Niobium Metal–Organic Framework Is an Efficient Catalytic Support for the Green Hydrogen Evolution Process from Metal Hydride
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Synthesis of Nb-MOF
2.3. In Situ Synthesis of Metal Nanoparticles on Nb-MOF
2.4. Evolution of Hydrogen from NaBH4
2.5. Activation Energy
2.6. Kinetic Isotope Effect (KIE) Evaluation
2.7. Durability of the Catalyst
2.8. Characterization
3. Results and Discussion
3.1. Characterization of the Catalyst
3.2. Evolution of Hydrogen from NaBH4 Using Nb-MOF
3.2.1. Effect of NaBH4 Concentration
3.2.2. Effect of Catalyst Dosage
3.2.3. Effect of NaOH Concentration
3.2.4. Effect of Temperature
3.3. Durability of Nb-MOF/Pt0.4–Co0.6
3.4. Kinetic Isotope Effect (KIE) Evaluation
3.5. Mechanistic Proposal for NaBH4 Hydrolysis Reaction Catalyzed by Nb-MOF/Pt0.4–Co0.6
3.6. Performance of the Catalyst
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Wei, Q.; Wu, G.; Qiu, S.; Zou, Y.; Xia, Y.; Xu, F.; Sun, L.; Chu, H. Zn-MOF-74-derived graphene nanosheets supporting CoB alloys for promoting hydrolytic dehydrogenation of sodium borohydride. J. Alloys Compd. 2023, 930, 167486. [Google Scholar] [CrossRef]
- Aziz, M.; Darmawan, A.; Juangsa, F.B. Hydrogen production from biomasses and wastes: A technological review. Int. J. Hydrogen Energy 2021, 46, 33756–33781. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, A.; Zhang, J.; Yang, L.; Zhang, F.; Li, R.; Dong, H. Hydrogen generation from sodium borohydride hydrolysis promoted by MOF-derived carbon supported cobalt catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127033. [Google Scholar] [CrossRef]
- Bu, Y.; Liu, J.; Cai, D.; Huang, P.; Wei, S.; Luo, X.; Liu, Z.; Xu, F.; Sun, L.; Wei, X. Magnetic recyclable catalysts with dual protection of hollow Co/N/C framework and surface carbon film for hydrogen production from NaBH4 hydrolysis. J. Alloys Compd. 2023, 938, 168495. [Google Scholar] [CrossRef]
- Sperandio, G.H.; de Carvalho, J.P.; de Jesus, C.B.R.; Junior, I.M.; de Oliveira, K.L.A.; Puiatti, G.A.; de Jesus, J.R.; Moreira, R.P.L. Hydrogen evolution from NaBH4 using novel Ni/Pt nanoparticles decorated on a niobium-based composite. Int. J. Hydrogen Energy 2024, 83, 774–783. [Google Scholar] [CrossRef]
- Junior, I.M.; Sperandio, G.H.; Lopes, R.P. Efficient hydrogen evolution from NaBH4 using bimetallic nanoparticles (Ni–Co) supported on recycled Zn–C battery electrolyte paste. Int. J. Hydrogen Energy 2024, 53, 1323–1331. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Ding, X.-L.; Yuan, X.; Jia, C.; Ma, Z.-F. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts. Int. J. Hydrogen Energy 2010, 35, 11077–11084. [Google Scholar] [CrossRef]
- Lu, D.; He, Z.; Liu, W. Hydrogen Generation from NaBH4 Hydrolysis Catalyzed with Efficient and Durable Ni–Co Bimetal Catalyst Supported by ZIF-67/rGO. J. Inorg. Organomet. Polym. Mater. 2023, 34, 1689–1698. [Google Scholar] [CrossRef]
- Luo, X.; Sun, L.; Xu, F.; Cao, Z.; Zeng, J.; Bu, Y.; Zhang, C.; Xia, Y.; Zou, Y.; Zhang, K.; et al. Metal boride-decorated CoNi layered double hydroxides supported on muti-walled carbon nanotubes as efficient hydrolysis catalysts for sodium borohydride. J. Alloys Compd. 2023, 930, 167339. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 726–765. [Google Scholar] [CrossRef]
- Jesus, D.; Vinícius, M.; Pereira, D.S.; Soares, I.; De Araujo, T. Multifunctional and eco-friendly nanohybrid materials as a green strategy for analytical and bioanalytical applications: Advances, potential and challenges. Microchem. J. 2023, 194, 109331. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Shao, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride. Int. J. Hydrogen Energy 2022, 47, 9346–9356. [Google Scholar] [CrossRef]
