The Effect of Drive Signals on Output Performance of Piezoelectric Pumps
Abstract
:1. Introduction
2. Structure Design Working Principle
2.1. Double-Chamber Serial Piezoelectric Pump Structure Design
2.2. Dual-Chamber Serial Piezoelectric Pump Working Principle
3. Theoretical Analysis
4. Experimental Setup
5. Results and Discussion
5.1. Piezoelectric Vibrator Center Displacement Results and Discussion
5.2. Piezoelectric Pump Output Performance Results and Discussion
5.3. Sound Results and Discussion
5.4. Comparison of the Performance of Three Signal Drivers
6. Conclusions
- Among the three driving signals, the square wave yields the largest displacement of the piezoelectric vibrator’s center, the sine wave produces an intermediate displacement, and the triangular wave results in the smallest displacement. The displacement of the piezoelectric vibrator’s center decreases with increasing frequency for all three waveform drives. At low frequencies, the displacement curve matches the waveform of the drive signal, but as the frequency increases, the displacement curves for both the square and triangular wave drives gradually shift towards a sinusoidal pattern.
- The square wave drive provides the best performance, followed by the sine wave, and the triangular wave provides the lowest performance in terms of the output performance of the piezoelectric pump. The output flow rate and pressure of the piezoelectric pump under all three drive signals first increase with frequency and then decrease.
- The piezoelectric pump generates the highest noise level when driven by a square wave, while the noise levels are similar under the sine wave and triangular wave drives.
- The ratio of the center displacements of the piezoelectric vibrator and the output performance of the piezoelectric pump is not equal to the ratio of the effective values of the respective drive signals when the piezoelectric pump is operated with different drive signals.
- Under the driving voltage of a sine wave, not exceeding 125 V and at 0–400 Hz, the actual measured service life of the PZT-5 piezoelectric vibrator used in piezoelectric pump was found to range from 3450 to 5150 h. In future work, we will conduct calculations and experimental tests on the service life of the piezoelectric pump under square wave and triangular wave driving voltages.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, Z.; Hosoya, N.; Maeda, S. Flexible Electrohydrodynamic Fluid-Driven Valveless Water Pump via Immiscible Interface. Cyborg Bionic Syst. 2024, 5, 91. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, M.; Hu, F.; Mao, Z.; Huang, X.; Ding, J. Predictive Modeling of Flexible EHD Pumps using Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2405.07488. [Google Scholar] [CrossRef]
- Kaçar, A.; Özer, M.B.; Taşcıoğlu, Y. A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM. Appl. Sci. 2020, 10, 5294. [Google Scholar] [CrossRef]
- Ma, H.; Chen, R.; Hsu, Y. Development of a piezoelectric-driven miniature pump for biomedical applications. Sens. Actuators A Phys. 2015, 234, 23–33. [Google Scholar] [CrossRef]
- Huang, J.; Li, K.; Chen, G.; Gong, J.; Zhang, Q.; Wang, Y. Design and experimental verification of variable-structure vortex tubes for valveless piezoelectric pump translating high-viscosity liquid based on the entropy generation. Sens. Actuators A Phys. 2021, 331, 112973. [Google Scholar] [CrossRef]
- Lu, S.; Yu, M.; Qian, C.; Deng, F.; Chen, S.; Kan, J.; Zhang, Z. A quintuple-bimorph tenfold-chamber piezoelectric pump used in water-cooling system of electronic chip. IEEE Access 2020, 8, 186691–186698. [Google Scholar] [CrossRef]
