Study on the Stress Distribution Characteristics of Rock in the Bottomhole and the Influence Laws of Various Parameters Under the Impact of a Liquid Nitrogen Jet
Abstract
:1. Introduction
2. Numerical Model
2.1. Problem Description and Geometric Model
2.2. Mathematical Model
- (1)
- Fluid region
- (2)
- Solid region
2.3. Mesh Division and Boundary Conditions
2.4. Model Parameter Settings and Calculation Process
3. Characteristics of the Impact Flow Field in the Bottomhole
3.1. Velocity Field
3.2. Pressure Field
3.3. Overflow Velocity Field
3.4. Thermal Stress
4. Analysis of the Influence of Parameters on Stress Distribution in the Rock in the Bottomhole Under the Impact of a Liquid Nitrogen Jet
4.1. Parameter Selection
4.2. Influence of Solid Parameters on Stress Distribution
4.2.1. Influence of Rock Confining Pressure on Stress Distribution
4.2.2. Influence of Elastic Modulus and Poisson’s Ratio of the Rock on Stress Distribution
4.2.3. Influence of Initial Rock Temperature on Stress Distribution
4.3. Influence of Fluid Parameters on Stress Distribution
4.3.1. Influence of Outlet Pressure on Stress Distribution
4.3.2. Influence of Fluid Temperature on Stress Distribution
5. Advantages of Drilling with Liquid Nitrogen
5.1. Potential Economic Benefits
5.2. Comparison to Existing Technologies
5.3. Environmental Impacts
6. Conclusions
- (1)
- Due to lower kinetic viscosity, the liquid nitrogen jet experiences less energy dissipation and achieves a significantly higher maximum velocity than the water jet under the same conditions, with an axial velocity about 20 m/s higher.
- (2)
- Both water and liquid nitrogen jets have high-pressure regions concentrated at the bottomhole center, with comparable pressure magnitudes and impact forces. The pressure at the center is twice that at the ends, causing significant rock compression.
- (3)
- Both jets exhibit similar tangential velocity distributions with high-velocity overflow at the bottomhole center, but the liquid nitrogen jet’s maximum velocity is 20% higher. This overflow boosts heat exchange efficiency, which is crucial for thermal rock fracturing.
- (4)
- The rate of stress change in rock under the liquid nitrogen jet is significantly higher than that under the water jet, especially within the first 10 s. At 2 mm depth, the liquid nitrogen jet induces tensile stress, making it more effective at causing tensile failure and promoting rock fracturing.
- (5)
- The Mises stress from the water jet is concentrated at the impact center, while the liquid nitrogen jet shows a broader stress distribution, leading to a larger rock fracturing region.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, H.; Wang, Y.; Zhao, J. Background and routs of carbon neutrality and its nature-derived thermal solutions. Huadian Technol. 2021, 43, 5–14. [Google Scholar]
- Wang, G.; Zhang, W.; Liang, J.; Lin, W.; Liu, Z.; Wang, W. Evaluation of Geothermal Resources Potential in China. Acta Geosci. Sin. 2017, 38, 449–450. [Google Scholar]
- Lei, H. Coupling Mechanics with Thermal-Hydrodynamic Processes for Heat Development in Enhanced Geothermal Systems (EGS). Doctoral Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Rauenzahn, R.M.; Tester, J.W. Rock failure mechanisms of flame-jet thermal spallation drilling-theory and experimental testing. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 381–399. [Google Scholar] [CrossRef]
- Hu, X.; Song, X.; Li, G.; Shen, Z.; Lyu, Z.; Shi, Y. Shape factor of the flake-like particle in thermal spallation and its effects on settling and transport behavior in drilling annulus. Powder Technol. 2018, 335, 211–221. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Shen, Z. A Feasibility Analysis on Shale Gas Exploitation with Supercritical Carbon Dioxide. Energy Sources Part A Recover. Util. Environ. Eff. 2012, 34, 1426–1435. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Shen, Z.; Tian, S.; Sun, B.; He, Z.; Lu, P. Experiment on rock breaking with supercritical carbon dioxide jet. J. Pet. Sci. Eng. 2015, 127, 305–310. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, B.; Xu, J. Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses. Fuel 2018, 236, 1496–1504. [Google Scholar] [CrossRef]
- Wang, L.; Yao, B.; Cha, M.; Alqahtani, N.B.; Patterson, T.W.; Kneafsey, T.J.; Miskimins, J.L.; Yin, X.; Wu, Y.-S. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. J. Nat. Gas Sci. Eng. 2016, 35, 160–174. [Google Scholar] [CrossRef]