- Varmazyari, M.; Khani, Y.; Bahadoran, F. ScienceDirect Hydrogen production employing Cu(BDC) metal—Organic framework support in methanol steam reforming process within monolithic micro-reactors. Int. J. Hydrogen Energy 2020, 46, 565–580. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Ding, Z.; Jiang, H.; Yang, H.; Du, W.; Zheng, Y.; Huo, K.; Shaw, L.L. MOFs-Based Materials for Solid-State Hydrogen Storage: Strategies and Perspectives. Chem. Eng. J. 2024, 485, 149665. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 2019, 44, 31230–31238. [Google Scholar] [CrossRef]
- Mackay, D.A.R.; Simandl, G.J. Geology, market and supply chain of niobium and tantalum—A review. Miner. Depos. 2014, 49, 1025–1047. [Google Scholar] [CrossRef]
- Alves, A.R.; Coutinho, A.D.R. The Evolution of the Niobium Production in Brazil. Mater. Res. 2015, 18, 106–112. [Google Scholar] [CrossRef]
- de Jesus, J.R.; Ribeiro, I.S.; de Carvalho, J.P.; de Oliveira, K.L.A.; Moreira, R.P.L.; da Silva, R.C. Successful synthesis of eco-friendly Metal-Organic framework ([Ni(BDC)]n) allows efficient extraction of multiresidues pesticides and dyes from fish samples. Microchem. J. 2024, 201, 110592. [Google Scholar] [CrossRef]
- Haj-Yahya, A.; Kouskouki, D.; Margellou, A.G.; Andreou, E.K.; Armatas, G.S.; Lazarides, T. Functionalised Al(iii) metal organic frameworks for fluorescence sensing of nitroaromatic vapours. J. Mater. Chem. C 2024, 12, 8014–8023. [Google Scholar] [CrossRef]
- Biehler, E.; Quach, Q.; Abdel-Fattah, T.M. Application of Platinum Nanoparticles Decorating Mesoporous Carbon Derived from Sustainable Source for Hydrogen Evolution Reaction. Catalysts 2024, 14, 423. [Google Scholar] [CrossRef]
- Pope, F.; Jonk, J.; Fowler, M.; Laan, P.C.M.; Geels, N.J.; Drangai, L.; Gitis, V.; Rothenberg, G. From shrimp balls to hydrogen bubbles: Borohydride hydrolysis catalysed by flexible cobalt chitosan spheres. Green Chem. 2023, 25, 5727–5734. [Google Scholar] [CrossRef]
- Valero-Pedraza, M.-J.; Cot, D.; Petit, E.; Aguey-Zinsou, K.-F.; Alauzun, J.G.; Demirci, U.B. Ammonia Borane Nanospheres for Hydrogen Storage. ACS Appl. Nano Mater. 2019, 2, 1129–1138. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, H.C.; Finholt, A.E.; Gilbreath, J.R.; Hoekstra, H.R.; Hyde, E.K. Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. J. Am. Chem. Soc. 1953, 75, 215–219. [Google Scholar] [CrossRef]
- Abraham, A.; Silviya, R.; Patel, R.; Patel, N.; Fernandes, R. MOF derived cobalt-phospho-boride for rapid hydrogen generation via NaBH4 hydrolysis. Int. J. Hydrogen Energy 2024, 77, 1245–1253. [Google Scholar] [CrossRef]
- Sermiagin, A.; Meyerstein, D.; Bar-Ziv, R.; Zidki, T. The Chemical Properties of Hydrogen Atoms Adsorbed on M 0-Nanoparticles Suspended in Aqueous Solutions: The Case of Ag 0-NPs and Au 0-NPs Reduced by BD4−. Angew. Chem. 2018, 130, 16763–16766. [Google Scholar] [CrossRef]
- Sermiagin, A.; Meyerstein, D.; Rolly, G.S.; Mondal, T.; Kornweitz, H.; Zidki, T. Mechanistic implications of the solvent kinetic isotope effect in the hydrolysis of NaBH4. Int. J. Hydrogen Energy 2022, 47, 3972–3979. [Google Scholar] [CrossRef]
- Caxito, F.A.; Silva, A.V. Isótopos estáveis: Fundamentos e técnicas aplicadas à caracterização e proveniência geográfica de produtos alimentícios. Geonomos 2015, 23, 10–17. [Google Scholar] [CrossRef]
