Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin
Abstract
:1. Introduction
2. Geological Setting
3. Sample Collection and Methods
3.1. Samples
3.2. Experimental Methods
4. Results
4.1. Basic Properties of the Coal Samples
4.2. HPMI Experiment
4.3. LTN2A Experiment
4.4. LPCO2A Experiment
4.5. CH4 Adsorption Isotherms
5. Discussion
5.1. Full-Scale Pore Structure Characterisation
5.2. Factors Influencing Pore Structure Development
5.2.1. Coalification Effects on the Pore Structure
5.2.2. Maceral Composition and Pore Structure
5.2.3. Proximate Parameters for Determining the Pore Structure
5.3. The Influence of Different Scales of Pore Structures on the Gas Content
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Zhang, P.; Li, D.; Li, Z.; Wang, J.; Duan, Y.; Wu, J.; Liu, N. Reservoir characteristics and gas production potential of deep coalbed methane: Insights from the no. 15 coal seam in shouyang block, Qinshui Basin, China. Unconv. Resour. 2022, 2, 12–20. [Google Scholar] [CrossRef]
- Xu, F.; Hou, W.; Xiong, X.; Xu, B.; Wu, P.; Wang, H.; Feng, K.; Yun, J.; Li, S.; Zhang, L.; et al. The status and development strategy of coalbed methane industry in China. Pet. Explor. Dev. 2023, 50, 765–783. [Google Scholar] [CrossRef]
- Yan, X.; Xu, F.; Nie, Z.; Kang, Y. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM. J. China Coal Soc. 2021, 46, 2426–2439. (In Chinese) [Google Scholar]
- Zhou, D.; Chen, G.; Chen, Z.; Liu, Z. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China. Nat. Gas Ind. 2022, 42, 43–51. (In Chinese) [Google Scholar]
- Kang, Y.; Sun, L.; Zhang, B.; Gu, J.; Mao, D. Discussion on classification of coalbed reservoir permeability in China. J. China Coal Soc. 2017, 42, 186–194. [Google Scholar]
- Qin, Y.; Shen, J.; Shi, R. Strategic value and choice on construction of large CMG industry in China. J. China Coal Soc. 2022, 47, 371–387. [Google Scholar]
- Zhao, J.; Xu, H.; Tang, D.; Mathews, J.; Li, S.; Tao, S. Coal seam porosity and fracture heterogeneity of macrolitho types in the Hancheng Block, eastern margin, Ordos Basin, China. Int. J. Coal Geol. 2016, 159, 18–29. [Google Scholar] [CrossRef]
- Xu, F.; Wang, C.; Xiong, X.; Li, S.; Wang, Y.; Guo, G.; Yan, X.; Chen, G.; Yang, Y.; Wang, H.; et al. Deep(layer) coalbed methane reservoir forming modes and key technical countermeasures: Taking the eastern margin of Ordos Basin as an example. China Offshore Oil Gas 2022, 34, 30–42. (In Chinese) [Google Scholar]
- Xiong, X.; Yan, X.; Xu, F.; Li, S.; Nie, Z.; Feng, Y.; Liu, Y.; Chen, M.; Sun, J.; Zhou, K.; et al. Analysis of multi-factor coupling control mechanism, desorption law and development effect of deep coalbed methane. Acta Petrolei Sinica 2023, 44, 1812–1826, 1853. (In Chinese) [Google Scholar]
- Wei, Q.; Li, X.; Hu, B.; Zhang, X.; Zhang, J.; He, Y.; Zhang, Y.; Zhu, W. Reservoir characteristics and coalbed methane resource evaluation of deep-buried coals: A case study of the No.13−1 coal seam from the Panji Deep Area in Huainan Coalfield, Southern North China. J. Petrol. Geol. 2019, 179, 867–884. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, G.; Yang, Z.; Tao, S.; Hou, L.; Zhu, R.; Yuan, X.; Ran, Q.; Li, D.; Wang, Z. Concepts, Characteristics, Potential and Technology of Hydrocarbons: On Unconventional Petroleum Geology. Pet. Explor. Dev. 2013, 40, 413–428. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Meng, M.; Liu, Q.; Chen, L.; Wang, P.; Gao, F.; Huang, H. Fractal Characteristics of Nano-Pores in the Lower Silurian Longmaxi Shales from the Upper Yangtze Platform, South China. Mar. Pet. Geol. 2016, 78, 88–98. [Google Scholar] [CrossRef]
