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Abstract: The overuse of fossil fuels has resulted in massive CO2 emissions, causing global envi-
ronmental problems. Renewable energy-driven electrocatalysis, which can convert CO2 into fuels
and chemicals, is considered an emerging technology for carbon resource recycling. Cu-based cat-
alysts sputtered on hydrophobic carbon paper and a polytetrafluoroethylene (PTFE) membrane
were comparatively investigated, while the effect of the thickness of the Cu sputtering layer on the
electrocatalytic CO2 reduction performance was investigated. Additionally, the effect of substrate
properties on the distribution and morphology of sputtered Cu metal was investigated by SEM and
XRD. With carbon paper as the substrate, the highest FEC2

+ achieved was 70% at 200 mA/cm2, while
the maximum value of FEC2

+ on the Cu/PTFE electrode was realized with a Cu thickness of 400 nm
(72%). Additionally, the PTFE substrate demonstrated a better inhibiting effect on HER, with a lower
FEH2 and high FEC2

+ over different applied current densities.

Keywords: CO2RR; substrate; magnetron sputtering

1. Introduction

Rapid economic and social development is heavily reliant on the utilization of fossil
fuel-based energy [1]. However, massive CO2 emissions derived from the overuse of
fossil fuel-based energy have triggered severe environmental problems such as climate
change and ocean acidification, leading to increasing attention from the public around
the world [2,3]. By 2023, approximately 110 Mt of CO2 was released into the atmosphere
every day. Therefore, it is crucial to mitigate the emission of CO2 by developing advanced
utilization technologies. Electrocatalytic CO2 reduction reaction (CO2RR) is considered an
emerging method for carbon resource recycling and can be powered by renewables and
effectively convert CO2 into high-value chemicals and fuels.

Nevertheless, CO2RR involves a multi-electron transfer process, with different path-
ways leading to various products [4–6]. Among these, the electrochemical reduction of
CO2 to C2

+ products holds great promise, particularly in the production of ethylene (C2H4)
and ethanol (C2H5OH), both of which are vital chemical products [7–9]. Thus, the devel-
opment of efficient electrocatalyst materials for large-scale production of C2

+ products
is significantly important. According to previous studies, different materials have been
employed for CO2RR based on their intrinsic activities. For instance, the weak adsorption
of *H and *CO by Au, Ag, and Zn contributes to excellent CO selectivity [10–12], while
monometallic Sn and In with strong O affinities and weak H affinities are prone to generate
HCOOH [13–15]. Copper stands out for its capability to electrocatalytically convert CO2
into high value-added hydrocarbons via deep reduction of *CO intermediates [16–18].
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Numerous studies have explored the types of Cu metal catalysts, including oxide-derived
Cu [19,20], halide-derived Cu [21], and Cu bimetallic catalysts [22,23], as well as prepara-
tion methods such as electrodeposition [24], high-temperature pyrolysis [25], replacement
reaction [26], and magnetron sputtering [27–29]. As a type of physical vapor deposition,
magnetron sputtering is generally used for semiconductors, insulators, and other multi-
functional material preparation, with the advantages of easy control, a large coating area,
and strong adhesion [30,31]. Recently, magnetron sputtering-based Cu electrocatalysts
have been widely used on carbon paper and polytetrafluoroethylene (PTFE) as substrate
for CO2RR, especially using flow cells or membrane electrode assembly cells.

However, the detailed influence of the substrate is seldom analyzed compared to
conventional thermal processes. The substrate plays an important role in providing
a multi-functional interface for mass transfer and catalyst support to facilitate electro-
chemical reactions. For instance, Hu et al. [32] prepared a La(OH)3/Cu catalyst with
carbon paper as a substrate, demonstrating a remarkable Faradaic efficiency (FEC2

+) of
71%. Although carbon paper exhibits excellent electrical conductivity, it suffers from
severe flooding due to the charging effect, which deteriorates its hydrophobicity with
prominent hydrogen evolution reaction (HER). Therefore, hydrophobic PFTE has recently
been proposed as a potential substrate to avoid flooding and suppress HER. For instance,
John Pellessier et al. [33] used prepared polymer-modified Cu catalysts on PTFE, demon-
strating a Faradaic efficiency of 78% for C2

+ products.
In this study, Cu sputtering on different substrates (e.g., carbon paper and PTFE)

was comparatively investigated for electrocatalytic CO2 reduction. The structure and
morphology of prepared electrocatalysts were characterized by XRD and SEM. Furthermore,
the hydrophobicity of the prepared Cu sputtering electrodes was analyzed via contact angle
measurement. The results demonstrated that PTFE could better inhibit the HER despite
its lower hydrophobicity compared to carbon paper. The highest FE of C2

+ products can
exceed 70% in alkaline flow cells, while the thickness of Cu layers had a prominent effect
on the product distribution and C2H4/C2H5OH ratio.

