
as well as to assess how different desiccant amounts impact energy efficiency and environmental
performance. To systematically conduct this aim, the D-optimal method is used to reduce the
number of experiments, besides developing a robust mathematical model using RSM to relate
input variables (air temperature, humidity, solution temperature) to output responses (MRR
and ε).

The outline of this article is as follows:
Section 2 introduces a review of the existing literature on dehumidifier performance,

and categorizes modelling strategies into theoretical analysis, and experimental studies. In
Section 3, the definition of Response Surface Methodology and a discussion of its role in
optimizing system performance through systematic input testing are detailed. In Section 4,
an analysis of inlet parameters affecting performance metrics together with assessing the
model accuracy with key statistical indicators is provided. Section 5 focuses on introducing
a mathematical model developed from experimental data to predict performance under
variable conditions. In Section 6, an explanation of regression analysis techniques and deriv-
ing accurate formulas for variable relationships is provided. In Section 7, D-optimal design
implementation for response prediction including the coding of variables at three levels is
ascertained. Section 8 provides an overview of components and subsystems involved in
dehumidification and regeneration processes, while Section 9 provides a description of us-
ing the Design-Expert’s optimization tool to enhance system performance via a desirability
function. Section 10 presents experimental findings, detailing operating conditions and D-
optimal optimization results. Section 11 explores the complexities of interactions between
operational parameters while highlighting the significance of optimizing liquid desiccant
systems. Lastly, Section 12 summarizes the key findings on temperature and humidity
effects, model accuracy, and optimal conditions in addition to emphasizing implications
for energy savings and sustainable cooling policies.

2. Literature Review

The performance of the dehumidifier and regenerator was experimentally and theo-
retically studied by a number of researchers. Modelling strategies for guess dehumidifier
and regenerator performance can be grouped into three categories based on past research:
models for theoretical numerical analysis, experimental analysis, and artificial intelligence.

The researchers were commonly focused on estimating the overall performance of
humidity, besides evaluating the desiccant solution inlet rate of flow, temperature, and
concentration [10–12]. Moon et al. [13] demonstrated the new mass transfer performance in-
formation of the flow liquid desiccant dehumidifying system by developing new statistical
correlations on dehumidifying efficacy.

Sanjeev et al. [14] conducted a set of experiments to investigate the efficiency of
liquid desiccant dehumidification for a sustainable building cooling method under various
operation parameters. The dehumidifier and regenerator with a cooling tower are the three
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essential components of the system. As desiccants in the system, lithium chloride and
calcium chloride were employed. The results specified that the dehumidifier’s efficiency
can be ranged between (0.25 and 0.44), while the regenerator’s efficiency reached between
(0.07 and 0.8).

Liu et al. [15] evaluated the operation of the adiabatic dehumidifier units that were
internally cooled. The internally cooled dehumidifier was established to perform better in
mass transfer than the adiabatic unit. By utilising mathematical analysis of variance, the
consequence of intake operation elements on the dehumidifier’s condensation rate and the
regenerator’s water evaporation was investigated. The results indicated that the ratio of
humidity of intake air, the mass flow rate of the intake air, and the temperature of the inlet
solution have a straight effect on the water condensation rate with a significance (p < 0.01).
Furthermore, the rate of water evaporation in the regeneration can also be affected by the
intake air mass flow rate and the inlet solution temperature (p < 0.01). The mass transfer of
aqueous solutions comprising lithium chloride and lithium bromide was also assessed. The
results exposed that the (LiCL) can perform better than the (LiBr) in terms of dehumidification
at the same rate of desiccant flow.

Mc-Donald et al. [16] and Sameer et al. [17,18] utilised the regression analysis to
quantify data generated from packing the tower desiccant dehumidifier. Precisely, the
regression formula was used to allocate the temperature of outlet air and the ratio outlet of
humidity desiccant temperature and concentration.