- Li, A.; Ding, W.; He, J.; Dai, P.; Yin, S.; Xie, F. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Mar. Pet. Geol. 2016, 70, 46–57. [Google Scholar] [CrossRef]
- IUPAC (International Union of Pure and Applied Chemistry). Physical chemistry division commission on colloid and surface chemistry, subcommittee on characterization of porous solids: Recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, Q.; Jiang, X.; Mu, F.; Kang, L.; Wang, M.; Yang, Q.; Zhao, Y. Prospect and strategies of CBM exploration and development in China under the new situation. J. China Coal Soc. 2021, 46, 65–76. (In Chinese) [Google Scholar]
- Zhang, K.; Cheng, Y.; Wang, L.; Hu, B.; Li, W. Pore network structure characterization based on gas occurrence and migration in coal. J. China Coal Soc. 2022, 47, 3680–3694. (In Chinese) [Google Scholar]
- Cui, X.; Bustin, R.M.; Dipple, G. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel 2004, 83, 293–303. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, H.; Tang, D.; Mathews, J.; Li, S.; Tao, S. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes. Fuel 2016, 183, 420–431. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wei, Q.; Li, X.; Zhang, J.; Hu, B.; Zhu, W.; Liang, W.; Sun, K. Full-size pore structure characterization of deep-buried coals and its impact on methane adsorption capacity: A case study of the Shihezi Formation coals from the Panji Deep Area in Huainan Coalfield, Southern North China. J. Pet. Sci. Eng. 2019, 173, 975–989. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Xu, H.; Yang, Z. Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography. Comput. Geosci. 2012, 48, 220–227. [Google Scholar] [CrossRef]
- Yan, J.; Meng, Z.; Zhang, K.; Yao, H.; Hao, H. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption. J. Pet. Sci. Eng. 2020, 189, 107401. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Hao, C.; Hao, C.; Ni, G.; Zhao, W.; Cheng, Y.; Wang, L. Chemical structure and hydrocarbon generation characteristics of tectonic coal with different metamorphic degrees: Implications for gas adsorption capacity. Gas Sci. Eng. 2023, 113, 204949. [Google Scholar] [CrossRef]
- Hainbuchner, M.; Hinde, A.L.; Baron, M.; Rauch, H.; Radlinski, A.P.; Mastalerz, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 2004, 59, 245–271. [Google Scholar]
- Ju, Y.; Jiang, B.; Hou, Q.; Wang, G.; Fang, A. Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism. Acta Geol. Sin. 2005, 79, 269–285. [Google Scholar]
- Fan, J.; Ju, Y.; Liu, S.; Li, X. Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development. J. China Coal Soc. 2013, 38, 441–447. [Google Scholar]
- Jiang, W.; Wu, C.; Zhao, K.; Liang, C. Study on pore characteristics of coal reservoir and CBM recoverability in multiple coal seam blocks. Coal Sci. Technol. 2015, 43, 135–139. [Google Scholar]
- Gao, W.; Yi, T.; Jin, J.; Yang, T.; Zhao, L.; Wang, R.; Zhou, X. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability. J. China Coal Soc. 2017, 42, 1258–1265. [Google Scholar]