2. Materials and Methods
2.1. Cathode Electrode Preparation

Carbon paper (SGL CARBON, SGL36BB, purchased from SCI Materials Hub, Wuhu,
China) and PTFE (Zhongxingweiye, Co., Ltd., Beijing, China) were used as the substrates
for magnetron sputtering, with pure Cu (99.9%) as the target material. The sputtering
power was set at 100 W with a sputtering rate of 16 nm/min. The sputtered Cu layers
with thicknesses of 100 nm, 200 nm, 300 nm, 400 nm, and 500 nm were obtained by
adjusting the sputtering duration (375 s, 750 s, 1125 s, 1500 s, and 1875 s, respectively). The
carbon paper-based Cu electrode was named Cu/CP, and the PTFE-based Cu electrode was
named Cu/PTFE.

2.2. Anode Electrode Preparation

First, 0.5 mm-thick nickel foam was cut into a 3 cm × 3 cm square. Then, it was
immersed into a solution of 3 mM Ni(NO3)2·6H2O and 3 mM Fe(NO3)3·9H2O. The elec-
trodeposition was performed for 300 s at −1 V vs. Ag/AgCl, followed by rinsing with
deionized water and ethanol, respectively. Eventually, the prepared electrode was dried at
room temperature for CO2RR.

2.3. Characterization

An X-ray diffractometer (XRD, Rigaku SmartLab SE, Tokyo, Japan) was used to analyze
the phase structure and crystallinity of the prepared catalysts via an X-ray line source with a
scanning speed of 2◦ min−1 and a scanning angle in the range of 20◦–80◦. Scanning electron
microscopy (SEM, ZEISS Gemini SEM 300, Baden-Württemberg, Germany) was used to
characterize the surface micromorphology of the catalysts. Focused ion beam scanning
electron microscopy (FIB-SEM) was used to characterize the planar and cross-sectional
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surfaces of the Cu-based electrodes at high resolution. The surface structure of the samples
was observed using an SE2 detector inside the chamber, and high-resolution imaging was
conducted using an Inlens/ESB detector inside the barrel. The contact angle test (Video
Contact Angle Measuring Instrument, Dataphysics, Filderstadt, Germany) was performed
using an OCA20 contact angle tester to evaluate the hydrophilicity.

2.4. Electrochemical CO2RR and Product Analysis

A typical three-electrode system was used for CO2RR in a homemade flow cell, with
a sputtered Cu electrode as the working electrode, a mercury–mercury oxide (Hg/HgO)
electrode as the reference electrode, and an NiFe-loaded nickel foam electrode as the
counter electrode, respectively. An anion exchange membrane (FuMA-Tech FAB-130,
Baden-Württemberg, Germany) was used to separate the anodic and cathodic chamber.
The cathode and anode electrolytes were 1 M KOH, and the flow rates of the electrolytes
were controlled by a peristaltic pump at 3 mL/min and 10 mL/min, respectively. The CO2
flow rate was controlled by a mass flow meter at 30 mL/min, while the gas flow rate after
the reaction was further verified by a soap film flow meter. An electrochemical workstation
(ChenHua, 1400 C, Shanghai, China) was used, and all potentials were converted into the
reversible hydrogen electrode (RHE). The gas products during CO2RR were determined
on-line by a gas chromatographer (GC, FULI 9790, Taizhou, China) equipped with a thermal
conductivity detector (TCD) for H2 and CO measurement and a flame ionization detector
(FID) to measure the CH4 and C2

+ products. The liquid products were collected individually
each time and evaluated by nuclear magnetic resonance hydrogen spectroscopy (NMR),
while the spectra were analyzed via a Bruker 400 MHz spectrometer using DMSO as the
internal standard.