Although previous studies have determined the impact of distinct elements on the
performance of Liquid Desiccant Dehumidification, insufficient studies have evaluated
the collective impacts of these characteristics quantitatively using experimental data ob-
tained from various sources. Previous evaluations have predominantly concentrated on
theoretical models or have been restricted to particular case studies, which may not be
entirely reflective of wider operational circumstances. The main purpose of the present
investigation is to appraise how the input parameters can impact the critical outlet air and
desiccant qualities of Liquid Desiccant Dehumidification. The D-optimal design is engaged
to improve the overall performance of liquid desiccant dehumidification for sustainable
building cooling while assessing the relevance of independent factors on the moisture
removal rate (MRR) and dehumidifier efficacy.

3. Response Surface Methodology (RSM)

The Response Surface RSM is a statistical and mathematical practice that finds the
relationship between input factors and output responses to maximise the performance of
a system or process Hern et al. [19]. It is regularly used in engineering, chemistry, and
other fields where it is imperative to optimise a system’s performance while reducing
cost or obtaining the best out of efficiency. RSM demands planning a series of tests with
numerous input variable combinations and calculating the suitable output answers. By
analysing the data from these experiments, RSM can help in defining the best combination
of input variables to produce the intended output response. RSM typically includes fitting
a mathematical model to the experimental data, which can be used to guess the response
for any combination of input variables considering the range of the experiments. This
model can then be used to recognize the optimal combination of input variables that will
result in the desired output response. RSM is utilised for both linear and nonlinear systems
and can handle interactions between input variables. It can also be utilised to signify the
relative importance of each input variable on the output response and can be utilised to
optimise the performance of a liquid desiccant dehumidifier by recognizing the optimal
values for the input variables that maximise the output variables. It can also help to reduce
the number of experiments required to optimise the process, which can save time and
resources. Overall, RSM is an influential tool for optimising systems and processes and
therefore can help save time and resources by determining the optimal combination of
input variables without the need for in-depth testing. It is predominantly useful for systems
with multiple variables that affect performance.
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4. Evaluation of RSM Model

Additionally, a thorough analysis that systematically examines the effects of multiple
inlet parameters, namely, air temperature, humidity ratio, and solution temperature, on crit-
ical performance metrics like moisture removal rates (MRR) and dehumidifier efficiency (ϵ),
is often lacking in previous studies that have examined various aspects of liquid desiccant
systems. To assess the accuracy of the proposed RSM model, several statistical indicators
were employed to compare predicted and actual values. Key indicators considered include
Mean Square Error (MSE), coefficient of determination (R2), and absolute relative error
Khoshraftar et al. [20]. The calculation of MSE value is defined by Wu et al. [21]:

The MSE is calculated as follows:

MSE =
1
N∑N

i=1(Pmea − Pfor)
2

Pmea represents the measured power and Pfor stands for the forecasted or predicted power.
The R2 is calculated as follows:

R2 = 1 − ∑m
i=1(Pmea − Pfor)

2

∑m
i=1 P2

mea −
∑m

i=1 P2
f or

m

5. Mathematical Model

By utilising the data from the experiments to figure out a mathematical model that
clarifies the relationship between the variables and the performance of the dehumidifier, this
model can be a simple linear relationship or a more complex polynomial equation. Utilising
the mathematical model to guess the efficiency of the dehumidifier in different conditions
can be achieved by inputting the values of the variables into the model and calculating the
predicted performance. Adjusting the accuracy of the model is important for comparing the
estimated performance to actual performance under the same conditions. The performance
of the dehumidifier is predicted mathematically via computing the moisture dissipation
average and its performance. Nelson and Goswami [22] and Oberg and Goswami [23]
inspected the performance of dehumidifying with respect to the moisture removal rate.
The moisture dissipation rate and dehumidifier effectiveness are mathematically estimated
to determine its performance. The water carried from the air to the liquid desiccant was
defined by Yin et al. [24], as represented below:

∆mcon = ma × (win − wout) (1)

ma represents the rate of mass flow on the dehumidifier inlet, win the ratio of an inlet of air hu-
midity, and wout the ratio of outlet air humidity. The efficacy of the (dehumidifier/regenerator)
is measured as the ratio of the change in actual humidity in the air to the greatest potential
change in humidity feasible according to the following operating parameters:

ε = win − wout/ win − wout−eq
(2)

ωout−eq denotes the ratio of outlet air humidity in balance with the desiccant solution with
the desiccant solution under the following operational conditions of Kinsara et al. [25]:

wout−eq = 0.62185 × Pwz/ (P − Pwz)
(3)

P signifies the total pressure of air on the solution and Pωz is the partial pressure of water
vapour in the solution.