- Lu, J.; Shao, L.; Yang, M.; Zhou, K.; Wheeley, J.; Wang, H.; Hilton, J. Depositional model for peat swamp and coal facies evolution using sedimentology, coal macerals, geochemistry and sequence stratigraphy. J. Earth Sci. 2017, 28, 1163–1177. [Google Scholar] [CrossRef]
- Mou, P.; Pan, J.; Niu, Q.; Wang, Z.; Li, Y.; Song, D. Coal pores: Methods, types, and characteristics. Energy Fuel 2021, 35, 7467–7484. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Hu, C.; Wang, B.; Peng, K.; Liu, H. Characterization of microscopic pore structures in shale reservoirs. Acta Pet. Sin. 2013, 34, 301–311. [Google Scholar]
- Okolo, G.; Everson, R.; Neomagus, H.; Roberts, M.; Sakurovs, R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 2015, 141, 293–304. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Cai, Y.; Li, J. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Sci. China Earth Sci. 2010, 53, 854–862. [Google Scholar] [CrossRef]
- Yu, L.; Fan, M.; Chen, H.; Liu, W.; Zhang, W.; Xu, E. Isothermal adsorption experiment of organic-rich shale under high temperature and pressure using gravimetric method. Acta Pet. Sin. 2015, 36, 557–563. [Google Scholar]
- Karimpouli, S.; Tahmasebi, P.; Ramanandi, H. A review of experimental and numerical modelling of digital coalbed methane: Imaging, segmentation, fracture modelling and permeability prediction. Int. J. Coal Geol. 2020, 228, 103552. [Google Scholar] [CrossRef]
- Jing, Z.; Gao, S.; Rodrigues, S.; Underschultz, J.; Strounina, E.; Pan, S.; Wu, S.; Li, Y.; Balucan, R.; Steel, K. Influence of porosity on the reactivity of inertinite and vitrinite toward sodium hypochlorite: Implications for enhancing coal seam gas development. J. Int. J. Coal Geol. 2021, 237, 103709. [Google Scholar] [CrossRef]
- Kumar, S.; Mendhe, V.A.; Kamble, A.D.; Varma, A.K.; Mishra, D.K.; Bannerjee, M.; Buragohain, J.; Prasad, A.K. Geochemical Attributes, Pore Structures and Fractal Characteristics of Barakar Shale Deposits of Mand-Raigarh Basin, India. Mar. Pet. Geol. 2019, 103, 377–396. [Google Scholar] [CrossRef]
- GB/T 6948-2008; Method of Determining Microscopically the Reflectance of Vitrinite in Coal. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- GB/T 212-2008; Proximate Analysis of Coal. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- GB/T 21650.2-2008; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 2: Analysis of Mesopores and Macropores by Gas Adsorption. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- GB/T 21650.3-2011; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 3: Analysis of Micropores by Gas Adsorption. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2011.
- Evans, R.; Marconi, U.M.B.; Tarazona, P. Capillary condensation and adsorption in cylindrical and slit-like pores. J. Chem. Soc. 1986, 82, 1763–1787. [Google Scholar] [CrossRef]
- Gelb, L.D.; Gubbins, K.E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Phase separation in confined systems. Rep. Prog. Phys. 1999, 62, 1573–1659. [Google Scholar] [CrossRef]
- El-Merraoui, M.; Aoshima, M.; Kaneko, K. Micropore size distribution of activated carbon fiber using the density functional theory and other methods. Langmuir 2000, 16, 4300–4304. [Google Scholar]