3. Results
3.1. Characterization of the Sputtered Cu Electrocatalyst on Carbon and PTFE

In this study, Cu-based electrodes were successfully fabricated by sputtering Cu onto
hydrophobic carbon paper and PTFE membranes. The sputtering thickness, ranging from
100 nm to 500 nm, was precisely controlled by adjusting the sputtering duration. As
shown in Figure 1, the morphology of the Cu electrodes varied depending on the sub-
strate. When carbon paper was used as the substrate, the Cu nanoparticles exhibited a
tendency to increase in size and coalesce with increasing sputtering time. The average
particle diameter approached approximately 500 nm at a sputtering thickness of 500 nm
(Figure S1). In contrast, a dendritic structure was observed for Cu sputtered on the PTFE
membrane. The original PTFE substrate exhibited fibrous structures with a diameter of
approximately 100 nm, and the maximum pore size in the channels was ~1 µm. With
prolonged sputtering, the Cu grew conformally along the PTFE substrate, gradually in-
creasing in diameter, while the overall pore structure of the PTFE was maintained despite a
reduction in the pore size of the electrode (Figure S2). Additionally, SEM-FIB technology
was employed to perform cross-sectional imaging of the Cu/PTFE electrode. As shown in
Figure 1d–f, a rich porous structure was observed within the PTFE layer, with a dense Cu
catalyst layer, approximately 400 nm thick, deposited on top. At the interface between the
Cu catalyst and PTFE layers, Cu was found to wrap around the PTFE fibers, as confirmed
by elemental mapping through energy-dispersive X-ray spectroscopy (EDS). It is hypothe-
sized that as the Cu catalyst further infiltrates the PTFE layer, the hydrophobicity of the
membrane may degrade, potentially affecting the reaction within the PTFE matrix.

The phase structure of the Cu electrode was characterized using X-ray diffraction
(XRD), and the resulting spectra, as shown in Figure 2, exhibited minimal variation re-
gardless of the substrate material. By comparing the data with standard reference cards
(Cu#PDF04-0836, Cu#PDF26-1027), the primary crystallographic planes of the sputtered Cu
were identified as Cu (111), Cu (200), and Cu (220). As the sputtering thickness increased,
the intensity of the diffraction peak at 43.32◦, corresponding to the Cu (111) crystal plane,
was significantly enhanced. In contrast, the intensity increases for the Cu (200) plane at
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50.45◦ and the Cu (220) plane at 74.12◦ were less pronounced. This suggests that with the
increasing thickness of the magnetron-sputtered Cu, a preferential orientation along the Cu
(111) plane began to develop.
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3.2. Electrocatalytic Activity of CO2RR

The electrocatalytic CO2 reduction performance of sputtered Cu/CP and Cu/PTFE
electrodes with varying sputtering thicknesses was assessed in an alkaline flow electrolytic
cell, with current densities ranging from 100 to 300 mA/cm2 as shown in Figure 3a–e.
Overall, as the applied cathodic current density increased, the Faradaic efficiency (FE) for
CO (FECO) decreased, while the FE for C2

+ products (FEC2
+) increased. This trend can be

attributed to the enhanced reaction kinetics of C–C coupling, leading to greater C2
+ product

formation as more *CO intermediates are consumed at higher negative operating currents.
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Figure 3. (a–e) The product distribution of electrocatalytic CO2 reduction using Cu/CP with Cu
thicknesses of 100 nm, 200 nm, 300 nm, 400 nm, and 500 nm, termed C-Cu100, C-Cu200, C-Cu300,
C-Cu400, and C-Cu500, respectively.

For the Cu/CP electrode with a 100 nm sputtering thickness (C-Cu100), FEH2 ini-
tially decreased from 23% to 15% before rising to 29% as the current density increased
from 100 to 300 mA/cm2. Concurrently, FECO dropped from 19% to 5%, while FECH4
rose from 5% to 30%. At a current density of 200 mA/cm2, FEC2H4, FECH3COOH, and
FEC2H5OH were 31%, 7%, and 24%, respectively, with the total FEC2

+ reaching a maxi-
mum value of 66%. Upon increasing the Cu sputtering thickness to 200 nm, a significant
suppression of hydrogen evolution reaction (HER) was observed, with FEH2 remaining
below 11% within the 150–250 mA/cm2 range. FECO also decreased from 31% to 9%, while
FEC2

+ increased from 48% at 100 mA/cm2 to 65% at 300 mA/cm2, reaching a maximum of
70% at 250 mA/cm2. The product distribution and electrocatalytic CO2 reduction trends
for C-Cu300, C-Cu400, and C-Cu500 electrodes were similar to those of C-Cu200.