The rate of moisture removal refers to the quantity of moisture extracted from the air
per time unit, typically measured in grams per hour (g/h). This parameter is influenced by
various factors such as the volume of air undergoing treatment, the moisture content of the
incoming and outgoing air, and the duration of the process.
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The moisture removal rate is commonly determined using the formula: Moisture
Removal Rate = Q (Win − Wout), where

• Q represents the volumetric flow rate of air (e.g., in cubic meters per hour);
• Win indicates the moisture content of the incoming air (in grams of water per cubic meter);
• Wout signifies the moisture content of the outgoing air (in grams of water per cubic meter).

6. Regression Analysis

Regression analysis is a statistical approach that is used to analyse the association
between one or more dependent variables (response) and independent variables (predictors)
in order to predict the value of the response variable based on the values of the predictor
variables. Finding the mathematical formula that most accurately captures the relationship
between the variables is the aim of regression analysis. Three types of regression analysis
are distinguished: polynomial, logistic, and linear regression. The most popular type
of regression analysis is linear regression, which seeks to establish a linear relationship
between predictor variables and response variables. In simple linear regression, there
is only one predictor variable, while in multiple linear regression, there are multiple
predictor variables. Logistic regression is used when the response variables is binary,
which is significant as it only has two possible outcomes. Polynomial regression is used
when the relationship between the predictor variables and the response variables is not a
linear formula.

Regression analysis involves finding a mathematical correlation that best represents
the association between predictor variables via a response variable. The equation depends
on the type of regression analysis being used.

6.1. Simple Linear Regression

The simple linear regression correlation is:

Y = β0 + βx

Y is the independent variable (response), x is the independent variable (predictor), and βx
is the slope coefficient. βx signifies the change in Y for a unit change in x, and the intercept
(β0) represents Y value when x is zero.

6.2. Multiple Linear Regression

The following correlation signifies the multiple linear regression with βx predictor variables

Y = β0 + ∑ βixi + ∑ βiix2
i + ∑ ∑ βijxixj

β0 is the intercept or constant term. β1, β2, . . ., βi are the slope coefficients; the slope
coefficients represent the change in Y on a unit change in the corresponding predictor
variable while keeping the other predictor variables constant.

6.3. Logistic Regression

The logistic regression equation is expressed in the following correlation

p = 1/(1 + exp (−(β0 + β1x1 + β2x2 + . . . + βixi)))

p is the probability of the dependent variable (response) being in a certain category (usually
1 or 0), and β1, β2, . . ., βi are the slope coefficients. The slope coefficients signify the change
in the log odds of the dependent variable for a unit change in the corresponding predictor
variable, holding all other predictor variables constant.
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7. Statistical Analysis and Experimental Design (D-Optimal)

Every variable that required optimisation was coded at three different levels.: −1, 0,
and +1. For predicting individual Y variables, a quadratic polynomial regression model
was adopted. The following model is projected for each response of Y,

Y= β0 + Σβi xi + Σβii x2 + ΣΣβij xi xj (4)

In this research, the “Mini-tab INC., version 14, Pa. USA”, a statistical software package
data, is used. This software is widely used for data analysis for multiple regression analysis
(ANOVA) and analysis of ridge maximum of data in the response surface regression
(RSREG) procedure [23]. The coefficient of determination R2 is used to assess the model’s
quality of fit and its statistical significance is determined using the F-test. The reaction of the
moisture removal rate and the performance of the dehumidifier are studied using a three-
factor D-optimal design. The primary response criteria and their values are chosen after an
initial screening stage. The variables X1, X2, and X3 respectively stood for temperature of
inlet air (◦C), and the inlet ratio of air humidity (g/kg), with the inlet solution temperature
(◦C). The independent variables are included in Table 1, which includes the intake air
temperatures of 27 and 34 ◦C, inlet air humidity ratios of 20 and 25, and inlet solution
temperatures of 27 and 38 ◦C.

Table 1. D-Optimal design requires independent variables and their levels.