- GB/T 21650.1-2008; Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption-Part 1: Mercury Porosimetry. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 15, 115–116. [Google Scholar] [CrossRef]
- GB/T 19560-2008; Experimental Method of High-Pressure Isothermal Adsorption to Coal. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China, 2008.
- Shan, C.; Zhao, W.; Wang, F.; Zhang, K.; Feng, Z.; Guo, L.; Ma, X.; Liao, T. Nanoscale Pore Structure Heterogeneity and Its Quantitative Characterization in Chang7 Lacustrine Shale of the Southeastern Ordos Basin, China. J. Pet. Sci. Eng. 2020, 187, 106754. [Google Scholar] [CrossRef]
- Wang, T.; Tian, F.; Deng, Z.; Hu, H. Pore Structure and Fractal Characteristics of Wufeng–Longmaxi Formation Shale in Northern Yunnan–Guizhou, China. Front. Earth Sci. 2023, 10, 998958. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Wang, Y. Fractal Characteristics of Micro- and Mesopores in the Longmaxi Shale. Energies 2020, 13, 1349. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Ji, W. Fractal Characterization of Pore Structure and Its Influence on Salt Ion Diffusion Behavior in Marine Shale Reservoirs. Int. J. Hydrogen Energy 2020, 45, 28520–28530. [Google Scholar] [CrossRef]
- Goral, J.; Walton, I.; Andrew, M.; Deo, M. Pore System Characterization of Organic-Rich Shales Using Nanoscale-Resolution 3D Imaging. Fuel 2019, 258, 116049. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, Z.; Huang, X. Quantitative study on coal and shale pore structure and surface roughness based on atomic force microscopy and image processing. Fuel 2019, 244, 78–90. [Google Scholar] [CrossRef]
- Xi, Z.; Tang, S.; Wang, J.; Yang, G.; Li, L. Formation and development of pore structure in marine continental transitional shale from northern China across a maturation gradient: Insights from gas adsorption and mercury intrusion. Int. J. Coal Geol. 2018, 200, 87–102. [Google Scholar] [CrossRef]
- Hu, H.; Hao, F.; Lin, J.; Lu, Y.; Ma, Y.; Li, Q. Organic matter hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int. J. Coal Geol. 2017, 173, 40–50. [Google Scholar] [CrossRef]
- Lei, C.; Jiang, Z.; Liu, K.; Tian, J.; Gao, F.; Wang, P. Pore structure characterization for organic-rich lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar]
- Wang, T.; Zhou, G.; Fan, L.; Zhang, D.; Shao, M.; Ding, R.; Li, Y.; Hu, H.; Deng, Z. Full-scale pore and microfracture characterization of deep coal reservoirs: A case study of the Benxi Formation coal in the Daning–Jixian block, China. Int. J. Energy Res. 2024, 2024, 5772264. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.; Hu, Q. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FESEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Deng, H.; Hu, X.; Li, H.; Luo, B.; Wang, W. Imroved pore-structure characterization in shale formations with FESEM technique. J. Nat. Gas Sci. Eng. 2016, 35, 309–319. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, S.; Wang, J.; Hu, Q.; Wang, M.; Chao, J. Applying fractal theory to characterize the pore structure of lacustrine shale from the Zhanhua Depression in Bohai Bay Basin, Eastern China. Energy Fuels 2018, 32, 7539–7556. [Google Scholar] [CrossRef]