- Huang, J.; Cong, X.; Zhang, J.; Li, K.; Liu, J.; Zhang, Q. A heat exchanger based on the piezoelectric pump for CPU cooling. Sens. Actuators A Phys. 2022, 342, 113620. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Z.; Cho, H.; Luo, X. Study on a PZT-actuated diaphragm pump for air supply for micro fuel cells. Sens. Actuators A Phys. 2006, 130, 531–536. [Google Scholar] [CrossRef]
- Park, J.-H.; Seo, M.-Y.; Ham, Y.-B.; Yun, S.-N.; Kim, D.-I. A study on high-output piezoelectric micropumps for application in DMFC. J. Electroceram. 2013, 30, 102–107. [Google Scholar] [CrossRef]
- Spencer, W.; Corbett, W.T.; Dominguez, L.; Shafer, B.D. An electronically controlled piezoelectric insulin pump and valves. IEEE Trans. Sonics Ultrason. 1978, 25, 153–156. [Google Scholar] [CrossRef]
- He, X.; Bian, R.; Lin, N.; Xu, W.; Deng, Z.; Yang, S. A novel valveless piezoelectric micropump with a bluff-body based on Coanda effect. Microsyst. Technol. 2019, 25, 2637–2647. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Z.; Liu, H.; Li, T.; Gao, X. Valveless Piezoelectric Pump with Reverse Diversion Channel. Electronics 2021, 10, 1712. [Google Scholar] [CrossRef]
- He, L.; Wu, X.; Zhang, Z.; Wang, Z.; Zhang, B.; Cheng, G. Experiment analysis of high output pressure piezoelectric pump with straight arm wheeled check valve. J. Intell. Mater. Syst. Struct. 2021, 32, 1987–1996. [Google Scholar] [CrossRef]
- Ni, J.; Xuan, W.; Li, Y.; Chen, J.; Li, W.; Cao, Z.; Dong, S.; Jin, H.; Sun, L.; Luo, J. Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load. Microsyst. Nanoeng. 2023, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sun, W.; Fu, J.; Liu, H.; Wang, H.; Yan, Q. Working Mechanisms and Experimental Research of Piezoelectric Pump with a Cardiac Valve-like Structure. Micromachines 2022, 13, 1621. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Wang, M.; Cao, S.; Wang, X.; Liu, G. A high-performance piezoelectric micropump with multi-chamber in series. Appl. Sci. 2022, 12, 4483. [Google Scholar] [CrossRef]
- Peng, T.; Guo, Q.; Yang, J.; Xiao, J.; Wang, H.; Lou, Y.; Liang, X. A high-flow, self-filling piezoelectric pump driven by hybrid connected multiple chambers with umbrella-shaped valves. Sens. Actuators B Chem. 2019, 301, 126961. [Google Scholar] [CrossRef]
- Vante, A.; Kanish, T. Experimental study on performance evaluation of passive valved piezoelectric micropumps with series, parallel and hybrid series-parallel configuration. Adv. Mater. Process. Technol. 2024, 10, 2145–2167. [Google Scholar] [CrossRef]
- Chen, S.; Yu, M.; Kan, J.; Li, J.; Zhang, Z.; Xie, X.; Wang, X. A dual-chamber serial–parallel piezoelectric pump with an integrated sensor for flow rate measurement. Sensors 2019, 19, 1447. [Google Scholar] [CrossRef]
- Yu, M.; Chen, S.; Kan, J.W.; Zhang, Z.H.; Qian, C.P.; Wang, J.T. A miniature piezomembrane hydraulic pump with decreasing chambers in succession. J. Intell. Mater. Syst. Struct. 2020, 32, 442–448. [Google Scholar] [CrossRef]
- Lin, L.; Wu, X.; He, W.; Chen, L. Methods and Experimental Research of Eliminating the Pulse of Piezoelectric Micro-fluidic System. In Proceedings of the 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO), Cork, Ireland, 23–26 July 2018; pp. 1–4. [Google Scholar]
- Özkayar, G.; Wang, Z.; Lötters, J.; Tichem, M.; Ghatkesar, M.K. Flow Ripple Reduction in Reciprocating Pumps by Multi-Phase Rectification. Sensors 2023, 23, 6967. [Google Scholar] [CrossRef] [PubMed]
- Yeming, S.; Junyao, W. Digitally-controlled driving power supply for dual-active-valve piezoelectric pump. Microsyst. Technol. 2019, 25, 1257–1265. [Google Scholar] [CrossRef]