Independent Variables Variables Levels

−1 0 +1

Temperature of Air (◦C) X1 27 30 34

Humidity Ratio of Air (g/kg) X2 20 22 25

Solution Temperature (◦C) X3 27 33 38

Moisture analysis plays an important role in evaluating and optimising the liquid des-
iccant dehumidification processes for sustainable building cooling. This analysis involves
estimating the amount of moisture present in the desiccant that can affect the performance
of the process. The efficiency of a liquid desiccant is determined by determining the volu-
metric flow rate of the liquid. This is specifically conducted using liquid flow meters, which
work by sensing the flow and generating a signal proportional to the flow rate. There are
several types of liquid flow meters, such as the following:

1. Differential pressure flow meters: Measure the pressure difference across a primary
device such as an orifice plate or Venturi tube. This is suitable for dirty liquids.

2. Positive displacement flow meters: Contain moving components that recurrently
fill and displace a known volume of liquid. Highly precise and suitable for highly
viscous liquids.

3. Velocity flow meters: Determine the velocity of the liquid and convert it to a flow rate.
These include turbine, magnetic, and electrical.

4. Mass flow meters: Determine the mass flow rate rather than the volumetric flow rate.

There are other ways to improve the efficiency of the liquid dryer, including the following:

• Enhancing the design: The performance of the liquid dryer can be enhanced by better
designing the unit. The design should be optimised to attain an even distribution of
the liquid and reduce losses.

• Using advanced materials: Use advanced materials that enhance heat transfer and
reduce losses.

• Monitoring and regulating the process: The dryer process should be continually
monitored and attuned according to the ambient conditions. Sensors can be utilised to
measure temperature, pressure, and fluid flow.
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• Enhancing thermal insulation: The performance of the liquid dryer can be enhanced
by using high-quality thermal insulators to preserve the compulsory temperature
inside the unit.

• Enhancing the control system: Use an advanced control system that can better alter
the dryer process according to the ambient conditions.

The rate of moisture removal and efficacy of a liquid desiccant dehumidifier are inves-
tigated using a three-factor response surface methodology (RSM). Table 2 shows various
responses at various experimental combinations for coding. For several experimental com-
binations, such as 0.259 to 0.577 for MRR and 0.318 to 0.532 for ε, there was a considerable
range in all replies. The maximum and minimum values of these parameters are attained
as a result of the test being pre-treated on experimental combinations (run order) of 5, 9, 12,
and 17.

Table 2. D-Optimisation of optimal design of MRR and efficiency.

No. of Run
Independent Variable Levels Responses

Ta (◦C) Wa (g/kg) Ts (◦C) MRR (g s−1) ε (%)

1 27.00 20.50

38.50

0.451 0.457

2
34.50

25.00 0.342 0.483

3 20.50 0.337 0.424

4

27.0
25

33.00 0.543 0.514

5 38.50 0.541 0.532

6
22.75

27.50 0.491 0.452

7 34.50 33.00 0.390 0.417

8
27.00

20.50
25.00

27.50

0.474 0.418

9 0.577 0.462

10

34.5

20.50 0.359 0.322

11 25.00 0.486 0.406

12 25.50 0.399 0.318

13 30.75 23.88

38.50

0.388 0.416

14 34.50 25.00 0.352 0.495

15 27.00

20.5

0.355 0.432

16 30.75 33.00 0.388 0.436

17 34.50
38.50

0.259 0.430

18 30.75 22.75 0.318 0.431

8. Explanation of the Operating System

The system and measured data are shown in Figure 1. Vapour compression (VCS),
regeneration, and dehumidification are the three subsystems that make up the system.
Before the solution is put into the dehumidifier and regenerator, it is first dehumidified and
then regenerated using the VCS. Every subsystem for dehumidification and regeneration
has installed a centrifugal fan, pump, valves, filter, eliminator, and flow meter.

The two pumps are utilised to move the solution back and forth between the re-
generator and the condenser and the dehumidifier and evaporator, respectively. The
ambient air at the bottom of the regenerator and the dehumidifier is moved around by two
centrifugal fans.
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Figure 1. The diagram system of the liquid desiccant.