- Lai, F.; Li, Z.; Zhang, W.; Dong, H.; Kong, F.; Jiang, Z. Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods. Energy Fuels 2018, 32, 3368–3397. [Google Scholar] [CrossRef]
- Liu, S.; Sang, S.; Wang, G. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism. J. Pet. Sci. Eng. 2017, 148, 21–31. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. Aapg Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Wang, T.; Tian, F.; Deng, Z.; Hu, H. The Characteristic Development of Micropores in Deep Coal and Its Relationship with Adsorption Capacity on the Eastern Margin of the Ordos Basin, China. Minerals 2023, 13, 302. [Google Scholar] [CrossRef]
- Pan, J.; Wang, K.; Hou, Q.; Niu, Q.; Wang, H.; Ji, Z. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel 2016, 164, 277–285. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Sun, K.; Zhang, G.; Wang, F. Characterization of Full-Sized Pore Structure and Fractal Characteristics of Marine–Continental Transitional Longtan Formation Shale of Sichuan Basin, South China. Energy Fuels 2017, 31, 10490–10504. [Google Scholar] [CrossRef]
Sample ID | Depth (m) | Ro,max (%) | Maceral (%) | Proximate Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
V | I | E | M | Mad | Ad | Vdaf | FCad | |||
DJ57-1 | 1884.2 | 2.15 | 77.36 | 19.09 | 0.20 | 3.35 | 1.47 | 10.21 | 6.94 | 82.33 |
DJ57-2 | 1885.8 | 1.82 | 44.06 | 41.34 | 0.00 | 14.60 | 0.77 | 29.96 | 12.92 | 60.52 |
DJ57-3 | 1886.4 | 2.17 | 52.47 | 32.15 | 0.00 | 15.37 | 1.01 | 26.21 | 10.49 | 65.38 |
DJ63-1 | 1961.8 | 2.52 | 82.01 | 10.25 | 0.00 | 7.74 | 1.25 | 5.50 | 6.29 | 87.45 |
DJ63-2 | 1964.5 | 1.91 | 51.98 | 33.92 | 0.00 | 14.10 | 0.75 | 33.87 | 12.43 | 57.48 |
DJ63-3 | 1965.6 | 2.19 | 70.33 | 13.87 | 1.93 | 13.87 | 1.08 | 19.82 | 8.81 | 72.32 |
G11-1 | 2068.2 | 2.00 | 81.59 | 12.90 | 0.00 | 5.50 | 1.71 | 6.82 | 6.51 | 85.62 |
G11-2 | 2071.0 | 2.12 | 77.27 | 12.88 | 3.79 | 6.06 | 1.37 | 14.14 | 8.18 | 77.76 |
G11-3 | 2072.1 | 2.16 | 63.91 | 30.08 | 3.38 | 2.63 | 2.13 | 7.55 | 7.20 | 83.96 |
P20-1 | 2276.0 | 3.05 | 86.00 | 10.00 | 0.00 | 4.00 | 1.16 | 12.84 | 8.11 | 79.16 |
P20-2 | 2277.0 | 2.97 | 80.00 | 16.00 | 0.00 | 4.00 | 0.70 | 15.15 | 8.45 | 77.14 |
P20-3 | 2278.4 | 3.19 | 72.00 | 22.00 | 0.00 | 6.00 | 1.26 | 6.49 | 7.10 | 85.78 |
Sample ID | LPCO2A | LTN2A | HPMI | ||||||
---|---|---|---|---|---|---|---|---|---|
VDFT | SDFT | DCO2 | SBET | VDFT | SDFT | DN2 | VHPMI | SHPMI | |
(cm3/g) | (m2/g) | (nm) | (m2/g) | (cm3/g) | (m2/g) | (nm) | (cm3/g) | (m2/g) | |
DJ57-1 | 0.072 | 247.05 | 0.501 | 1.61 | 0.003 | 2.30 | 1.273 | 0.05 | 30.65 |
DJ57-2 | 0.042 | 143.64 | 0.501 | 2.10 | 0.004 | 2.46 | 1.22 | 0.018 | 10.09 |
DJ57-3 | 0.059 | 202.15 | 0.501 | 1.82 | 0.004 | 2.10 | 6.079 | 0.027 | 14.40 |
DJ63-1 | 0.078 | 263.87 | 0.524 | 0.39 | 0.001 | 0.45 | 6.794 | 0.059 | 32.37 |
DJ63-2 | 0.049 | 165.39 | 0.501 | 0.92 | 0.003 | 0.86 | 6.079 | 0.023 | 13.92 |
DJ63-3 | 0.066 | 221.81 | 0.524 | 1.23 | 0.003 | 1.19 | 4.887 | 0.018 | 12.69 |
G11-1 | 0.070 | 236.72 | 0.524 | 1.31 | 0.003 | 1.30 | 6.079 | 0.031 | 15.45 |
G11-2 | 0.065 | 219.92 | 0.524 | 0.65 | 0.002 | 0.81 | 6.079 | 0.032 | 15.42 |
G11-3 | 0.073 | 247.27 | 0.501 | 0.81 | 0.002 | 0.80 | 6.079 | 0.036 | 18.45 |
P20-1 | 0.077 | 260.32 | 0.501 | 0.52 | 0.002 | 0.59 | 7.032 | 0.038 | 19.27 |
P20-2 | 0.072 | 239.42 | 0.524 | 0.72 | 0.002 | 0.69 | 6.079 | 0.032 | 16.53 |