- Dhananchezhiyan, P.; Hiremath, S.S. Improving the performance of micro pumps by reduction of flow pulsation for drug delivery application. Adv. Mater. Process. Technol. 2017, 4, 24–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Wang, S.; Kan, J.; Wen, J.; Yang, C. Performance evaluation and comparison of a serial–parallel hybrid multichamber piezoelectric pump. J. Intell. Mater. Syst. Struct. 2018, 29, 1995–2007. [Google Scholar] [CrossRef]
- Hu, R.; He, L.; Hu, D.; Hou, Y.; Cheng, G. Performance analysis of cascade type three-chamber piezoelectric pump. Microsyst. Technol. 2023, 30, 83–92. [Google Scholar] [CrossRef]
- Ji, J.; Qian, C.; Chen, S.; Wang, C.; Kan, J.; Zhang, Z. A serial piezoelectric gas pump with variable chamber height. Sens. Actuators A Phys. 2021, 331, 112912. [Google Scholar] [CrossRef]
- Huang, W.; Lai, L.; Chen, Z.; Chen, X.; Huang, Z.; Dai, J.; Zhang, F.; Zhang, J. Research on a piezoelectric pump with flexible valves. Appl. Sci. 2021, 11, 2909. [Google Scholar] [CrossRef]
- Zhang, R.; You, F.; Lv, Z.; He, Z.; Wang, H.; Huang, L. Development and characterization a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Sensors 2016, 16, 2108. [Google Scholar] [CrossRef]
- Kan, J.; Tang, K.; Liu, G.; Zhu, G.; Shao, C. Development of serial-connection piezoelectric pumps. Sens. Actuators A Phys. 2008, 144, 321–327. [Google Scholar] [CrossRef]
- Yan, L.; Meng, J.; Haifeng, X. Fatigue life of piezoelectric actuator used in resonance-type air pump. Opt. Precis. Eng. 2013, 21, 941–947. [Google Scholar] [CrossRef]
Parameters | Size and Material |
---|---|
Size of prototypes | 58.8 mm × 42.3 mm × 15 mm |
Diameter of PZT disk | 29 mm |
Diameter of copper disk | 35 mm |
Height of chamber | 1.2 mm |
Diameter of outlet and inlet | 5 mm |
Materials of pump body | PMMA |
Materials of PZT disk | PZT-5 (origin: Shenzhen, China) |
Materials of check valve | rubber |
Ref. | Valve Types | Chamber Numbers | Connection Type | Drive Signal Waveform | Voltage | Frequency | Flow Rate | Pressure |
---|---|---|---|---|---|---|---|---|
Yao et al. [12] 2021 | Valveless | One | — | Sine wave | 350 Vpp | 28 Hz | 79.26 mL/min | — |
Zhou et al. [15] 2022 | Cardiac Valve-like Structure | One | — | Sine wave | 220 V | 7 Hz | — | 199 mm H2O |
11 Hz | 44.5 mL/min | — | ||||||
Liu et al. [16] 2022 | Cantilever valve | Two | Serial | — | 170 V | 120 Hz | 65.5 mL/min | — |
100 Hz | — | 59.1 kPa | ||||||
Yu et al. [20] 2020 | Cantilever valve | Three | Parallelserial | Sine wave | 220 Vpp | 70 Hz | 24.52 mL/min | — |
This work | Umbrella valve | Two | Serial | Square wave | 300 Vpp | 320 Hz | 147.199 mL/min | — |
280 Hz | — | 14.42 kPa | ||||||
Sine wave | 300 Vpp | 310 Hz | 97.265 mL/min | — | ||||
285 Hz | — | 11.91 kPa | ||||||
Triangle wave | 300 Vpp | 310 Hz | 66.685 mL/min | — | ||||
285 Hz | — | 10.26 kPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, M.; Qi, Z.; Yu, W.; Ma, T.; Cai, L.; Zhao, Y.; Gao, Y. The Effect of Drive Signals on Output Performance of Piezoelectric Pumps. Processes 2024, 12, 2343. https://doi.org/10.3390/pr12112343
Jie M, Qi Z, Yu W, Ma T, Cai L, Zhao Y, Gao Y. The Effect of Drive Signals on Output Performance of Piezoelectric Pumps. Processes. 2024; 12(11):2343. https://doi.org/10.3390/pr12112343
Chicago/Turabian StyleJie, Meng, Zhenxiang Qi, Wenxin Yu, Tengfei Ma, Lutong Cai, Yejing Zhao, and Yali Gao. 2024. "The Effect of Drive Signals on Output Performance of Piezoelectric Pumps" Processes 12, no. 11: 2343. https://doi.org/10.3390/pr12112343
APA StyleJie, M., Qi, Z., Yu, W., Ma, T., Cai, L., Zhao, Y., & Gao, Y. (2024). The Effect of Drive Signals on Output Performance of Piezoelectric Pumps. Processes, 12(11), 2343. https://doi.org/10.3390/pr12112343