With an accuracy of ±0.1 ◦C, nine thermocouples were fitted to measure the tempera-
ture of the air and solution. The relative humidity at the input and outflow air streams was
measured using five TR-RH2W humidity sensors, which have an accuracy of ±3% RH. To
gather and send the recorded data to the PC system, each of these sensors is attached to a
data acquisition logger. A flow meter was added to regulate the mass flow rate of the desic-
cant solution, with an accuracy of 2 L/h. Within the parameter ranges shown in Table 3,
experimental experiments were conducted to assess the liquid adsorption dehumidification
unit’s performance.

Table 3. Characteristic measured data representing the monitoring period.

Air flow rate through the dehumidifier 0.125 kg/s

Air flow rate through the regenerator 0.125 kg/s

Dehumidifier/regenerator inlet desiccant flow 0.1 kg/s

Solar hot water flow rate through heating coil 0.25 kg/s

Dehumidifier air inlet temperature 27 to 34.5 ◦C

Regenerator air inlet temperature 39 to 57 ◦C

Humidity percentage at dehumidifier air inlet. 20.5 to 25 g/kg

Humidity percentage at regenerator air inlet. 18.9 to 21.8 g/kg

Dehumidifier inlet solution temperature. 27.5 to 38.5 ◦C

Regenerator solution inlet temperature 42 to 73 ◦C

Solar hot water inlet temperature 40 to 85 ◦C

Desiccant concentration 36.8%wt.

The simulation estimated the temperature, concentration, and mass flow rate at each
state point, from P1 to P6, on the desiccant solution side of the liquid desiccant system. The
air flow rate, dry bulb temperature, and humidity ratio for the process and regeneration
air before and after the absorber and the regenerator were also calculated to evaluate the
energy performance of both the reference and proposed systems.
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9. Optimisation

Design-numerical Expert’s optimisation is based on a desirability objective function.
The overall desirability (D) is the multiplicative mean of all individual desirability (di)
values between 0 and 1.

D = (d1 × d2 × . . . .dn)
1/n =

(
∏n

i=1 di

)1/n
(5)

D is the optimal design optimisation of moisture removal rates and effectiveness. n is the
number of responses, and the total function becomes 0 if any of the answers go outside of
their desirable range.

Design Optimisation of MRR

Design optimisation of moisture removal rate and efficacy can be accomplished using
D-optimal design, which is a statistical optimisation technique that reduces the variance of
the estimated model parameters while maximising the accuracy of the predicted response.
To optimise the moisture removal rates and effectiveness, the first step is to outline the
parameters that affect moisture removal, such as temperature, humidity, airflow rate,
and the type and size of the moisture removal system. Then, an experimental design
matrix is formed based on these factors, and the moisture removal rates and efficacy are
restrained for each combination of factors. The experimental data are then analysed using
statistical software to fit a model that relates the moisture removal rates and efficiency to
the factors. The model can be used to forecast the moisture removal rates and efficiency for
any combination of factors. The D-optimal design method is used to recognize the optimal
combination of factors that maximise the moisture removal rates and effectiveness. This is
conducted by selecting the factor levels that reduce the variance of the estimated model
parameters while maximising the exactness of the predicted response.

10. Results and Analysis
10.1. Operating Conditions

To assess the performance of the liquid dehumidifier, experiments are directed using
the parameters listed in Table 3. When conducting a D-optimal design optimisation for
MRR and efficiency, it is significant to carefully consider the specific parameters and
operating conditions that are most relevant to the experiments being conducted. Generally,
the operating conditions for D-optimal design optimisation of MRR and efficiency depend
on a diversity of factors, and a wide-ranging analysis of these factors is mandatory to select
the optimal operating conditions.

10.2. Analysis of Response Surface

Quadratic regression equations are improved to anticipate the moisture removal rate
and validation under the designated experimental condition using RSM. The regression
Equations (6) and (7) of the response properties are developed as a function of three input
parameters examined in the experiment:

MRR = +0.38 − 0.057 × X1 + 0.043 × X2 − 0.039 × X3 + 0.052 × X1
2 + 0.028 × X2

2 − 0.022 × X3
2 +

0.009419 × X1 × X2 − 0.00364 × X1 × X3− 0.00364 × X2 × X3
(6)