P20-3 | 0.081 | 275.76 | 0.524 | 0.29 | 0.001 | 0.39 | 6.794 | 0.051 | 24.77 |
Sample ID | VL (cm3/g) | PL (MPa) |
---|---|---|
DJ57-1 | 29.31 | 3.27 |
DJ57-2 | 18.44 | 3.79 |
DJ57-3 | 21.90 | 3.66 |
DJ63-1 | 29.75 | 3.43 |
DJ63-2 | 19.09 | 3.40 |
DJ63-3 | 23.61 | 3.15 |
G11-1 | 27.52 | 2.66 |
G11-2 | 24.62 | 2.78 |
G11-3 | 29.01 | 3.31 |
P20-1 | 24.46 | 3.04 |
P20-2 | 28.65 | 3.25 |
P20-3 | 32.28 | 2.91 |
Sample ID | Total PV (cm3/g) | Micropores | Mesopores | Macropores | |||
---|---|---|---|---|---|---|---|
V1 (cm3/g) | α1 (%) | V2 (cm3/g) | α2 (%) | V3 (cm3/g) | α3 (%) | ||
DJ57-1 | 0.077 | 0.072 | 94.03 | 0.002 | 3.12 | 0.002 | 2.86 |
DJ57-2 | 0.046 | 0.042 | 90.95 | 0.004 | 7.53 | 0.001 | 1.52 |
DJ57-3 | 0.066 | 0.059 | 90.38 | 0.004 | 5.50 | 0.003 | 4.12 |
DJ63-1 | 0.081 | 0.078 | 96.71 | 0.001 | 1.56 | 0.001 | 1.73 |
DJ63-2 | 0.053 | 0.049 | 92.85 | 0.002 | 4.52 | 0.001 | 2.64 |
DJ63-3 | 0.069 | 0.066 | 94.78 | 0.003 | 4.06 | 0.001 | 1.16 |
G11-1 | 0.077 | 0.070 | 91.60 | 0.003 | 4.22 | 0.003 | 4.17 |
G11-2 | 0.071 | 0.065 | 91.48 | 0.002 | 3.30 | 0.004 | 5.22 |
G11-3 | 0.079 | 0.073 | 92.80 | 0.002 | 2.50 | 0.004 | 4.70 |
P20-1 | 0.083 | 0.077 | 92.51 | 0.002 | 2.09 | 0.005 | 5.40 |
P20-2 | 0.083 | 0.077 | 92.51 | 0.002 | 2.09 | 0.005 | 5.40 |
P20-3 | 0.092 | 0.081 | 88.94 | 0.001 | 1.23 | 0.009 | 9.83 |
Sample ID | Total SSA (m2/g) | Micropores | Mesopores | Macropores | |||
---|---|---|---|---|---|---|---|
S1 (m2/g) | β1(%) | S2 (m2/g) | β2(%) | S3 (m2/g) | β3(%) | ||
DJ57-1 | 248.04 | 247.10 | 99.62 | 0.93 | 0.37 | 0.02 | 0.01 |
DJ57-2 | 145.02 | 143.66 | 99.07 | 1.34 | 0.92 | 0.02 | 0.01 |
DJ57-3 | 203.55 | 202.17 | 99.32 | 1.31 | 0.64 | 0.07 | 0.03 |
DJ63-1 | 264.32 | 263.87 | 99.83 | 0.45 | 0.17 | 0.01 | 0.00 |
DJ63-2 | 166.28 | 165.39 | 99.47 | 0.85 | 0.51 | 0.04 | 0.02 |
DJ63-3 | 222.88 | 221.81 | 99.52 | 1.07 | 0.48 | 0.00 | 0.00 |
G11-1 | 238.09 | 236.72 | 99.42 | 1.29 | 0.54 | 0.08 | 0.04 |
G11-2 | 220.87 | 219.92 | 99.57 | 0.80 | 0.36 | 0.15 | 0.07 |
G11-3 | 248.16 | 247.27 | 99.64 | 0.78 | 0.32 | 0.11 | 0.04 |
P20-1 | 260.93 | 260.34 | 99.78 | 0.46 | 0.18 | 0.12 | 0.05 |
P20-2 | 240.13 | 239.42 | 99.71 | 0.67 | 0.28 | 0.04 | 0.02 |
P20-3 | 276.20 | 275.76 | 99.84 | 0.38 | 0.14 | 0.06 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, T.; Wu, S.; Deng, Z.; Li, J.; Ren, Z.; Huang, D.; Fan, W.; Zhu, G. Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin. Processes 2024, 12, 2364. https://doi.org/10.3390/pr12112364
Chen X, Wang T, Wu S, Deng Z, Li J, Ren Z, Huang D, Fan W, Zhu G. Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin. Processes. 2024; 12(11):2364. https://doi.org/10.3390/pr12112364
Chicago/Turabian StyleChen, Xiaoming, Tao Wang, Song Wu, Ze Deng, Julu Li, Zhicheng Ren, Daojun Huang, Wentian Fan, and Gengen Zhu. 2024. "Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin" Processes 12, no. 11: 2364. https://doi.org/10.3390/pr12112364
APA StyleChen, X., Wang, T., Wu, S., Deng, Z., Li, J., Ren, Z., Huang, D., Fan, W., & Zhu, G. (2024). Characterisation of the Full Pore Size Distribution of and Factors Influencing Deep Coal Reservoirs: A Case Study of the Benxi Formation in the Daning–Jixian Block at the Southeastern Margin of the Ordos Basin. Processes, 12(11), 2364. https://doi.org/10.3390/pr12112364