As the current density increased from 100 to 300 mA/cm2, the Faradaic efficiency
for C2

+ products initially rose sharply and then reached saturation for Cu electrodes with
thicknesses greater than 200 nm. However, as shown in Figure 4a, the performance of
thinner Cu/CP electrodes degraded significantly under the same conditions. Similarly, the
partial current density for C2

+ products exhibited an almost linear increase with current
density. At 300 mA/cm2, the C-Cu500 electrode achieved the highest partial current density
for C2

+ products, reaching 212.34 mA/cm2, which was 1.68 times higher than that of the
C-Cu100 electrode. This suggests that increasing the sputtering layer thickness provides a
greater number of active sites, which represents the range of the actual three-phase interface
(TPB). The TPB can be effectively regulated according to the wetting state. The wetting
state can be divided into the Cassie state, the Cassie–Wenzel coexistent state, and the
Wenzel state [34]. The Cassie–Wenzel coexistence state was favorable to increasing the
number of actual active sites, in which a rich TPB was formed on the catalyst layer, and
the active sites were fully exposed to the local environment to realize high efficiency
reactions [35,36]. When the Cu layer is thin, the TPB is limited, with few effective sites.
When the Cu layer is too thick, the gas cannot pass through the solid to contact the liquid,
thus reducing the TPB region.

The partial current densities of the C-Cu300 and C-Cu400 electrodes also exceeded
200 mA/cm2, similar to the C-Cu500 electrode, indicating only a slight increase in active
sites with further increases in the sputtering layer thickness (Figure 4b).
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The C2
+ products for the sputtered Cu electrodes on the carbon paper substrate were

predominantly C2H4 and C2H5OH. A comparison of the C-Cu100 and C-Cu300 electrodes
revealed that C2H4 selectivity ranged from 17% to 31% for C-Cu100 and from 29% to 39%
for C-Cu300. Similarly, C2H5OH selectivity ranged from 13% to 24% for C-Cu100 and from
14% to 24% for C-Cu300 (Figure 4c). Notably, the FEC2H4 for C-Cu300 was significantly
higher than that for C-Cu100 and remained stable even at the high current density of
300 mA/cm2. Furthermore, as shown in Figure 4d, the C2H4/C2H5OH ratio in terms of
Faradaic efficiency increased progressively with sputtering layer thickness but decreased
with rising current density.

The CO2 reduction performance of Cu/PTFE electrodes was also evaluated. Figure 5a–e
shows the distribution of FEH2, FECO, and FEC2

+ for Cu/PTFE electrodes with varying
sputtering thicknesses as a function of current density. As the current density increased
from 100 to 300 mA/cm2, FECO gradually decreased, while FEC2

+ increased, following
a trend similar to that observed for Cu/CP electrodes. The acceleration of C–C coupling
kinetics at higher current densities favored the formation of C2

+ products. For the P-Cu200
electrode, FECO decreased from 13% at 100 mA/cm2 to 4% at 300 mA/cm2, while FEC2

+

increased from 65% to 66%. Across all Cu/PTFE electrodes, the highest C2
+ selectivity was

achieved at a current density of 200 mA/cm2, with FEC2
+ values of 66%, 67%, 72%, 72%,

and 62% for P-Cu100, P-Cu200, P-Cu300, P-Cu400, and P-Cu500, respectively (Figure 5e).
It is noteworthy that thicker sputtering layers may reduce pore sizes, hindering the

diffusion of CO2 and H2O and consequently decreasing the electrocatalytic CO2RR activity.
Additionally, higher current densities were found to promote CH4 formation, particu-
larly for P-Cu100 and P-Cu500 electrodes. The FECH4 of the P-Cu100 electrode increased
from 1% to 9%, while that of the P-Cu500 electrode increased from 0.1% to 5%, indicat-
ing that enhanced protonation by *H likely contributed to CH4 generation. Compared
to Cu/CP electrodes, Cu/PTFE electrodes consistently exhibited lower FEH2 and FECO
(below 10%) while maintaining higher FEC2