ε = +0.43 − 0.029 × X1 + 0.032 × X2 + 0.033 × X3 + 0.016 × X1
2 + 0.016 × X2

2 − 0.027 × X3
2 +

0.001879 × X1 × X2 + 0.016 × X1 × X3 − 0.001883 × X2 × X3
(7)

X1 represents the air temperature (Ta), X2 represents the air humidity (Wa), and X3 repre-
sents the solution temperature (Ts). It should be noted that (Ta) and (Ts) have a negative
effect, while (Wa) has a positive effect on (MRR). The ratio of air humidity to solution
temperature has a positive effect and a negative effect on air temperature (ϵ). Based on the
associated results of Figure 1 for the predicted and actual values, it can be ascertained that
the predicted values are statistically similar to the actual measured values.
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In this regard, Figure 2 illustrates that the predicted and actual values are approxi-
mately linear; i.e., the errors are evenly distributed.
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Figure 2. Plot of predicted response Y versus actual response: (a) MRR, (b) ϵ. 

  

Figure 2. Plot of predicted response Y versus actual response: (a) MRR, (b) ϵ.

To assess the regression coefficients and statistical indication of type variables, the nu-
merical analysis of variance was performed by fitting the experimental data (Equation (4)).
The F-ratio was used to determine the importance of the model components at a probability
(P) of 0.01. The adequacy model was assessed via the analysis model, the test for lack of
fit, the coefficient of calculated R2, the sum of the squares of the expected error, and the
coefficient of variation (CV). The ANOVA findings for several runs of the experiment are
shown in Tables 4 and 5.
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Table 4. The anticipated quadratic polynomial model’s regression coefficients for the response
variables Y MRR and ϵ.

Predictors Coefficients
(β) MRR (g/s) T Prob. Nota.

Coefficients
(β)

ε (%)
T Prob. Nota.

Intercept +0.38 8.01 0.0037 * +0.43 17.27 0.0003 *

Linear

X1 −0.058 27.58 0.0008 * −0.029 36.69 0.0003 *

X2 +0.044 14.39 0.0053 * +0.032 40.49 0.0002 *

X3 −0.040 12.07 0.0084 * +0.033 45.32 0.0001 *

Quadratic

X11 +0.053 2.84 0.1309 ** +0.017 1.36 0.2796 **

X22 +0.029 1.00 0.3478 ** +0.017 1.62 0.2405 **

X33 −0.023 0.60 0.4595 ** −0.028 4.84 0.0592 **

Interaction

X12 +0.009419 0.66 0.4425 ** +0.001879 0.15 0.7218 **

X13 −0.013 1.06 0.3360 ** +0.017 9.62 0.0148 **

X23 −0.00365 0.090 0.7724 ** −0.001884 0.14 0.7322 **

R2 0.91 0.96

* p < 0.01; ** p < 0.1; Nota. = Notability.

Table 5. The ANOVA of models optimally MRR and ε.

Variable and Source df Sum of Squares F-Value p-Value

MRR, g/s

Model 9 0.13 8.02 0.0038

Residual 8 0.015

Lack of fit 4 4.712 × 10−3 1.56 0.7093

Pure error 4 8.502 × 10−3

R2 0.90

CV,% 9.82

ε, %

Model 9 0.048 17.28 0.0004

Residual 8 2.522 × 10−3

Lack of fit 4 2.130 × 10−3 5.43 0.0654

Pure error 4 3.929 × 10−4

R2 0.95

CV,% 4.09

For the model presented in Table 4, a probability > F less than 0.01 indicates that
the model is significant in the linear model. This is desirable because it signifies that the
parameters significantly affect the responses. In this case, the important terms in the model
are X1, X2, and X3.

The most significant linear order effect of air humidity ratio (X2) is the most significant
factor associated with MRR, while the most significant linear order effect of air humidity
ratio (X2) and solution temperature (X3) is the most significant factor related to ϵ. It is
clear from Table 5 that the discrepancy and impurity of MRR and ϵ are small with the
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sum of squared errors of 4.712 × 10−3, 8.502 × 10−3, 2.129 × 10−3, and 3.928 × 10−4,
respectively. The residual is in the variance and the CV is relatively small. The most
significant component was the linear order main effect of air humidity ratio (X2) on MRR,
followed by the linear order main effect of air humidity ratio and solution temperature X3,
which are the most significant aspect ratios with ϵ. The lack of fit and impurity of MRR
and ϵ appear to be minimal in Table 5, with the sum of squared errors of 4.712 × 10−3 and
8.502 × 10−3, 2.129 × 10−3, and 3.928 × 10−4, respectively, leading to residual contrast and
relatively low coefficient of variation.