- Kim, K.M.; Kemeny, J. Effect of thermal shock and rapid unloading on mechanical rock properties. In Proceedings of the 43rd US Rock Mechanics Symposium & 4th US-Canada Rock Mechanics Symposium, Asheville, NC, USA, 28 June–1 July 2009; American Rock Mechanics Association: Seattle, WA, USA, 2009. [Google Scholar]
- Brown, D.W.; Duchane, D.V. Scientific progress on the Fenton Hill HDR project since 1983. Geothermics 1999, 28, 591–601. [Google Scholar] [CrossRef]
- McDaniel, B.W.; Grundmann, S.R.; Kendrick, W.D.; Wilson, D.R.; Jordan, S.W. Field applications of cryogenic nitrogen as a hydraulic fracturing fluid. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 5–8 October 1997; Society of Petroleum Engineers: Richardson, TX, USA, 1997. [Google Scholar]
- Grundmann, S.R.; Rodvelt, G.D.; Dials, G.A. Cryogenic nitrogen as a hydraulic fracturing fluid in the Devonian Shale. In Proceedings of the SPE Eastern Regional Meeting, Pittsburgh, PA, USA, 9–11 November 1998; Society of Petroleum Engineers: Richardson, TX, USA, 1998. [Google Scholar]
- Finnie, I.; Cooper, G.A.; Berlie, J. Fracture propagation in rock by transient cooling. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1979, 16, 11–21. [Google Scholar] [CrossRef]
- Ren, S.; Fan, Z.; Zhang, L. Mechanisms and Experimental Study of Thermal-shock Effect on Coal-rock Using Liquid Nitrogen. Chin. J. Rock Mech. Eng. 2013, 32, 3790–3794. [Google Scholar]
- Kim, K.; Kemeny, J.; Nickerson, M. Effect of Rapid Thermal Cooling on Mechanical Rock Properties. Rock Mech. Rock Eng. 2014, 47, 2005–2019. [Google Scholar] [CrossRef]
- Cai, C.; Li, G.; Huang, Z.; Tian, S.; Shen, Z.; Fu, X. Experiment of coal damage due to super-cooling with liquid nitrogen. J. Nat. Gas Sci. Eng. 2015, 22, 42–48. [Google Scholar] [CrossRef]
- Cha, M.; Yin, X.; Kneafsey, T.; Johanson, B.; Alqahtani, N.; Miskimins, J.; Patterson, T.; Wu, Y.-S. Cryogenic fracturing for reservoir stimulation—Laboratory studies. J. Pet. Sci. Eng. 2014, 124, 436–450. [Google Scholar] [CrossRef]
- Cai, C.; Huang, Z.; Li, G.; Gao, F. Particle velocity distributions of abrasive liquid nitrogen jet and parametric sensitivity analysis. J. Nat. Gas Sci. Eng. 2015, 27, 1657–1666. [Google Scholar] [CrossRef]
- Cai, C.; Huang, Z.; Li, G.; Gao, F.; Wei, J.; Li, R. Feasibility of reservoir fracturing stimulation with liquid nitrogen jet. J. Pet. Sci. Eng. 2016, 144, 59–65. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhao, Q.; Li, W. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling. J. Hebei Univ. Sci. Technol. 2015, 36, 90–99. [Google Scholar]
- Huang, Z.; Cai, C.; Li, G.; Tian, S. Flow behavior and particle acceleration effect of abrasive liquid nitrogen jet. J. China Univ. Pet. (Ed. Nat. Sci.) 2016, 40, 80–86. [Google Scholar]
- Li, Z.; Xu, H.; Zhang, C. Liquid nitrogen gasification fracturing technology for shale gas development. J. Pet. Sci. Eng. 2016, 138, 253–256. [Google Scholar] [CrossRef]
- Zhai, C.; Qin, L.; Liu, S.; Xu, J.; Tang, Z.; Wu, S. Pore Structure in Coal: Pore Evolution after Cryogenic Freezing with Cyclic Liquid Nitrogen Injection and Its Implication on Coalbed Methane Extraction. Energy Fuels 2016, 30, 6009–6020. [Google Scholar] [CrossRef]
- Zhai, C.; Wu, S.; Liu, S.; Qin, L.; Xu, J. Experimental study on coal pore structure deterioration under freeze–thaw cycles. Environ. Earth Sci. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Yao, B.; Wang, L.; Yin, X.; Wu, Y.-S. Numerical modeling of cryogenic fracturing process on laboratory-scale Niobrara shale samples. J. Nat. Gas Sci. Eng. 2017, 48, 169–177. [Google Scholar] [CrossRef]
- Cai, C.; Gao, F.; Huang, Z.; Yang, Y. Numerical simulation on the flow field characteristics and impact capability of liquid nitrogen jet. Energy Explor. Exploit. 2018, 36, 989–1005. [Google Scholar] [CrossRef]
- Cai, C.; Yang, Y.; Liu, J.; Gao, F.; Gao, Y.; Zhang, Z. Downhole Transient Flow Field and Heat Transfer Characteristics During Drilling with Liquid Nitrogen Jet. J. Energy Resour. Technol. 2018, 140, 12290212. [Google Scholar] [CrossRef]