+ across a broad range of current densities,
with C2

+ products predominantly consisting of C2H4 and C2H5OH.
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As the current density increased from 100 to 300 mA/cm2, the FEC2
+ of the Cu/PTFE

electrodes initially rose but then declined. For example, the FEC2
+ of the P-Cu500 elec-

trode increased from 58% to 62% before dropping to 46%, while the FEC2
+ of the P-Cu200

electrode remained relatively stable throughout (Figure 6a). A similar trend in the par-
tial current densities of C2

+ products was observed across all Cu layer thicknesses as
the current density increased (Figure 6b). According to Figure 6c, C2H4 was the pre-
dominant product among the C2

+ species. Notably, the P-Cu300 electrode exhibited the
highest FEC2H4/FEC2H5OH ratio of 2.41 at 100 mA/cm2, while the P-Cu500 electrode
showed the lowest ratio of 0.91 at the same current density (Figure 6c). In comparing
the FEH2 and FECO of the P-Cu100 and P-Cu400 electrodes, it was evident that FEH2 for
both electrodes increased significantly at current densities above 200 mA/cm2, whereas
FECO gradually decreased.
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Furthermore, we investigated the electrode–electrolyte interface behavior through
electrochemical impedance spectroscopy (EIS). On electrodes supported by carbon paper,
the semicircle radius in the high-frequency region of the EIS gradually decreased with
increasing catalyst thickness, indicating a reduction in the charge transfer resistance of
the catalyst. As the copper thickness increased, the conductivity gradually improved,
leading to a lower charge transfer resistance. However, the electrochemical behavior on
PTFE was completely different from that on carbon paper (Figure S2). The EIS plots of
the catalyst based on PTFE showed a linear trend, indicating that the overall behavior
tends toward mass transfer control. Although the conductivity of the PTFE substrate is
far inferior to that of carbon paper, it possesses a stable construction of the triple-phase
boundary. Additionally, as shown in Figure 7a, the FEC2

+/FECO ratios for both the P-Cu100
and P-Cu400 electrodes were higher than those for the C-Cu100 and C-Cu400 electrodes,
indicating that using PTFE as a substrate enhanced the electrocatalytic conversion of CO2
to C2

+ products. Additionally, HER was suppressed when PTFE was used as the substrate,
as confirmed by the lower FEH2 values shown in Figure 7b. Contact angle measurements
revealed that the carbon paper substrate exhibited a larger contact angle compared to
PTFE, indicating stronger hydrophobic properties. However, despite this, HER was more
pronounced with the Cu/CP electrode, suggesting that intrinsic hydrophobicity alone
was insufficient to suppress HER. The superior conductivity of the carbon paper substrate
likely contributed to a charging effect during CO2RR, inadvertently promoting HER. In
contrast, the PTFE-based electrodes effectively prevented such electric infiltration, leading
to enhanced CO2RR activity.
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4. Discussion

In this study, sputtered Cu electrodes with varying thicknesses and substrates were
systematically investigated in a flow cell for CO2 reduction reactions (CO2RRs). Spheri-
cal nanoparticles and dendritic structures of Cu-based electrocatalysts were synthesized
using carbon paper and PTFE substrates, respectively. As the current density increased
from 100 to 300 mA/cm2, the partial current density of C2

+ products also increased,
with the Cu layer thickness significantly influencing the distribution of C2

+ products.
The highest FEC2

+ for Cu/CP electrodes reached 70% at 200 mA/cm2, while the max-
imum FEC2

+ for Cu/PTFE electrodes, 72%, was obtained at a Cu thickness of 400 nm.
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By systematically analyzing the effects of electrode thickness and substrate properties using
advanced magnetron sputtering technology, this work contributes to advancing CO2RR
towards potential industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12112374/s1, Figure S1: (a) SEM electron micrographs of
blank carbon paper, (b–f) shows SEM electron micrographs of carbon paper loaded with metal Cu
of thicknesses of 100 nm, 200 nm, 300 nm, 400 nm, and 500 nm, respectively; Figure S2: (a) SEM
electron micrographs of blank PTFE; (b–f) SEM electron micrographs of PTFE loaded with metal
Cu with thicknesses of 100 nm, 200 nm, 300 nm, 400 nm and 500 nm, respectively; Figure S3: EIS
measurements for different thicknesses of left: carbon and right: PTFE substrate.
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