The obtained results of Table 4 indicate that our model is compatible with the data of
the experiment on R2 values greater than 0.91 for the MRR model and 0.96 for the ϵ model.

A regression model with RSM may be tested and its statistical significance evaluated
via the ANOVA table displayed in Table 5. The suggested regression model is considered
statistically significant with an F-value of 8.02 and a p-value of 0.0038, allowing for suc-
cessful generation power prediction under the examined operational circumstances. In
particular, for the relevant model terms X1, X2, X3, X1X2, X1X3, and X2X3, the probability
value (p-value) is less than 0.0004, which shows that the coefficients in Table 5 are signifi-
cant. The model terms are not critical if the values are higher than 0.05. Model reduction
may improve the overall design if many model terms (apart from those needed to sustain
hierarchy) are deemed to be unimportant. The Adjusted R2 of 0.95 and the Predicted R2 of
0.90 diverge by less than 0.05, which is a reasonable alignment. The experimental design
and findings are assessed by choosing the proper linear, quadratic, etc., models.

10.3. Influence of Operational Parameters on MRR and ε

The relationships between independent and dependent variables can be exhibited
in the 3D exemplification as response surfaces. Curves with similar response values
are constructed on a plane whose coordinates signify the levels of the contour plot’s
independent components. For a given set of factor levels, every contour appears with a
surface value that is significantly higher than the stated level. Three-dimensional surface
diagrams with contour graphs to the MRR verses ε are illustrated in Figures 3 and 4 and
Figures 5–8, respectively.
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Response surfaces are 3D representations of the relationships between independents
and dependents. Curves with the same response values are plotted on a plan whose
coordinates indicate the levels for the independent components in a contour plot. Each
contour indicates a distinct height from the surface over the plane formed by a combination
of the factors’ levels. Figures 2–4 and Figures 5–7, respectively, exhibit 3D surface graphs
and contours for the MRR and ε.

The responses as MRR and ε are shown in the figures as a function of air temperature,
the ratio of air humidity, and solution temperature. The fitted quadratic model accounts
for the curved profile in the figure. MRR rises with decreasing air temperature to its
minimum level (27 ◦C), as shown in Figures 2–4. Also, the input air temperature raises
the solution temperature, which boosts the desiccant solution’s partial pressure. As a
result, the MRR of the dehumidifier is lowered. When the ratio is changed from (20 to
25 g/kg), the MRR is 0.577 gs−1 when the ratio of air humidity was 25 g/kg. This can be
explained as when the humidity ratio rises, the partial water vapour pressure of the air
rises, increasing the mass transfer potential. These results suggest that the air humidity
ratio has a significant role in liquid desiccant dehumidification for sustainable building
cooling. As the temperature of the solution rises, the MRR drops fast. The vapour pressure
of the solution as the temperature rises lessons the mass transfer potential between the
humid air and the liquid desiccant.

Figures 6–8 show that when the air temperature drops, the ε rises, indicating that
raising the input temperature of air lowers the solution temperature, and this raises the
partial pressure of the desiccant solution. As a result, the dehumidifier’s efficacy is di-
minished. On the other hand, raising the inlet ratio of air humidity marginally reduces
the efficacy. As the humidity ratio rises, the partial pressure of the water vapour of air
rises, increasing the mass transfer potential. The inlet humidity ratio, furthermore, does
not influence the dehumidifier’s efficacy. As the solution increases in temperature, the
equilibrium ratio of humidity at the solution surface and the humidity ratio of air out-
flow from the dehumidifier increase. The dehumidifier’s efficacy increased marginally
as a consequence of the offsetting effects between the numerator and denominator and
denominator in (Equation (2)).
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10.4. Optimisation of Operational Variables for MRR and ϵ