- Wu, X.; Huang, Z.; Li, G.; Li, R.; Yan, P.; Deng, X.; Mu, K.; Dai, X. Experiment on coal breaking with cryogenic nitrogen jet. J. Pet. Sci. Eng. 2018, 169, 405–415. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Li, G.; Wu, X.; Peng, C.; Zhang, W. Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Appl. Therm. Eng. 2018, 129, 1348–1357. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Wang, H.; Zhang, H.; Zhang, C.; Xiong, C. Thermal characteristics analysis with local thermal non-equilibrium model during liquid nitrogen jet fracturing for HDR reservoirs. Appl. Therm. Eng. 2018, 143, 482–492. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Huang, P.; Wu, X.; Xiong, C.; Zhang, C. Numerical and experimental analysis of hot dry rock fracturing stimulation with high-pressure abrasive liquid nitrogen jet. J. Pet. Sci. Eng. 2018, 163, 156–165. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Wang, H.; Li, G.; Sepehrnoori, K.; Wu, X.; Hong, C. Experimental study on the rock-breaking characteristics of abrasive liquid nitrogen jet for hot dry rock. J. Pet. Sci. Eng. 2019, 181, 106166. [Google Scholar] [CrossRef]
- Yang, R.; Hong, C.; Huang, Z.; Song, X.; Zhang, S.; Wen, H. Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery. Appl. Energy 2019, 253, 113485. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Long, W.; Yuting, C.; Jin, Y. Failure analysis of water liquid nitrogen cyclic jet impacting concrete. Int. J. Mech. Sci. 2022, 235, 107714. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, M.; Liu, K.; Liu, J.; Han, L.; Liu, H. Research on surface heat transfer mechanism of liquid nitrogen jet cooling in cryogenic machining. Appl. Therm. Eng. 2020, 179, 115607. [Google Scholar] [CrossRef]
- Dai, X.; Huang, Z.; Wu, X.; Shi, H.; Xiong, C. Failure Analysis of High-Temperature Granite Under the Joint Action of Cutting and Liquid Nitrogen Jet Impingement. Rock Mech. Rock Eng. 2021, 54, 6249–6264. [Google Scholar] [CrossRef]
- Cai, C.; Wang, B.; Huang, Z.; Yue, W.; Wang, H.; Gao, Y.; Feng, Y.; Yang, Y.; Guo, C. Comparison with the effect of the cyclic liquid nitrogen jet and liquid nitrogen immersion cooling on the deterioration of mechanical properties of high temperature rocks. Geoenergy Sci. Eng. 2024, 243, 213295. [Google Scholar] [CrossRef]
- Li, R.; Yan, Y.; Huang, Z. Thermal and mechanical analysis of LN2 jet impinging on rock surface. Appl. Therm. Eng. 2020, 178, 115581. [Google Scholar] [CrossRef]
Wellhole Height | Borehole Diameter | Drill Pipe Diameter | Rock Mass Thickness | Total Model Height | Nozzle Jet Distance | Nozzle Outlet Diameter |
---|---|---|---|---|---|---|
300 mm | 50.8 mm | 31.8 mm | 30 mm | 330 mm | 30 mm | 6 mm |
Parameter Settings | Liquid Nitrogen Jet | Water Jet |
---|---|---|
Inlet pressure (MPa) | 45 | 45 |
Outlet pressure (MPa) | 25 | 25 |
Initial fluid temperature (K) | 110 | 298.15 |
Initial rock temperature (°C) | 150 | 150 |
Density (kg/m3) | 806.08 | 998.2 |
Viscosity (Pa·s) | 1.6065 × 10−4 | 10.03 × 10−4 |
Thermal conductivity (W/m·K) | 0.14581 | 0.6 |
Specific heat capacity (kJ/kJ·K) | 2.0415 | 4.182 |
Density | Specific Heat Capacity | Heat Conductivity Coefficient | Elastic Modulus | Poisson’s Ratio |
---|---|---|---|---|
2300 kg/m3 | 760 J/(kg·K) | 2.5 W/(m·K) | 30 Gpa | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, B.; Cai, C.; Gao, Y.; Wang, B.; Feng, Y.; Li, J.; Zou, Z. Study on the Stress Distribution Characteristics of Rock in the Bottomhole and the Influence Laws of Various Parameters Under the Impact of a Liquid Nitrogen Jet. Processes 2024, 12, 2326. https://doi.org/10.3390/pr12112326
Xiao B, Cai C, Gao Y, Wang B, Feng Y, Li J, Zou Z. Study on the Stress Distribution Characteristics of Rock in the Bottomhole and the Influence Laws of Various Parameters Under the Impact of a Liquid Nitrogen Jet. Processes. 2024; 12(11):2326. https://doi.org/10.3390/pr12112326
Chicago/Turabian StyleXiao, Bo, Chengzheng Cai, Yanan Gao, Bo Wang, Yinrong Feng, Jiacheng Li, and Zengxin Zou. 2024. "Study on the Stress Distribution Characteristics of Rock in the Bottomhole and the Influence Laws of Various Parameters Under the Impact of a Liquid Nitrogen Jet" Processes 12, no. 11: 2326. https://doi.org/10.3390/pr12112326
APA StyleXiao, B., Cai, C., Gao, Y., Wang, B., Feng, Y., Li, J., & Zou, Z. (2024). Study on the Stress Distribution Characteristics of Rock in the Bottomhole and the Influence Laws of Various Parameters Under the Impact of a Liquid Nitrogen Jet. Processes, 12(11), 2326. https://doi.org/10.3390/pr12112326