- Coplen, T.B.; Böhlke, J.K.; De Bièvre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; et al. Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 1987–2017. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, F.; Yang, S.; Moro, M.M.; De Los Ángeles Ramírez, M.; Moya, S.E.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic Synergy in CoPt Nanocatalysts Stabilized by ‘click’ Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane. ACS Catal. 2019, 9, 1110–1119. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Liu, Y.; Li, T.; Shen, R.; Guo, X.; Wu, X.; Liu, Y.; Wang, Y.; Liu, B.; et al. Insights into the hydrogen generation and catalytic mechanism on Co-based nanocomposites derived from pyrolysis of organic metal precursor. iScience 2024, 27, 109715. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.A.; Souza, E.S.; Santana, J.d.J.; Łukasik, N.; da Silva, B.S.L.; Barros, B.S.; Kulesza, J. M-BDC (M = Co and/or Fe) MOFs as effective catalysts for hydrogen generation via hydrolysis of sodium borohydride. Appl. Surf. Sci. 2023, 628, 157361. [Google Scholar] [CrossRef]
- Wang, H.; Xu, F.; Sun, L.; Wu, J.; Zhang, G.; Zhu, Y.; Shao, Q.; Luo, Y.; Peng, X.; Wang, Y.; et al. Novel MOF/COF dual carrier anchoring Ru nanoparticles for improved hydrogen production by hydrolysis of NaBH4. J. Alloys Compd. 2024, 978, 173415. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, K.; Yang, Y.; Liu, Y.; Xu, S.; Isimjan, T.T.; Yang, X. Oxygen-vacancy-rich Ru-clusters decorated Co/Ce oxides modifying ZIF-67 nanocubes as a high-efficient catalyst for NaBH4 hydrolysis. Int. J. Hydrogen Energy 2022, 47, 37840–37849. [Google Scholar] [CrossRef]
- Fang, S.; Jia, X.; Chen, Y.; Hu, H.; Wang, S.; Xia, Y.; Sang, Z.; Zou, Y.; Xiang, C.; Sun, L.; et al. ZIF-67-derived for B-doped NiCoP hollow nanocages as efficient catalysts synergistically promoting NaBH4 hydrolysis. Ceram. Int. 2024, 50, 12472–12480. [Google Scholar] [CrossRef]
Temperature (K) | kobs/s−1 |
---|---|
293.75 | 0.0279 |
305.85 | 0.0437 |
314.15 | 0.0504 |
324.15 | 0.0581 |
Catalyst | EA (kJ mol−1) | HGR (mL min−1 gcat−1) | Reuse | Ref. |
---|---|---|---|---|
H-Co/N/C-Ru@CT | 26.9 | 9815.82 | 81.3% efficiency in the 25th cycle | [4] |
Co-BDC | 25.4 | 1886.8 | Reused at least 10 times | [32] |
CoPB-MOF | 20.7 | 3600 | Recycling with no signs of deactivation. | [25] |
Ru-(ZIF-67/JUC-505) | 23.9 | 34,790 | 91.0% of its initial performance after 10 cycles | [33] |
Ru/Co6Ce1@ZIF-67 | 53.0 | 5726.1 | Does not change considerably after 5 cycles | [34] |
B–NiCoP/NC | 33.92 | 5853.9 | 68.7% after 6 cycles | [35] |
Nb-MOF/Pt0.4–Co0.6 | 19.2 | 1473 | Up to 20 cycles without loss of efficiency | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, L.O.; Sperandio, G.H.; Chagas da Silva, R.; Lopes Moreira, R.P.; de Jesus, J.R. Niobium Metal–Organic Framework Is an Efficient Catalytic Support for the Green Hydrogen Evolution Process from Metal Hydride. Processes 2024, 12, 2342. https://doi.org/10.3390/pr12112342
Coelho LO, Sperandio GH, Chagas da Silva R, Lopes Moreira RP, de Jesus JR. Niobium Metal–Organic Framework Is an Efficient Catalytic Support for the Green Hydrogen Evolution Process from Metal Hydride. Processes. 2024; 12(11):2342. https://doi.org/10.3390/pr12112342
Chicago/Turabian StyleCoelho, Lorrayne Ohana, Gabriel Henrique Sperandio, Renê Chagas da Silva, Renata Pereira Lopes Moreira, and Jemmyson Romário de Jesus. 2024. "Niobium Metal–Organic Framework Is an Efficient Catalytic Support for the Green Hydrogen Evolution Process from Metal Hydride" Processes 12, no. 11: 2342. https://doi.org/10.3390/pr12112342
APA StyleCoelho, L. O., Sperandio, G. H., Chagas da Silva, R., Lopes Moreira, R. P., & de Jesus, J. R. (2024). Niobium Metal–Organic Framework Is an Efficient Catalytic Support for the Green Hydrogen Evolution Process from Metal Hydride. Processes, 12(11), 2342. https://doi.org/10.3390/pr12112342