The mathematical optimisation approach gives the conditions of operation optimiza-
tion whereby the optimum moisture removal rate and efficacy range from about 0 to 1. Each
independent variable and response had a desired outcome indicated. The independent
variables for both MRR and ϵ were kept within the range, while the response was set
to maximum. Table 6 displays the optimum conditions for maximizing MRR obtained
(27.4 ◦C, 24.5 g/kg) and (27.5 ◦C). Similarly, the maximized ϵ of the set of optimum condi-
tions obtained was (27.4 ◦C, 24.8 g/kg) and (38.5 ◦C). Individual optimization yielded MR
and ϵ responses of (0.54/s) and (0.5), respectively, with minimal desirability of (0.992) and
(1). The optimal circumstances for maximum MRR achieved were (27.4 ◦C), (24.5 g/kg)
(27.5 ◦C), and (27.5 ◦C), as indicated in Table 6. Similarly, the set of the best circumstances
obtained to maximize the ϵ were (27.4 ◦C, 24.8 g/kg), and (38.5 ◦C). In the instance of
individual optimisation, the MRR and ϵ responses were (0.54 g/s) and (0.5), respectively,
with minimum desirability (0.992) and (1).

Table 6. Individual and multiple optimizations for maximum/minimum responsiveness.

Response Parameters
Coded Optimum Value Uncoded Optimum Value Responses

X1 X2 X3 Ta Wa Ts MRR, g/s ε, %

MRR, g/s −1 1 −1 27.4 24.5 27.5 0.54 0.48

ε, % −1 1 1 27.4 24.8 38.5 0.52 0.50

11. Discussion

The results of this study highlight the complexity of interactions between operational
parameters of dehumidification processes. The positive correlation between air humidity
and the moisture removal rate (MRR) highlights that higher humidity levels promote mass
transfer. By increasing humidity, water vapour is more likely to move from the air to the
drying solution, improving dehumidification efficiency, especially when ambient humidity
varies greatly.

Conversely, the negative impact of temperatures on MRR highlights the importance
of optimal thermal conditions, as high temperatures can reduce the moisture absorption
capacity of the dryer. This phenomenon illustrates the need for balanced temperature
control to maintain system efficiency.

Statistical analysis, including analysis of variance, demonstrates the robustness of the
regression model, with high R2 values indicating a good explanation of the variance in
the data. Specific interactions, particularly between air temperature and humidity, open
the door to future research to refine these variables and optimize performance. Response
surface methodology (RSM) provides a useful framework to visualize the complex inter-
actions between variables, helping engineers make informed decisions when configuring
systems. Moving forward, additional studies could evaluate the performance and dura-
bility of dehumidifiers under various environmental conditions, taking into account dust
accumulation or corrosion. Exploring new materials or hybrid systems could also lead to
significant improvements in performance and durability.

Overall, this research enriches the understanding of liquid desiccant systems and
provides practical insights to optimize the design of energy-efficient refrigeration systems
in the context of sustainable construction, paving the way for reduced energy consumption
and improved indoor air quality.

12. Conclusions

The influence of temperature (air, ratio of air humidity and solution temperature) on
the desiccant dehumidifier rate and performance was determined using response surface
analysis. The most important conclusions can be made in the following:
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1. With R2 more than 0.90 for the moisture removal rate for the developed model and
greater than 0.95 for the ϵ model, the model was able to reflect the experimental data.

2. Due to the examination of variation, the air humidity ratio has the greatest influence on
the moisture removal rate. However, the ratio of air humidity to solution temperature
has the greatest influence on efficacy.

3. Based on the table of D-optimal design optimisation, this model projected the highest
moisture removal rate of 0.54 g/s. This is conducted within an optimal air temper-
ature of 27.4 ◦C, humidity ratio of 25 g/kg, and solution temperature of 27.5 ◦C.
Furthermore, the maximum effectiveness was approximated to be 0.50 below the
optimum levels of air temperature of 27.4 ◦C, humidity ratio of 24.8 g/kg, and 38.5 ◦C
of solution temperature.

Referring to the above conclusions, it is fair to ascertain that the optimisation of inlet
parameters of liquid desiccant dehumidifiers via data analysis can attain substantial energy
savings and lessen greenhouse gas emissions. Indeed, this would pave the way toward
more sustainable building cooling policies.
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